Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 513
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732165

RESUMO

Glioblastoma (GBM), an aggressive form of brain cancer, has a higher incidence in non-Hispanics when compared to the US Hispanic population. Using data from RT-PCR analysis of 21 GBM tissue from Hispanic patients in Puerto Rico, we identified significant correlations in the gene expression of focal adhesion kinase and proline-rich tyrosine kinase (PTK2 and PTK2B) with NGFR (nerve growth factor receptor), PDGFRB (platelet-derived growth factor receptor B), EGFR (epithelial growth factor receptor), and CXCR1 (C-X-C motif chemokine receptor 1). This study further explores these correlations found in gene expression while accounting for sex and ethnicity. Statistically significant (p < 0.05) correlations with an r value > ±0.7 were subsequently contrasted with mRNA expression data acquired from cBioPortal for 323 GBM specimens. Significant correlations in Puerto Rican male patients were found between PTK2 and PTK2B, NGFR, PDGFRB, EGFR, and CXCR1, which did not arise in non-Hispanic male patient data. The data for Puerto Rican female patients showed correlations in PTK2 with PTK2B, NGFR, PDGFRB, and EGFR, all of which did not appear in the data for non-Hispanic female patients. The data acquired from cBioPortal for non-Puerto Rican Hispanic patients supported the correlations found in the Puerto Rican population for both sexes. Our findings reveal distinct correlations in gene expression patterns, particularly involving PTK2, PTK2B, NGFR, PDGFRB, and EGFR among Puerto Rican Hispanic patients when compared to non-Hispanic counterparts.


Assuntos
Neoplasias Encefálicas , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Hispânico ou Latino , Transdução de Sinais , Humanos , Glioblastoma/genética , Glioblastoma/etnologia , Hispânico ou Latino/genética , Masculino , Feminino , Transdução de Sinais/genética , Porto Rico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/etnologia , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Pessoa de Meia-Idade , Receptores ErbB/genética , Adulto , Idoso
2.
BMC Cancer ; 24(1): 334, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475740

RESUMO

BACKGROUND: Ribosomal RNA processing protein 15 (RRP15) has been found to regulate the progression of hepatocellular carcinoma (HCC). Nevertheless, the extent to which it contributes to the spread of HCC cells remains uncertain. Thus, the objective of this research was to assess the biological function of RRP15 in the migration of HCC. METHODS: The expression of RRP15 in HCC tissue microarray (TMA), tumor tissues and cell lines were determined. In vitro, the effects of RRP15 knockdown on the migration, invasion and adhesion ability of HCC cells were assessed by wound healing assay, transwell and adhesion assay, respectively. The effect of RRP15 knockdown on HCC migration was also evaluated in vivo in a mouse model. RESULTS: Bioinformatics analysis showed that high expression of RRP15 was significantly associated with low survival rate of HCC. The expression level of RRP15 was strikingly upregulated in HCC tissues and cell lines compared with the corresponding controls, and TMA data also indicated that RRP15 was a pivotal prognostic factor for HCC. RRP15 knockdown in HCC cells reduced epithelial-to-mesenchymal transition (EMT) and inhibited migration in vitro and in vivo, independent of P53 expression. Mechanistically, blockade of RRP15 reduced the protein level of the transcription factor POZ/BTB and AT hook containing zinc finger 1 (PATZ1), resulting in decreased expression of the downstream genes encoding laminin 5 subunits, LAMC2 and LAMB3, eventually suppressing the integrin ß4 (ITGB4)/focal adhesion kinase (FAK)/nuclear factor κB kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. CONCLUSIONS: RRP15 promotes HCC migration by activating the LAMC2/ITGB4/FAK pathway, providing a new target for future HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Processamento Pós-Transcricional do RNA , Proteínas Ribossômicas , Animais , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , NF-kappa B/metabolismo , Ribossomos/metabolismo , Ribossomos/patologia , Fatores de Transcrição/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
3.
Mol Cancer ; 23(1): 33, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355583

