Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61.760
Filtrar
1.
Protein Sci ; 33(6): e5001, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723111

RESUMO

De novo protein design expands the protein universe by creating new sequences to accomplish tailor-made enzymes in the future. A promising topology to implement diverse enzyme functions is the ubiquitous TIM-barrel fold. Since the initial de novo design of an idealized four-fold symmetric TIM barrel, the family of de novo TIM barrels is expanding rapidly. Despite this and in contrast to natural TIM barrels, these novel proteins lack cavities and structural elements essential for the incorporation of binding sites or enzymatic functions. In this work, we diversified a de novo TIM barrel by extending multiple ßα-loops using constrained hallucination. Experimentally tested designs were found to be soluble upon expression in Escherichia coli and well-behaved. Biochemical characterization and crystal structures revealed successful extensions with defined α-helical structures. These diversified de novo TIM barrels provide a framework to explore a broad spectrum of functions based on the potential of natural TIM barrels.


Assuntos
Modelos Moleculares , Escherichia coli/genética , Escherichia coli/metabolismo , Cristalografia por Raios X , Dobramento de Proteína , Engenharia de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo
2.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38725156

RESUMO

Protein acetylation is one of the extensively studied post-translational modifications (PTMs) due to its significant roles across a myriad of biological processes. Although many computational tools for acetylation site identification have been developed, there is a lack of benchmark dataset and bespoke predictors for non-histone acetylation site prediction. To address these problems, we have contributed to both dataset creation and predictor benchmark in this study. First, we construct a non-histone acetylation site benchmark dataset, namely NHAC, which includes 11 subsets according to the sequence length ranging from 11 to 61 amino acids. There are totally 886 positive samples and 4707 negative samples for each sequence length. Secondly, we propose TransPTM, a transformer-based neural network model for non-histone acetylation site predication. During the data representation phase, per-residue contextualized embeddings are extracted using ProtT5 (an existing pre-trained protein language model). This is followed by the implementation of a graph neural network framework, which consists of three TransformerConv layers for feature extraction and a multilayer perceptron module for classification. The benchmark results reflect that TransPTM has the competitive performance for non-histone acetylation site prediction over three state-of-the-art tools. It improves our comprehension on the PTM mechanism and provides a theoretical basis for developing drug targets for diseases. Moreover, the created PTM datasets fills the gap in non-histone acetylation site datasets and is beneficial to the related communities. The related source code and data utilized by TransPTM are accessible at https://www.github.com/TransPTM/TransPTM.


Assuntos
Redes Neurais de Computação , Processamento de Proteína Pós-Traducional , Acetilação , Biologia Computacional/métodos , Bases de Dados de Proteínas , Software , Algoritmos , Humanos , Proteínas/química , Proteínas/metabolismo
3.
Sci Rep ; 14(1): 10475, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714683

RESUMO

To ensure that an external force can break the interaction between a protein and a ligand, the steered molecular dynamics simulation requires a harmonic restrained potential applied to the protein backbone. A usual practice is that all or a certain number of protein's heavy atoms or Cα atoms are fixed, being restrained by a small force. This present study reveals that while fixing both either all heavy atoms and or all Cα atoms is not a good approach, while fixing a too small number of few atoms sometimes cannot prevent the protein from rotating under the influence of the bulk water layer, and the pulled molecule may smack into the wall of the active site. We found that restraining the Cα atoms under certain conditions is more relevant. Thus, we would propose an alternative solution in which only the Cα atoms of the protein at a distance larger than 1.2 nm from the ligand are restrained. A more flexible, but not too flexible, protein will be expected to lead to a more natural release of the ligand.


Assuntos
Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas , Ligantes , Proteínas/química , Proteínas/metabolismo , Conformação Proteica
4.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38695119

RESUMO

Sequence similarity is of paramount importance in biology, as similar sequences tend to have similar function and share common ancestry. Scoring matrices, such as PAM or BLOSUM, play a crucial role in all bioinformatics algorithms for identifying similarities, but have the drawback that they are fixed, independent of context. We propose a new scoring method for amino acid similarity that remedies this weakness, being contextually dependent. It relies on recent advances in deep learning architectures that employ self-supervised learning in order to leverage the power of enormous amounts of unlabelled data to generate contextual embeddings, which are vector representations for words. These ideas have been applied to protein sequences, producing embedding vectors for protein residues. We propose the E-score between two residues as the cosine similarity between their embedding vector representations. Thorough testing on a wide variety of reference multiple sequence alignments indicate that the alignments produced using the new $E$-score method, especially ProtT5-score, are significantly better than those obtained using BLOSUM matrices. The new method proposes to change the way alignments are computed, with far-reaching implications in all areas of textual data that use sequence similarity. The program to compute alignments based on various $E$-scores is available as a web server at e-score.csd.uwo.ca. The source code is freely available for download from github.com/lucian-ilie/E-score.


