Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
1.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38683248

RESUMO

Nucleocytoplasmic transport (NCT), the facilitated diffusion of cargo molecules between the nucleus and cytoplasm through nuclear pore complexes (NPCs), enables numerous fundamental eukaryotic cellular processes. Ran GTPase uses cellular energy in the direct form of GTP to create a gradient across the nuclear envelope (NE) that drives the majority of NCT. We report here that changes in GTP availability resulting from altered cellular physiology modulate the rate of NCT, as monitored using synthetic and natural cargo, and the dynamics of Ran itself. Cell migration, cell spreading, and/or modulation of the cytoskeleton or its connection to the nucleus alter GTP availability and thus rates of NCT, regulating RNA export and protein synthesis. These findings support a model in which changes in cellular physiology that alter GTP availability can regulate the rate of NCT, impacting fundamental cellular processes that extensively utilize NCT.


Assuntos
Transporte Ativo do Núcleo Celular , Guanosina Trifosfato , Proteína ran de Ligação ao GTP , Guanosina Trifosfato/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Proteína ran de Ligação ao GTP/genética , Humanos , Núcleo Celular/metabolismo , Movimento Celular , Poro Nuclear/metabolismo , Poro Nuclear/genética , Animais , Membrana Nuclear/metabolismo , Citoesqueleto/metabolismo , Biossíntese de Proteínas , Citoplasma/metabolismo
3.
Rom J Intern Med ; 61(3): 154-162, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37311119

RESUMO

INTRODUCTION: Venous thromboembolism (VTE) is the third most common hemostatic disease worldwide. Studies have reported a role for microRNA (miRNA) in the homeostasis and development of VTE. The ras-related nuclear protein (RAN) and exportin 5 (XPO5) genes are involved in miRNA biogenesis, as both regulate the transport of pre-miRNA from the nucleus to the cytoplasm. Therefore, the aim of the current study is to examine the association between RAN (rs14035) and XPO5 (rs11077) single nucleotide polymorphisms (SNPs) and VTE. METHODS: The study sample consisted of 300 subjects (150 patients and 150 age and sex matched controls). The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and tetra-primer amplification refractory mutation system (T-ARMS) techniques were used to genotype rs14035 and rs11077, respectively. RESULTS: The results showed that there was a significant association between the XPO5 rs11077 and the risk of VTE (P < 0.05). Subjects with AC (OR: 2.08, CI:1.26-3.44) and CC (OR: 1.77, CI: 0.88-3.55) genotypes were at increased risk of the developing VTE. Regarding RAN gene, no association was found between rs14035 and VTE (P > 0.05). In addition, no associations were found between XPO5 rs11077 and RAN rs14035 genotypes with blood cell parameters (P > 0.05). As for the demographic characteristics, the results indicated a strong association between family history and body mass index (BMI) with the risk of VTE (P < 0.01). CONCLUSION: The XPO5 rs11077, BMI and family history might contribute to the development of VTE in Jordan.


Assuntos
MicroRNAs , Tromboembolia Venosa , Humanos , Estudos de Casos e Controles , Predisposição Genética para Doença , Genótipo , Carioferinas/genética , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo , Tromboembolia Venosa/genética
4.
J Biol Chem ; 299(6): 104736, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086784

RESUMO

Mitotic spindles are composed of microtubules (MTs) that must nucleate at the right place and time. Ran regulates this process by directly controlling the release of spindle assembly factors (SAFs) from nucleocytoplasmic shuttle proteins importin-αß and subsequently forms a biochemical gradient of SAFs localized around chromosomes. The majority of spindle MTs are generated by branching MT nucleation, which has been shown to require an eight-subunit protein complex known as augmin. In Xenopus laevis, Ran can control branching through a canonical SAF, TPX2, which is nonessential in Drosophila melanogaster embryos and HeLa cells. Thus, how Ran regulates branching MT nucleation when TPX2 is not required remains unknown. Here, we use in vitro pulldowns and total internal reflection fluorescence microscopy to show that augmin is a Ran-regulated SAF. We demonstrate that augmin directly interacts with both importin-α and importin-ß through two nuclear localization sequences on the Haus8 subunit, which overlap with the MT-binding site. Moreover, we show that Ran controls localization of augmin to MTs in both Xenopus egg extract and in vitro. Our results demonstrate that RanGTP directly regulates augmin, which establishes a new way by which Ran controls branching MT nucleation and spindle assembly both in the absence and presence of TPX2.