RESUMO

BACKGROUND: Circular RNAs are highly stable regulatory RNAs that have been increasingly associated with tumorigenesis and progression. However, the role of many circRNAs in triple-negative breast cancer (TNBC) and the related mechanisms have not been elucidated. METHODS: In this study, we screened circRNAs with significant expression differences in the RNA sequencing datasets of TNBC and normal breast tissues and then detected the expression level of circRPPH1 by qRT‒PCR. The biological role of circRPPH1 in TNBC was then verified by in vivo and in vitro experiments. Mechanistically, we verified the regulatory effects between circRPPH1 and ZNF460 and between circRPPH1 and miR-326 by chromatin immunoprecipitation (ChIP), fluorescence in situ hybridization assay, dual luciferase reporter gene assay and RNA pull-down assay. In addition, to determine the expression of associated proteins, we performed immunohistochemistry, immunofluorescence, and western blotting. RESULTS: The upregulation of circRPPH1 in TNBC was positively linked with a poor prognosis. Additionally, both in vivo and in vitro, circRPPH1 promoted the biologically malignant behavior of TNBC cells. Additionally, circRPPH1 may function as a molecular sponge for miR-326 to control integrin subunit alpha 5 (ITGA5) expression and activate the focal adhesion kinase (FAK)/PI3K/AKT pathway. CONCLUSION: Our research showed that ZNF460 could promote circRPPH1 expression and that the circRPPH1/miR-326/ITGA5 axis could activate the FAK/PI3K/AKT pathway to promote the progression of TNBC. Therefore, circRPPH1 can be used as a therapeutic or diagnostic target for TNBC.


Assuntos
MicroRNAs , Fatores de Transcrição , Neoplasias de Mama Triplo Negativas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Endógeno Competitivo , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , RNA Circular/genética , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , Integrinas/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteínas de Ligação a DNA/metabolismo
4.
Signal Transduct Target Ther ; 9(1): 21, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38280862

RESUMO

Abnormal metabolism is regarded as an oncogenic hallmark related to tumor progression and therapeutic resistance. Present study employed multi-omics, including phosphoproteomics, untargeted metabolomics and lipidomics, to demonstrate that the pAKT2 Ser128 and pCCTα Ser315/319/323-positive cancer-associated fibroblasts (CAFs) substantially release phosphatidylcholines (PCs), contributing to the resistance of focal adhesion kinase (FAK) inhibitors in esophageal squamous cell carcinoma (ESCC) treatment. Additionally, we observed extremely low levels of FAK Tyr397 expression in CAFs, potentially offering no available target for FAK inhibitors playing their anti-growth role in CAFs. Consequently, FAK inhibitor increased the intracellular concentration of Ca2+ in CAFs, promoting the formation of AKT2/CCTα complex, leading to phosphorylation of CCTα Ser315/319/323 sites and eventually enhancing stromal PC production. This activation could stimulate the intratumoral Janus kinase 2 (JAK2)/Signal transducer and activator of transcription 3 (STAT3) pathway, triggering resistance to FAK inhibition. Analysis of clinical samples demonstrated that stromal pAKT2 Ser128 and pCCTα Ser315/319/323 are related to the tumor malignancy and reduced patient survival. Pseudo-targeted lipidomics and further validation cohort quantitatively showed that plasma PCs enable to distinguish the malignant extent of ESCC patients. In conclusion, inhibition of stroma-derived PCs and related pathway could be possible therapeutic strategies for tumor therapy.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Transdução de Sinais , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Appl Biochem Biotechnol ; 196(3): 1241-1254, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37382792

RESUMO

The incidence of diabetic patients with non-alcoholic fatty liver disease (NAFLD) is continuously increasing worldwide. However, the specific mechanisms of NAFLD patients with diabetes are still not clear. Recent studies have indicated that integrins play an important role in NAFLD. In this study, we considered the relationship between integrin αv (IGTAV)/FAK pathway and sinusoidal capillarization. We investigated the difference between the expression of IGTAV, laminin (LN), focal adhesion kinase (FAK), and phosphor-FAK protein in human liver sinusoidal endothelial cells (HLSECs) to explore the specific mechanisms of the diseases of NAFLD with diabetes under high glucose. We cultured and identified the HLSECs and constructed the recombinant lentivirus vector with IGTAV shRNA by quantitative real-time PCR (qRT-PCR) to silence the IGTAV gene. Cells were divided into groups of 25 mmol/L glucose and 25 mmol/L mannitol. We measured the protein levels of IGTAV, LN, FAK, and phosphor-FAK by western blot at 2 h, 6 h, and 12 h before and after IGTAV gene silencing. The lentivirus vector was successfully constructed with IGTAV shRNA. The HLSECs under high glucose were observed by scanning electron microscope. SPSS19.0 was used for statistical analysis. High glucose significantly increased the expression of IGTAV, LN, and phosphor-FAK protein in HLSECs; the shRNA IGTAV could effectively inhibit the expression of phosphor-FAK and LN at 2 h and 6 h. Inhibition of the phosphor-FAK could effectively decrease the expression of LN in HLSECs at 2 h and 6 h under high glucose. Inhibition of IGTAV gene of HLSECs under high glucose could improve hepatic sinus capillarization. Inhibition of IGTAV and phosphor-FAK decreased the expression of LN. High glucose led to hepatic sinus capillarization via IGTAV/ FAK pathway.


Assuntos
Diabetes Mellitus , Hepatopatia Gordurosa não Alcoólica , Humanos , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Integrina alfaV/metabolismo , Células Endoteliais , Capilares/metabolismo , Glucose/metabolismo , RNA Interferente Pequeno
6.
Mol Carcinog ; 63(1): 173-189, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37787401

RESUMO

Lenvatinib is a clinically effective multikinase inhibitor approved for first-line therapy of advanced hepatocellular carcinoma (HCC). Although resistance against lenvatinib often emerges and limits its antitumor activity, the underlying molecular mechanisms involved in endogenous and acquired resistance remain elusive. In this study, we identified focal adhesion kinase (FAK) as a critical contributor to lenvatinib resistance in HCC. The elevated expression and phosphorylation of FAK were observed in both acquired and endogenous lenvatinib-resistant (LR) HCC cells. Furthermore, inhibition of FAK reversed lenvatinib resistance in vitro and in vivo. Mechanistically, FAK promoted lenvatinib resistance through regulating lysine-deficient kinase 1 (WNK1). Phosphorylation of WNK1 was significantly increased in LR-HCC cells. Further, WNK1 inhibitor WNK463 resensitized either established or endogenous LR-HCC cells to lenvatinib treatment. In addition, overexpression of WNK1 desensitized parental HCC cells to lenvatinib treatment. Conclusively, our results establish a crucial role and novel mechanism of FAK in lenvatinib resistance and suggest that targeting the FAK/WNK1 axis is a promising therapeutic strategy in HCC patients showing lenvatinib resistance.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Lisina/uso terapêutico , Linhagem Celular Tumoral
7.
Front Med ; 17(5): 907-923, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37682378

RESUMO

The characteristic genetic abnormality of neuroendocrine neoplasms (NENs), a heterogeneous group of tumors found in various organs, remains to be identified. Here, based on the analysis of the splicing variants of an oncogene Focal Adhesion Kinase (FAK) in The Cancer Genome Atlas datasets that contain 9193 patients of 33 cancer subtypes, we found that Box 6/Box 7-containing FAK variants (FAK6/7) were observed in 7 (87.5%) of 8 pancreatic neuroendocrine carcinomas and 20 (11.76%) of 170 pancreatic ductal adenocarcinomas (PDACs). We tested FAK variants in 157 tumor samples collected from Chinese patients with pancreatic tumors, and found that FAK6/7 was positive in 34 (75.6%) of 45 pancreatic NENs, 19 (47.5%) of 40 pancreatic solid pseudopapillary neoplasms, and 2 (2.9%) of 69 PDACs. We further tested FAK splicing variants in breast neuroendocrine carcinoma (BrNECs), and found that FAK6/7 was positive in 14 (93.3%) of 15 BrNECs but 0 in 23 non-NEC breast cancers. We explored the underlying mechanisms and found that a splicing factor serine/arginine repetitive matrix protein 4 (SRRM4) was overexpressed in FAK6/7-positive pancreatic tumors and breast tumors, which promoted the formation of FAK6/7 in cells. These results suggested that FAK6/7 could be a biomarker of NENs and represent a potential therapeutic target for these orphan diseases.