Assuntos
Proteínas Associadas aos Microtúbulos , Complexos Multiproteicos , Proteínas de Xenopus , Proteína ran de Ligação ao GTP , Animais , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Drosophila melanogaster , Células HeLa , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo , Fuso Acromático/metabolismo , Xenopus laevis/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , alfa Carioferinas , beta Carioferinas
5.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834476

RESUMO

Ran is a member of the Ras superfamily of proteins, which primarily regulates nucleocytoplasmic trafficking and mediates mitosis by regulating spindle formation and nuclear envelope (NE) reassembly. Therefore, Ran is an integral cell fate determinant. It has been demonstrated that aberrant Ran expression in cancer is a result of upstream dysregulation of the expression of various factors, such as osteopontin (OPN), and aberrant activation of various signaling pathways, including the extracellular-regulated kinase/mitogen-activated protein kinase (ERK/MEK) and phosphatidylinositol 3-kinase/Protein kinase B (PI3K/Akt) pathways. In vitro, Ran overexpression has severe effects on the cell phenotype, altering proliferation, adhesion, colony density, and invasion. Therefore, Ran overexpression has been identified in numerous types of cancer and has been shown to correlate with tumor grade and the degree of metastasis present in various cancers. The increased malignancy and invasiveness have been attributed to multiple mechanisms. Increased dependence on Ran for spindle formation and mitosis is a consequence of the upregulation of these pathways and the ensuing overexpression of Ran, which increases cellular dependence on Ran for survival. This increases the sensitivity of cells to changes in Ran concentration, with ablation being associated with aneuploidy, cell cycle arrest, and ultimately, cell death. It has also been demonstrated that Ran dysregulation influences nucleocytoplasmic transport, leading to transcription factor misallocation. Consequently, patients with tumors that overexpress Ran have been shown to have a higher malignancy rate and a shorter survival time compared to their counterparts.


Assuntos
GTP Fosfo-Hidrolases , Neoplasias , Humanos , GTP Fosfo-Hidrolases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteína ran de Ligação ao GTP/genética , Neoplasias/patologia , Fenótipo
6.
Life Sci ; 310: 121046, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36209829

RESUMO

RAS-related nuclear protein(RAN) is a nuclear shuttle and normally regulates events in the cell cycle. When overexpressed in cultured cells, it causes increases in cell migration/invasion in vitro and its overexpression is associated with early breast cancer patient deaths in vivo. However, the underlying mechanism is unknown. The effect of RAN overexpression on potential targets MMP2, ATF3, CXCR3 was investigated by Real-Time PCR/Western blots in the triple receptor negative breast cancer(TRNBC) cell line MDA-MB231 and consequent biological effects were measured by cell adhesion, cell migration and cell invasion assays. Results showed that knockdown of RAN lead to a reduction of MMP2 and its potential regulators ATF3 and CXCR3. Moreover, knockdown of ATF3 or CXCR3 downregulated MMP2 without affecting RAN, indicating that RAN regulates MMP2 through ATF3 and CXCR3. Knockdown of RAN and MMP2 reduced cell adhesion, cell migration and cell growth in agar, whilst overexpression of MMP2 reversed the knockdown of RAN. Furthermore, immunohistochemical staining for RAN and MMP2 are positively associated with each other in the same tumour and separately with patient survival times in breast cancer specimens, suggesting that a high level of RAN may be a pre-requisite for MMP2 overexpression and metastasis. Moreover, positive immunohistochemical staining for both RAN and MMP-2 reduces further patient survival times over that for either protein separately. Our results suggest that MMP2 expression can stratify progression of breast cancers with a high and low incidence of RAN, both RAN and MMP2 in combination can be used for a more accurate patient prognosis. SIMPLE SUMMARY: Ran is an important regulator of normal cell growth and behaviour. We have established in cell line models of breast cancer (BC) a molecular pathway between RAN and its protein-degrading effector MMP-2 and properties related to metastasis in culture. Using immunohistochemistry (IHC) staining of primary BCs, we have shown that RAN and MMP-2 are on their own significantly associated with patient demise from metastatic BC. Moreover, when staining for MMP-2 is added to that for RAN in the primary tumours, there is a significant decrease in patient survival time over that for either protein alone. Thus a combination of staining for RAN and MMP2 is an excellent marker for poor prognosis in breast cancer.