Assuntos
Processamento Alternativo , Neoplasias da Mama , Carcinoma Ductal Pancreático , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/uso terapêutico , Proteínas do Tecido Nervoso/genética , Tumores Neuroendócrinos/genética , Oncogenes , Neoplasias Pancreáticas/metabolismo
8.
J Transl Med ; 21(1): 522, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37533102

RESUMO

BACKGROUND: Colorectal cancer (CRC) can be classified into four molecular subtypes (CMS) among which CMS1 is associated with the best prognosis, while CMS4, the mesenchymal subtype, has the worst outcome. Although mitochondria are considered to be hubs of numerous signaling pathways, the study of mitochondrial metabolism has been neglected for many years. Mitochondrial Complex I (CI) plays a dual role, both in energy and reactive oxygen species (ROS) production. However, the possible contribution of CI to tumorigenesis in cancer remains unclear. The purpose of this study was to investigate the CI under the prism of the CMS classification of CRC in ex vivo models. METHODS: Biochemical dosages, bioenergetics analysis and western-blot were used to characterize CI expression, function and redox balance in LoVo and MDST8 cell lines, belonging to CMS1 and CMS4 subgroups, respectively. Cell proliferation and migration were assessed by xCELLigence technology. Overproduction or scavenging of mitochondrial ROS (mtROS) were performed to analyze the effect of mtROS on proliferation, migration, and mesenchymal markers. Focal adhesion kinase (FAK) and its activation were analyzed by immunofluorescence. We assessed the distribution of two CI scores in CRC cohorts according to CMS classification and their relevance for patient survival. RESULTS: We found that CI is downregulated in CMS4 cells and is associated with elevated mtROS. We establish for the first time that in these migrating cells, mtROS production is maintained at optimal levels not only through changes in CI activity but also by inactivation/acetylation of superoxide dismutase 2 (SOD2), a major mitochondrial antioxidant enzyme. We show that promoting or scavenging mtROS both mitigate CMS4 cells' migration. Our results also point to a mtROS-mediated focal adhesion kinase (FAK) activation, which likely sustains their migratory phenotype. Using cohorts of CRC patients, we document that the expression of CI is downregulated in the CMS4 subgroup, and that low CI expression is associated with poor prognosis. Patients' datasets reveal an inverse correlation between CI and the epithelial-mesenchymal transition (EMT) pathway. CONCLUSION: We showed that inhibition of CI contributes to heighten mtROS, which likely foster MDST8 migration and might account for the specific EMT signature of CMS4 tumors. These data reveal a novel role of mitochondrial CI in CRC, with biological consequences that may be targeted with anti- or pro-oxidant drugs in clinical practice.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/genética , Espécies Reativas de Oxigênio/metabolismo , Regulação para Baixo , Transdução de Sinais , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo
9.
Nat Chem Biol ; 19(12): 1458-1468, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37349581

RESUMO

Focal adhesion kinase (FAK) relays integrin signaling from outside to inside cells and contributes to cell adhesion and motility. However, the spatiotemporal dynamics of FAK activity in single FAs is unclear due to the lack of a robust FAK reporter, which limits our understanding of these essential biological processes. Here we have engineered a genetically encoded FAK activity sensor, dubbed FAK-separation of phases-based activity reporter of kinase (SPARK), which visualizes endogenous FAK activity in living cells and vertebrates. Our work reveals temporal dynamics of FAK activity during FA turnover. Most importantly, our study unveils polarized FAK activity at the distal tip of newly formed single FAs in the leading edge of a migrating cell. By combining FAK-SPARK with DNA tension probes, we show that tensions applied to FAs precede FAK activation and that FAK activity is proportional to the strength of tension. These results suggest tension-induced polarized FAK activity in single FAs, advancing the mechanistic understanding of cell migration.


Assuntos
Adesões Focais , Animais , Adesões Focais/metabolismo , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Fosforilação , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Movimento Celular/fisiologia , Adesão Celular/fisiologia
10.
Gastric Cancer ; 26(4): 528-541, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36959335

RESUMO

Gastric cancer (GC) is one of the most common malignancies in China and is associated with high mortality. The occurrence and development of gastric cancer are related to genetic and environmental factors. Focal adhesion kinase (FAK) is a cytoplasmic nonreceptor protein tyrosine kinase that is activated by the extracellular matrix and growth factors. FAK is highly expressed in cancer and promotes its development by regulating cancer cell proliferation, migration, and angiogenesis. The expression of IL-8 is increased in many types of malignant tumor cells and is linked to their proliferation, migration, invasion, angiogenesis, and EMT. In this study, we found FAK to be essential for the proliferation, migration, and peritoneal metastasis of gastric cancer cells. To examine the molecular regulatory mechanisms of FAK in the peritoneal dissemination of gastric cancer, we performed RNA-seq analysis of MKN-45-FAK-/- and MKN45 cells and demonstrated that IL-8 was downregulated in FAK-deficient cells. Conversely, we confirmed that IL-8 activates FAK activity. We established that IL-8 promotes the proliferation, colony formation, and migration of gastric cancer cells that are partially mediated by FAK. Thus, we propose that an IL-8-FAK-IL-8 positive feedback loop effects the proliferation and migration of gastric cancer cells.


Assuntos
Neoplasias Gástricas , Humanos , Proteína-Tirosina Quinases de Adesão Focal/genética , Neoplasias Gástricas/patologia , Interleucina-8/genética , Proliferação de Células , Movimento Celular/genética , Linhagem Celular Tumoral
11.
J Biol Chem ; 299(2): 102866, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36596361

RESUMO

G proteins and G protein-coupled receptors activate a diverse array of signal transduction pathways that promote cell growth and survival. Indeed, hot spot-activating mutations in GNAQ/GNA11, encoding Gαq proteins, are known to be driver oncogenes in uveal melanoma (UM), for which there are limited effective therapies currently available. Focal adhesion kinase (FAK) has been recently shown to be a central mediator of Gαq-driven signaling in UM, and as a result, is being explored clinically as a therapeutic target for UM, both alone and in combination therapies. Despite this, the repertoire of Gαq/FAK-regulated signaling mechanisms have not been fully elucidated. Here, we used a whole-genome CRISPR screen in GNAQ-mutant UM cells to identify mechanisms that, when overactivated, lead to reduced sensitivity to FAK inhibition. In this way, we found that the PI3K/AKT signaling pathway represented a major resistance driver. Our dissection of the underlying mechanisms revealed that Gαq promotes PI3K/AKT activation via a conserved signaling circuitry mediated by FAK. Further analysis demonstrated that FAK activates PI3K through the association and tyrosine phosphorylation of the p85 regulatory subunit of PI3K and that UM cells require PI3K/AKT signaling for survival. These findings establish a novel link between Gαq-driven signaling and the stimulation of PI3K as well as demonstrate aberrant activation of signaling networks underlying the growth and survival of UM and other Gαq-driven malignancies.


Assuntos
Carcinogênese , Proteína-Tirosina Quinases de Adesão Focal , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Humanos , Carcinogênese/genética
12.
J Biosci ; 482023.
Artigo em Inglês | MEDLINE | ID: mdl-36695419

RESUMO

Non-small-cell lung cancer (NSCLC) predominates lung cancer with a striking percentage of 85%. Eupafolin is documented to possess anti-tumor efficacy, which prompts efforts to uncover its impacts on the pathology of diseases including cancers. Focal adhesion kinase (FAK)-mediated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) has been found to be associated with several carcinomas. Nevertheless, how eupafolin exerts its effects in NSCLC and whether FAK/PI3K/AKT is related to the corresponding mechanism remain unclear. Thus, the relevant experiments were carried out with NSCLC cells treated with eupafolin and/or LY294002 at first. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation, wound healing, and transwell assays were used to assess cell viability, proliferation, migration, and invasion, respectively. Western blot assay was performed to measure the relative protein expressions of phosphorylated (p)-FAK/FAK, p-PI3K/ PI3K, p-AKT/AKT, matrix metalloproteinase 9 (MMP9), and ras homolog gene family member A (RhoA), and to determine transfection efficiency. From experimental results, it was found that eupafolin inhibited the viability, proliferation, migration, and invasion of NSCLC cells, and inactivated the FAK/PI3K/AKT pathway by downregulating the ratios of p-FAK/FAK, p-PI3K/PI3K, and p-AKT/AKTand the expressions of MMP9 and RhoA. On the contrary, overexpressed FAK upregulated the expressions of FAK, MMP9, and RhoA and the ratios of p-PI3K/ PI3K and p-AKT/AKT, and promoted cell proliferation, migration, and invasion. LY294002, conversely, could partly reverse the effects of FAK on the aforementioned aspects of NSCLC cells. Collectively, it was verified in our study that eupafolin regulates the proliferation, migration, and invasion of NSCLC cells by downregulating MMP9 and RhoA expressions via the FAK/PI3K/AKT axis, which may provide a promising avenue for cancer therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Transdução de Sinais , Proliferação de Células/genética , Movimento Celular/genética , Linhagem Celular Tumoral , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/farmacologia
14.
J Clin Oncol ; 41(3): 618-628, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36288512