Assuntos
Neoplasias da Mama , Metaloproteinase 2 da Matriz , Neoplasias de Mama Triplo Negativas , Proteína ran de Ligação ao GTP , Feminino , Humanos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Guanosina Trifosfato , Metaloproteinase 2 da Matriz/metabolismo , Invasividade Neoplásica , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
7.
BMC Cancer ; 22(1): 785, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850701

RESUMO

BACKGROUND: More than twenty years after its discovery, the role of the importin beta superfamily member Ran GTP-binding protein (RanBP) 17 is still ill defined. Previously, we observed notable RanBP17 RNA expression levels in head and neck squamous cell carcinoma (HNSCC) cell lines with disruptive TP53 mutations. METHODS: We deployed HNSCC cell lines as well as cell lines from other tumor entities such as HCT116, MDA-MB-231 and H460, which were derived from colon, breast and lung cancers respectively. RNAi was used to evaluate the effect of RanBP17 on cell proliferation. FACS analysis was used for cell sorting according to their respective cell cycle phase and for BrdU assays. Immunocytochemistry was deployed for colocalization studies of RanBP17 with Nucleolin and SC35 (nuclear speckles) domains. TCGA analysis was performed for prognostic assessment and correlation analysis of RanBP17 in HNSCC patients. RESULTS: RNAi knockdown of RanBP17, significantly reduced cell proliferation in HNSCC cell lines. This effect was also seen in the HNSCC unrelated cell lines HCT116 and MDA-MB-231. Similarly, inhibiting cell proliferation with cisplatin reduced RanBP17 in keratinocytes but lead to induction in tumor cell lines. A similar observation was made in tumor cell lines after treatment with the EGFR kinase inhibitor AG1478. In addition to previous reports, showing colocalization of RanBP17 with SC35 domains, we observed colocalization of RanBP17 to nuclear bodies that are distinct from nucleoli and SC35 domains. Interestingly, for HPV positive but not HPV negative HNSCC, TCGA data base analysis revealed a strong positive correlation of RanBP17 RNA with patient survival and CDKN2A. CONCLUSIONS: Our data point to a role of RanBP17 in proliferation of HNSCC and other epithelial cells. Furthermore, RanBP17 could potentially serve as a novel prognostic marker for HNSCC patients. However, we noted a major discrepancy between RanBP17 RNA and protein expression levels with the used antibodies. These observations could be explained by the presence of additional RanBP17 splice isoforms and more so of non-coding circular RanBP17 RNA species. These aspects need to be addressed in more detail by future studies.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias de Cabeça e Pescoço/genética , Humanos , Inibidores de Proteínas Quinases/farmacologia , RNA , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , beta Carioferinas/genética , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo , Proteína ran de Ligação ao GTP/farmacologia
8.
Biochim Biophys Acta Mol Basis Dis ; 1868(9): 166429, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35533905