RESUMO

PURPOSE: Patients with progressive or recurrent meningiomas have limited systemic therapy options. Focal adhesion kinase (FAK) inhibition has a synthetic lethal relationship with NF2 loss. Given the predominance of NF2 mutations in meningiomas, we evaluated the efficacy of GSK2256098, a FAK inhibitor, as part of the first genomically driven phase II study in recurrent or progressive grade 1-3 meningiomas. PATIENTS AND METHODS: Eligible patients whose tumors screened positively for NF2 mutations were treated with GSK2256098, 750 mg orally twice daily, until progressive disease. Efficacy was evaluated using two coprimary end points: progression-free survival at 6 months (PFS6) and response rate by Macdonald criteria, where PFS6 was evaluated separately within grade-based subgroups: grade 1 versus 2/3 meningiomas. Per study design, the FAK inhibitor would be considered promising in this patient population if either end point met the corresponding decision criteria for efficacy. RESULTS: Of 322 patients screened for all mutation cohorts of the study, 36 eligible and evaluable patients with NF2 mutations were enrolled and treated: 12 grade 1 and 24 grade 2/3 patients. Across all grades, one patient had a partial response and 24 had stable disease as their best response to treatment. In grade 1 patients, the observed PFS6 rate was 83% (10/12 patients; 95% CI, 52 to 98). In grade 2/3 patients, the observed PFS6 rate was 33% (8/24 patients; 95% CI, 16 to 55). The study met the PFS6 efficacy end point both for the grade 1 and the grade 2/3 cohorts. Treatment was well tolerated; seven patients had a maximum grade 3 adverse event that was at least possibly related to treatment with no grade 4 or 5 events. CONCLUSION: GSK2256098 was well tolerated and resulted in an improved PFS6 rate in patients with recurrent or progressive NF2-mutated meningiomas, compared with historical controls. The criteria for promising activity were met, and FAK inhibition warrants further evaluation for this patient population.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/uso terapêutico , Neoplasias Meníngeas/tratamento farmacológico , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Meningioma/tratamento farmacológico , Meningioma/genética , Mutação , Recidiva Local de Neoplasia/tratamento farmacológico
15.
Fish Shellfish Immunol ; 132: 108473, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36470403

RESUMO

Integrins are cellular adhesion molecules that mediate cell-cell, cell-extracellular matrix, and cell-pathogen interactions. Integrins can stimulate various signaling pathways by binding to different ligands, thereby exerting immunological functions. While integrins have been found to primarily play a role in bacterial agglutination, phagocytosis, and inhibition of apoptosis in invertebrates, the specific signaling pathway and mechanism of action remain unclear. In vertebrates, ß1 integrin and extracellular matrix interactions can associate with focal adhesion kinase (FAK) to initiate MAPK/ERK signaling and regulate cell survival; however, in invertebrates (e.g., Chinese mitten crab), the mechanisms of integrins are poorly understood. The purpose of this study was to investigate whether integrinß1/FAK activation of the MAPK/ERK pathway regulates hemocyte survival and the associated mechanism. Treatment with an integrinß1 inhibitor RGD (a conserved tripeptide Arg-Gly-Asp), decreased the levels of FAK and ERK expression and phosphorylation, followed by an intensification of apoptosis. Similar results were obtained following siRNA knockdown of integrinß1 expression. We further found that the attenuation of ERK phosphorylation enhanced the level of Caspase-3 expression. Together, these findings suggest that integrinß1 activates the FAK/ERK signaling cascade and is involved in the survival of Chinese mitten crab hemocytes.