RESUMO

Our earlier studies identified MOG1 as a Nav1.5-binding protein that promotes Nav1.5 intracellular trafficking to plasma membranes. Genetic studies have identified MOG1 variants responsible for cardiac arrhythmias. However, the physiological functions of MOG1 in vivo remain incompletely characterized. In this study, we generated Mog1 knockout (Mog1-/-) mice. Mog1-/- mice did not develop spontaneous arrhythmias at the baseline, but exhibited a prolongation of QRS duration. Mog1-/- mice treated with isoproterenol (ISO), but not with flecainide, exhibited an increased risk of arrhythmias and even sudden death. Mog1-/- mice had normal cardiac morphology, however, LV systolic dysfunction was identified and associated with an increase in ventricular fibrosis. Whole-cell patch-clamping and Western blotting analysis clearly demonstrated the normal cardiac expression and function of Nav1.5 in Mog1-/- mice. Further RNA-seq and iTRAQ analysis identified critical pathways and genes, including extracellular matrix (Mmp2), gap junction (Gja1), and mitochondrial components that were dysregulated in Mog1-/- mice. RT-qPCR, Western blotting, and immunofluorescence assays revealed reduced cardiac expression of Gja1 in Mog1-/- mice. Dye transfer assays confirmed impairment of gap-junction function; Cx43 gap-junction enhancer ZP123 decreased arrhythmia inducibility in ISO-treated Mog1-/- mice. Transmission electron microscopy analysis revealed abnormal sarcomere ultrastructure and altered mitochondrial morphology in Mog1-/- mice. Mitochondrial dynamics was found to be disturbed, and associated with a trend toward increased mitochondrial fusion in Mog1-/- mice. Meanwhile, the level of ATP supply was increased in the hearts of Mog1-/- mice. These results indicate that MOG1 plays an important role in cardiac electrophysiology and cardiac contractile function.


Assuntos
Conexina 43 , Canal de Sódio Disparado por Voltagem NAV1.5 , Proteína ran de Ligação ao GTP , Animais , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/genética , Conexina 43/genética , Conexina 43/metabolismo , Fibrose , Isoproterenol/efeitos adversos , Camundongos , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Proteína ran de Ligação ao GTP/genética
9.
Hum Mol Genet ; 31(14): 2317-2332, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35137065

RESUMO

Repeat associated non-AUG (RAN) translation of CGG repeats in the 5'UTR of FMR1 produces toxic proteins that contribute to fragile X-associated tremor/ataxia syndrome (FXTAS) pathogenesis. The most abundant RAN product, FMRpolyG, initiates predominantly at an ACG upstream of the repeat. Accurate FMRpolyG measurements in FXTAS patients are lacking. We used data-dependent acquisition and parallel reaction monitoring (PRM) mass spectrometry coupled with stable isotope labeled standard peptides to identify signature FMRpolyG fragments in patient samples. Following immunoprecipitation, PRM detected FMRpolyG signature peptides in transfected cells, and FXTAS tissues and cells, but not in controls. We identified two amino-terminal peptides: an ACG-initiated Ac-MEAPLPGGVR and a GUG-initiated Ac-TEAPLPGGVR, as well as evidence for RAN translation initiation within the CGG repeat itself in two reading frames. Initiation at all sites increased following cellular stress, decreased following eIF1 overexpression and was eIF4A and M7G cap-dependent. These data demonstrate that FMRpolyG is quantifiable in human samples and FMR1 RAN translation initiates via similar mechanisms for near-cognate codons and within the repeat through processes dependent on available initiation factors and cellular environment.


Assuntos
Ataxia , Síndrome do Cromossomo X Frágil , Tremor , Proteína ran de Ligação ao GTP , Ataxia/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Humanos , Peptídeos/metabolismo , Tremor/genética , Expansão das Repetições de Trinucleotídeos , Proteína ran de Ligação ao GTP/genética
10.
J Clin Pathol ; 75(1): 24-29, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33234696