Assuntos
Hemócitos , Sistema de Sinalização das MAP Quinases , Animais , Proteína-Tirosina Quinases de Adesão Focal/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Transdução de Sinais/fisiologia , Integrinas
16.
Cell Death Dis ; 13(10): 896, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36280663

RESUMO

Pancreatic cancer (PC) is prone to distant metastasis in the early stage, which is attributed to the strong migration ability of tumor cells. Focal adhesion turnover is essential for cancer cell metastasis, and the integrin recycling process is a key activation pathway for focal adhesion depolymerization. To identify the key motor protein involving in the integrin ß1 recycling, we screened kinesin proteins involved in integrin ß1 recycling using a kinesin family siRNA library and identified kinesin family 15 (KIF15) as a key regulator. KIF15 was upregulated in metastasis PC tissues and promoted PC cell migration and invasion. We identified KIF15 as a key component mediating integrin ß1/FAK signaling that accelerated FA disassembly in a FAK-Y397-dependent manner. KIF15 recruited PI3K-C2α to promote integrin ß1/FAK signaling and FA disassembly in a RAB11A-dependent manner. The C-terminal tail of KIF15 is required for the PI3K-C2α interaction and RAB11A activation. In addition, we also found that SIRT1-mediated acetylation of KIF15 is essential for KIF15 phosphorylation, which is the key activation event in motor protein function. Together, these findings indicate that KIF15 interacts with PI3K-C2α to promote FA turnover in PC cells by controlling the endosome recycling of integrin ß1 in a SIRT1 acetylation modification-dependent manner, eventually promoting focal adhesions turnover and distant metastasis in PC.


Assuntos
Adesões Focais , Neoplasias Pancreáticas , Humanos , Fosforilação , Adesões Focais/metabolismo , Integrina beta1/metabolismo , Cinesinas/genética , Acetilação , RNA Interferente Pequeno/metabolismo , Sirtuína 1/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Movimento Celular , Integrinas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Neoplasias Pancreáticas
17.
Nat Commun ; 13(1): 5945, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209205

RESUMO

Nonalcoholic steatohepatitis (NASH), a common clinical disease, is becoming a leading cause of hepatocellular carcinoma (HCC). Dual specificity phosphatase 22 (DUSP22, also known as JKAP or JSP-1) expressed in numerous tissues plays essential biological functions in immune responses and tumor growth. However, the effects of DUSP22 on NASH still remain unknown. Here, we find a significant decrease of DUSP22 expression in human and murine fatty liver, which is mediated by reactive oxygen species (ROS) generation. Hepatic-specific DUSP22 deletion particularly exacerbates lipid deposition, inflammatory response and fibrosis in liver, facilitating NASH and non-alcoholic fatty liver disease (NAFLD)-associated HCC progression. In contrast, transgenic over-expression, lentivirus or adeno-associated virus (AAV)-mediated DUSP22 gene therapy substantially inhibit NASH-related phenotypes and HCC development in mice. We provide mechanistic evidence that DUSP22 directly interacts with focal adhesion kinase (FAK) and restrains its phosphorylation at Tyr397 (Y397) and Y576 + Y577 residues, subsequently prohibiting downstream activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor-κB (NF-κB) cascades. The binding of DUSP22 to FAK and the dephosphorylation of FAK are indispensable for DUSP22-meliorated NASH progression. Collectively, our findings identify DUSP22 as a key suppressor of NASH-HCC, and underscore the DUSP22-FAK axis as a promising therapeutic target for treatment of the disease.


Assuntos
Carcinoma Hepatocelular , Fosfatases de Especificidade Dupla/metabolismo , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Carcinoma Hepatocelular/metabolismo , Progressão da Doença , Fosfatases de Especificidade Dupla/genética , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Hepatócitos/metabolismo , Humanos , Lipídeos , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Camundongos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Sci Transl Med ; 14(661): eaax8933, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36070364

RESUMO

Brain metastasis is a complication of increasing incidence in patients with breast cancer at advanced disease stage. It is a severe condition characterized by a rapid decline in quality of life and poor prognosis. There is a critical clinical need to develop effective therapies to prevent and treat brain metastases. Here, we describe a unique and robust spontaneous preclinical model of breast cancer metastasis to the brain (4T1-BM2) in mice that has been instrumental in uncovering molecular mechanisms guiding metastatic dissemination and colonization of the brain. Key experimental findings were validated in the additional murine D2A1-BM2 model and in human MDA231-BrM2 model. Gene expression analyses and functional studies, coupled with clinical transcriptomic and histopathological investigations, identified connexins (Cxs) and focal adhesion kinase (FAK) as master molecules orchestrating breast cancer colonization of the brain. Cx31 promoted homotypic tumor cell adhesion, heterotypic tumor-astrocyte interaction, and FAK phosphorylation. FAK signaling prompted NF-κB activation inducing Lamc2 expression and laminin 332 (laminin 5) deposition, α6 integrin-mediated adhesion, and sustained survival and growth within brain parenchyma. In the MDA231-BrM2 model, the human homologous molecules CX43, LAMA4, and α3 integrin were involved. Systemic treatment with FAK inhibitors reduced brain metastasis progression. In conclusion, we report a spontaneous model of breast cancer metastasis to the brain and identified Cx-mediated FAK-NF-κB signaling as a mechanism promoting cell-autonomous and microenvironmentally controlled cell survival for brain colonization. Considering the limited therapeutic options for brain metastatic disease in cancer patients, we propose FAK as a therapeutic candidate to further pursue in the clinic.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Animais , Encéfalo/metabolismo , Neoplasias da Mama/genética , Conexinas/metabolismo , Feminino , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Melanoma , Camundongos , NF-kappa B/metabolismo , Qualidade de Vida , Neoplasias Cutâneas , Melanoma Maligno Cutâneo
19.
Int J Biol Sci ; 18(14): 5575-5590, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147460

RESUMO

Colorectal cancer (CRC) is an aggressive malignancy with poor prognosis. It is imperative to elucidate the potential molecular mechanisms that regulate CRC cell aggressiveness. In present study, the transient receptor potential melastatin 4 (TRPM4), a calcium-activated nonselective cation channel, is downregulated in CRC as a novel methylated tumor suppressor gene (TSG). The reduced mRNA level of TRPM4 is due to the epigenetic methylation of its promoter CpG island (CGI). Moreover, ectopic expression of TRPM4 inhibited tumor growth and metastasis both in vitro and in vivo. Our experiments also demonstrate that TRPM4 restructures the CRC cytoskeleton and activates the Ca2+-mediated calpain pathway through enhancing calcium influx. The western blot analysis shows that the expression of focal adhesion kinase (FAK), a calpain-mediated proteolytic substrate, is markedly suppressed after ectopic overexpression of TRPM4, besides, Akt (also known as protein kinase B, PKB), phosphatidylinositol 3-kinase (PI3K) as well as its central target mTOR have significantly decreased expression accompanied by elevated E-cadherin and restrained matrix metalloproteinases (MMP2/MMP9) expression. The inhibition of protease calpain effectively relieves the retard of FAK/Akt signals and reverses the migration suppression of TRPM4. Taken together, TRPM4, identified as a novel methylated TSG, employs intracellular Ca2+ signals to activate calpain-mediated cleavage of FAK and impede CRC migration and invasion through modulating the PI3K/Akt/mTOR signaling cascade, providing the first evidence that TRPM4 is likely to be a significant biomarker and potential target for CRC therapy.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas c-akt , Caderinas/metabolismo , Cálcio/metabolismo , Calpaína/genética , Calpaína/metabolismo , Cátions , Movimento Celular/genética , Neoplasias Colorretais/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Canais de Cátion TRPM
20.
Biomolecules ; 12(6)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35740896

RESUMO

Electric-toothbrush vibrations, which remove plaque, are transmitted to the gingival connective tissue via epithelial cells. Physical energy affects cell function; however, the effects of electric-toothbrush vibrations on gingival extracellular matrix (ECM) protein expression remain unknown. We aimed to examine the effects of these vibrations on the expression of ECM proteins-type I collagen (col I), type III collagen (col III), elastin, and fibronectin (FN)-using human gingival fibroblasts (HGnFs). HGnFs were seeded for 5 days in a six-well plate with a hydrophilic surface, exposed to electric-toothbrush vibrations, and cultured for 7 days. Subsequently, the mRNA and protein levels of col I, col III, elastin, and FN were examined. To investigate the role of focal adhesion kinase (FAK) signaling on ECM protein expression in vibration-stimulated cells, the cells were treated with siRNA against protein tyrosine kinase (PTK). Electric-toothbrush vibrations increased col I, col III, elastin, and FN expression; promoted collagen and non-collagen protein production; and enhanced FAK phosphorylation in HGnFs. Moreover, PTK2 siRNA completely blocked the effects of these vibrations on the expression of col I, col III and elastin mRNA. The results suggest that electric-toothbrush vibrations increase collagen, elastin, and FN production through the FAK-signaling pathway in fibroblasts.


Assuntos
Elastina , Vibração , Células Cultivadas , Colágeno/metabolismo , Elastina/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/genética , Humanos , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...