RESUMO

AIMS: Ran GTPase is involved in nucleocytoplasmic shuttling of proteins and is overexpressed in several cancers. The expression of Ran in malignant melanoma (MM) and its functional activity have not been described and were investigated in this study. METHODS: The prognostic value of Ran expression was tested in a series of 185 primary cutaneous MM cases using immunohistochemistry. The functional activity of Ran was investigated in the two melanoma cell lines. Ran expression was knocked down using two siRNAs and the effect on the expression of the c-Met oncogene, a potential downstream target of Ran, was tested. Functional effects of Ran knockdown on cell motility and cell proliferation were also assessed. RESULTS: Positive Ran expression was seen in 12.4% of MM and was associated with advanced clinical stage and greater Breslow thickness. Positive expression was an independent marker of shorter overall survival (p=0.023). Knockdown of Ran results in decreased expression of c-Met and the downstream c-met signalling targets ERK1/2. There was a significant reduction in cell migration (p<0.001) and cell invasion (p<0.001). c-Met knockdown decreased the expression of Ran through MAPK and PI3K-AKT in A375 cell line, inhibited the cell viability and migration of both A375 and G361 melanoma cell lines while invasion was enhanced. CONCLUSION: Ran is a poor prognostic marker in cutaneous MM. It upregulates expression of the oncogene c-Met and, possibly through this, it promotes cell motility which may in turn promote metastasis.


Assuntos
Melanoma/diagnóstico , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/diagnóstico , Proteína ran de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Melanoma/patologia , Invasividade Neoplásica , Prognóstico , Proteínas Proto-Oncogênicas c-met/genética , Neoplasias Cutâneas/patologia , Proteína ran de Ligação ao GTP/genética , Melanoma Maligno Cutâneo
11.
Exp Cell Res ; 406(2): 112767, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364882

RESUMO

Oral squamous cell carcinoma (OSCC) is one of the most common malignancies in the world, with a high mortality rate. RAN is a member of the Ras GTPase family and is overexpressed in a range of cancers, however, the relationship between RAN and OSCC is rarely reported. In this study, we found that RAN is overexpressed in OSCC tissues. RAN inhibition retarded OSCC cell proliferation and led to apoptosis and cell cycle arrest. Knockdown of RAN inhibited tumor growth in vivo. Strikingly, we found that RAN and oncogene Y-box binding protein-1 (YBX1) are positively associated with the immune infiltrates of CD4+ Th2 cells in multiple types of cancer, and can promote IL-4 expression. IL-4 treatment can partially rescue RAN knockdown-induced cell apoptosis in OSCC cells. Moreover, overexpression of RAN could rescue cell growth inhibition caused by knockdown of YBX1. Furthermore, patients with low expression of both RAN and YBX1 had better overall survival than others. Collectively, these findings indicate that RAN is a target of YBX1. RAN and YBX1 are required for cell proliferation and IL-4 expression. RAN and YBX1 are co-expressed and can serve as potential co-biomarkers for poor prognosis in OSCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/patologia , Regulação Neoplásica da Expressão Gênica , Interleucina-4/metabolismo , Neoplasias Bucais/patologia , Proteína 1 de Ligação a Y-Box/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Ciclo Celular , Movimento Celular , Proliferação de Células , Feminino , Humanos , Interleucina-4/genética , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias Bucais/metabolismo , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína 1 de Ligação a Y-Box/genética , Proteína ran de Ligação ao GTP/genética
12.
Plant J ; 108(4): 977-991, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34312926

RESUMO

Plants resist infection through an innate immune response, which is usually associated with slowing of growth. The molecular mechanisms underlying the trade-off between plant growth and defense remain unclear. The present study reveals that growth/defense trade-offs mediated by gibberellin (GA) and salicylic acid (SA) signaling pathways are uncoupled during constitutive overexpression of transgenic AtRAN1 and AtRAN1Q72L (active, GTP-locked form) Arabidopsis plants. It is well known that the small GTP-binding protein Ran (a Ras-related nuclear protein) functions in the nucleus-cytoplasmic transport of proteins. Although there is considerable evidence indicating that nuclear-cytoplasmic partitioning of specific proteins can participate in hormone signaling, the role of Ran-dependent nuclear transport in hormone signaling is not yet fully understood. In this report, we used a combination of genetic and molecular methods to reveal whether AtRAN1 is involved in both GA and SA signaling pathways. Constitutively overexpressed AtRAN1 promoted both elongation growth and the disease resistance response, whereas overexpression of AtRAN1Q72L in the atran2atran3 double mutant background clearly inhibited elongation growth and the defense response. Furthermore, we found that AtRAN1 coordinated plant growth and defense by promoting the stability of the DELLA protein RGA in the nucleus and by modulating NPR1 nuclear localization. Interestingly, genetically modified rice (Oryza sativa) overexpressing AtRAN1 exhibited increased plant height and yield per plant. Altogether, the ability to achieve growth/defense trade-offs through AtRAN1 overexpression provides an approach to maximizing crop yield to meet rising global food demands.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Pseudomonas syringae/fisiologia , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Proteína ran de Ligação ao GTP/metabolismo , Substituição de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Resistência à Doença , Expressão Gênica , Giberelinas/metabolismo , Mutação , Oryza/genética , Oryza/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ácido Salicílico/metabolismo , Proteína ran de Ligação ao GTP/genética
13.
Am J Hum Genet ; 108(9): 1669-1691, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34314705

RESUMO

Transportin-2 (TNPO2) mediates multiple pathways including non-classical nucleocytoplasmic shuttling of >60 cargoes, such as developmental and neuronal proteins. We identified 15 individuals carrying de novo coding variants in TNPO2 who presented with global developmental delay (GDD), dysmorphic features, ophthalmologic abnormalities, and neurological features. To assess the nature of these variants, functional studies were performed in Drosophila. We found that fly dTnpo (orthologous to TNPO2) is expressed in a subset of neurons. dTnpo is critical for neuronal maintenance and function as downregulating dTnpo in mature neurons using RNAi disrupts neuronal activity and survival. Altering the activity and expression of dTnpo using mutant alleles or RNAi causes developmental defects, including eye and wing deformities and lethality. These effects are dosage dependent as more severe phenotypes are associated with stronger dTnpo loss. Interestingly, similar phenotypes are observed with dTnpo upregulation and ectopic expression of TNPO2, showing that loss and gain of Transportin activity causes developmental defects. Further, proband-associated variants can cause more or less severe developmental abnormalities compared to wild-type TNPO2 when ectopically expressed. The impact of the variants tested seems to correlate with their position within the protein. Specifically, those that fall within the RAN binding domain cause more severe toxicity and those in the acidic loop are less toxic. Variants within the cargo binding domain show tissue-dependent effects. In summary, dTnpo is an essential gene in flies during development and in neurons. Further, proband-associated de novo variants within TNPO2 disrupt the function of the encoded protein. Hence, TNPO2 variants are causative for neurodevelopmental abnormalities.


Assuntos
Deficiências do Desenvolvimento/genética , Proteínas de Drosophila/genética , Oftalmopatias Hereditárias/genética , Deficiência Intelectual/genética , Carioferinas/genética , Anormalidades Musculoesqueléticas/genética , beta Carioferinas/genética , Proteína ran de Ligação ao GTP/genética , Alelos , Sequência de Aminoácidos , Animais , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Oftalmopatias Hereditárias/metabolismo , Oftalmopatias Hereditárias/patologia , Feminino , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento , Genoma Humano , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Carioferinas/antagonistas & inibidores , Carioferinas/metabolismo , Masculino , Anormalidades Musculoesqueléticas/metabolismo , Anormalidades Musculoesqueléticas/patologia , Mutação , Neurônios/metabolismo , Neurônios/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sequenciamento Completo do Genoma , beta Carioferinas/metabolismo , Proteína ran de Ligação ao GTP/metabolismo
14.
PLoS Genet ; 17(6): e1009602, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34133414

RESUMO

Fat stored in the form of lipid droplets has long been considered a defining characteristic of cytoplasm. However, recent studies have shown that nuclear lipid droplets occur in multiple cells and tissues, including in human patients with fatty liver disease. The function(s) of stored fat in the nucleus has not been determined, and it is possible that nuclear fat is beneficial in some situations. Conversely, nuclear lipid droplets might instead be deleterious by disrupting nuclear organization or triggering aggregation of hydrophobic proteins. We show here that nuclear lipid droplets occur normally in C. elegans intestinal cells and germ cells, but appear to be associated with damage only in the intestine. Lipid droplets in intestinal nuclei can be associated with novel bundles of microfilaments (nuclear actin) and membrane tubules that might have roles in damage repair. To increase the normal, low frequency of nuclear lipid droplets in wild-type animals, we used a forward genetic screen to isolate mutants with abnormally large or abundant nuclear lipid droplets. Genetic analysis and cloning of three such mutants showed that the genes encode the lipid regulator SEIP-1/seipin, the inner nuclear membrane protein NEMP-1/Nemp1/TMEM194A, and a component of COPI vesicles called COPA-1/α-COP. We present several lines of evidence that the nuclear lipid droplet phenotype of copa-1 mutants results from a defect in retrieving mislocalized membrane proteins that normally reside in the endoplasmic reticulum. The seip-1 mutant causes most germ cells to have nuclear lipid droplets, the largest of which occupy more than a third of the nuclear volume. Nevertheless, the nuclear lipid droplets do not trigger apoptosis, and the germ cells differentiate into gametes that produce viable, healthy progeny. Thus, our results suggest that nuclear lipid droplets are detrimental to intestinal nuclei, but have no obvious deleterious effect on germ nuclei.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Proteína Coatomer/genética , Mucosa Intestinal/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/genética , Proteínas de Membrana/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/ultraestrutura , Proteína Coatomer/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Células Germinativas/citologia , Células Germinativas/metabolismo , Mucosa Intestinal/patologia , Intestinos/patologia , Gotículas Lipídicas/ultraestrutura , Lipídeos/química , Proteínas de Membrana/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especificidade de Órgãos , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo
15.
J Cell Sci ; 134(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33912945

RESUMO

Macromolecular cargoes are asymmetrically partitioned in the nucleus or cytoplasm by nucleocytoplasmic transport (NCT). At the center of this activity lies the nuclear pore complex (NPC), through which soluble factors circulate to orchestrate NCT. These include cargo-carrying importin and exportin receptors from the ß-karyopherin (Kapß) family and the small GTPase Ran, which switches between guanosine triphosphate (GTP)- and guanosine diphosphate (GDP)-bound forms to regulate cargo delivery and compartmentalization. Ongoing efforts have shed considerable light on how these soluble factors traverse the NPC permeability barrier to sustain NCT. However, this does not explain how importins and exportins are partitioned in the cytoplasm and nucleus, respectively, nor how a steep RanGTP-RanGDP gradient is maintained across the nuclear envelope. In this Review, we peel away the multiple layers of control that regulate NCT and juxtapose unresolved features against known aspects of NPC function. Finally, we discuss how NPCs might function synergistically with Kapßs, cargoes and Ran to establish the asymmetry of NCT.


Assuntos
Carioferinas , Proteína ran de Ligação ao GTP , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Guanosina Trifosfato/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo
17.
Funct Integr Genomics ; 21(2): 239-250, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33609188

RESUMO

Maintenance of growth is important for sustaining yield under stress conditions. Hence, identification of genes involved in cell division and growth under abiotic stress is utmost important. Ras-related nuclear protein (Ran) is a small GTPase required for nucleocytoplasmic transport, mitotic progression, and nuclear envelope assembly in plants. In the present study, two Ran GTPase genes TaRAN1 and TaRAN2 were identified though genome-wide analysis in wheat (T. aestivum). Comparative analysis of Ran GTPases from wheat, barley, rice, maize, sorghum, and Arabidopsis revealed similar gene structure within phylogenetic clades and highly conserved protein structure. Expression analysis from expVIP platform showed ubiquitous expression of TaRAN genes across tissues and developmental stages. Under biotic and abiotic stresses, TaRAN1 expression was largely unaltered, while TaRAN2 showed stress specific response. In qRT-PCR analysis, TaRAN1 showed significantly higher expression as compared to TaRAN2 in shoot and root at seedling, vegetative, and reproductive stages. During progressive drought stress, TaRAN1 and TaRAN2 expression increase during early stress and restored to control level expression at higher stress levels in shoot. The steady-state level of transcripts was maintained to that of control in roots under drought stress. Under cold stress, expression of both the TaRAN genes decreased significantly at 3 h and became similar to control at 6 h in shoots, while salt stress significantly reduced the expression of TaRAN genes in shoots. The analysis suggests differential regulation of TaRAN genes under developmental stages and abiotic stresses. Delineating the molecular functions of Ran GTPases will help unravel the mechanism of stress induced growth inhibition in wheat.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Triticum/genética , Proteína ran de Ligação ao GTP/genética , Secas , Regulação da Expressão Gênica de Plantas/genética , Família Multigênica/genética , Filogenia , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Triticum/crescimento & desenvolvimento
18.
Genes Dev ; 35(5-6): 379-391, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33602872

RESUMO

Senescence is a key barrier to neoplastic transformation. To identify senescence regulators relevant to cancer, we screened a genome-wide shRNA library. Here, we describe exportin 7 (XPO7) as a novel regulator of senescence and validate its function in telomere-induced, replicative, and oncogene-induced senescence (OIS). XPO7 is a bidirectional transporter that regulates the nuclear-cytoplasmic shuttling of a broad range of substrates. Depletion of XPO7 results in reduced levels of TCF3 and an impaired induction of the cyclin-dependent kinase inhibitor p21CIP1 during OIS. Deletion of XPO7 correlates with poorer overall survival in several cancer types. Moreover, depletion of XPO7 alleviated OIS and increased tumor formation in a mouse model of liver cancer. Our results suggest that XPO7 is a novel tumor suppressor that regulates p21CIP1 expression to control senescence and tumorigenesis.


Assuntos
Senescência Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Neoplasias/fisiopatologia , Proteína 2 de Ligação a Repetições Teloméricas/genética
19.
Small GTPases ; 12(3): 177-187, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32013678

RESUMO

The Ran pathway has a well-described function in nucleocytoplasmic transport, where active Ran dissociates importin/karyopherin-bound cargo containing a nuclear localization signal (NLS) in the nucleus. As cells enter mitosis, the nuclear envelope breaks down and a gradient of active Ran forms where levels are highest near chromatin. This gradient plays a crucial role in regulating mitotic spindle assembly, where active Ran binds to and releases importins from NLS-containing spindle assembly factors. An emerging theme is that the Ran gradient also regulates the actomyosin cortex for processes including polar body extrusion during meiosis, and cytokinesis. For these events, active Ran could play an inhibitory role, where importin-binding may help promote or stabilize a conformation or interaction that favours the recruitment and function of cortical regulators. For either spindle assembly or cortical polarity, the gradient of active Ran determines the extent of importin-binding, the effects of which could vary for different proteins.


Assuntos
Núcleo Celular/fisiologia , Microtúbulos/fisiologia , Mitose , Sinais de Localização Nuclear , Fuso Acromático/fisiologia , Proteína ran de Ligação ao GTP/metabolismo , Animais , Humanos , Fuso Acromático/enzimologia , Proteína ran de Ligação ao GTP/genética
20.
Carcinogenesis ; 42(1): 148-158, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32710739

RESUMO

Artesunate (ART) is a clinically approved antimalarial drug and was revealed as a candidate of colorectal cancer chemopreventive agents in our drug screening system. Here, we aimed to understand the suppressive effects of ART on intestinal tumorigenesis. In vitro, ART reduced T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter transcriptional activity. In vivo, ART inhibited intestinal polyp development. We found that ART reduces TCF1/TCF7 nuclear translocation by binding the Ras-related nuclear protein (RAN), suggesting that ART inhibits TCF/LEF transcriptional factor nuclear translocation by binding to RAN, thereby inhibiting Wnt signaling. Our results provide a novel mechanism through which artesunate inhibits intestinal tumorigenesis.


Assuntos
Polipose Adenomatosa do Colo/prevenção & controle , Artesunato/farmacologia , Carcinogênese/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Artesunato/uso terapêutico , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Técnicas de Silenciamento de Genes , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Regiões Promotoras Genéticas , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/metabolismo , Ativação Transcricional/efeitos dos fármacos , Via de Sinalização Wnt/genética , Proteína ran de Ligação ao GTP/antagonistas & inibidores , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...