Assuntos
Algoritmos , Biologia Computacional , Alinhamento de Sequência , Alinhamento de Sequência/métodos , Biologia Computacional/métodos , Software , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Proteínas/química , Proteínas/genética , Aprendizado Profundo , Bases de Dados de Proteínas
5.
Acta Crystallogr D Struct Biol ; 80(Pt 5): 314-327, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38700059

RESUMO

Radiation damage remains one of the major impediments to accurate structure solution in macromolecular crystallography. The artefacts of radiation damage can manifest as structural changes that result in incorrect biological interpretations being drawn from a model, they can reduce the resolution to which data can be collected and they can even prevent structure solution entirely. In this article, we discuss how to identify and mitigate against the effects of radiation damage at each stage in the macromolecular crystal structure-solution pipeline.


Assuntos
Substâncias Macromoleculares , Cristalografia por Raios X/métodos , Substâncias Macromoleculares/química , Modelos Moleculares , Proteínas/química
6.
PLoS One ; 19(5): e0299287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38701058

RESUMO

Matrix-assisted laser desorption/ionization time-of-flight-time-of-flight (MALDI-TOF-TOF) tandem mass spectrometry (MS/MS) is a rapid technique for identifying intact proteins from unfractionated mixtures by top-down proteomic analysis. MS/MS allows isolation of specific intact protein ions prior to fragmentation, allowing fragment ion attribution to a specific precursor ion. However, the fragmentation efficiency of mature, intact protein ions by MS/MS post-source decay (PSD) varies widely, and the biochemical and structural factors of the protein that contribute to it are poorly understood. With the advent of protein structure prediction algorithms such as Alphafold2, we have wider access to protein structures for which no crystal structure exists. In this work, we use a statistical approach to explore the properties of bacterial proteins that can affect their gas phase dissociation via PSD. We extract various protein properties from Alphafold2 predictions and analyze their effect on fragmentation efficiency. Our results show that the fragmentation efficiency from cleavage of the polypeptide backbone on the C-terminal side of glutamic acid (E) and asparagine (N) residues were nearly equal. In addition, we found that the rearrangement and cleavage on the C-terminal side of aspartic acid (D) residues that result from the aspartic acid effect (AAE) were higher than for E- and N-residues. From residue interaction network analysis, we identified several local centrality measures and discussed their implications regarding the AAE. We also confirmed the selective cleavage of the backbone at D-proline bonds in proteins and further extend it to N-proline bonds. Finally, we note an enhancement of the AAE mechanism when the residue on the C-terminal side of D-, E- and N-residues is glycine. To the best of our knowledge, this is the first report of this phenomenon. Our study demonstrates the value of using statistical analyses of protein sequences and their predicted structures to better understand the fragmentation of the intact protein ions in the gas phase.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Proteínas de Bactérias/química , Proteômica/métodos , Algoritmos , Proteínas/química , Proteínas/análise
7.
Protein Sci ; 33(6): e5021, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747394

RESUMO

While nickel-nitrilotriacetic acid (Ni-NTA) has greatly advanced recombinant protein purification, its limitations, including nonspecific binding and partial purification for certain proteins, highlight the necessity for additional purification such as size exclusion and ion exchange chromatography. However, specialized equipment such as FPLC is typically needed but not often available in many laboratories. Here, we show a novel method utilizing polyphosphate (polyP) for purifying proteins with histidine repeats via non-covalent interactions. Our study demonstrates that immobilized polyP efficiently binds to histidine-tagged proteins across a pH range of 5.5-7.5, maintaining binding efficacy even in the presence of reducing agent DTT and chelating agent EDTA. We carried out experiments of purifying various proteins from cell lysates and fractions post-Ni-NTA. Our results demonstrate that polyP resin is capable of further purification post-Ni-NTA without the need for specialized equipment and without compromising protein activity. This cost-effective and convenient method offers a viable approach as a complementary approach to Ni-NTA.


Assuntos
Histidina , Polifosfatos , Histidina/química , Polifosfatos/química , Polifosfatos/metabolismo , Ácido Nitrilotriacético/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Humanos , Proteínas/química , Proteínas/isolamento & purificação
8.
Protein Sci ; 33(6): e5022, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747440

RESUMO

Differential scanning fluorimetry (DSF) is a method to determine the apparent melting temperature (Tma) of a purified protein. In DSF, the raw unfolding curves from which Tma is calculated vary widely in shape and complexity. However, the tools available for calculating Tma are only compatible with the simplest of DSF curves, hindering many otherwise straightforward applications of the technology. To overcome this limitation, we designed new mathematical models for Tma calculation that accommodate common forms of variation in DSF curves, including the number of transitions, the presence of high initial signal, and temperature-dependent signal decay. When tested these models against DSFbase, an open-source database of 6235 raw, real-life DSF curves, these models outperformed the existing standard approaches of sigmoid fitting and maximum of the first derivative. To make these models accessible, we created an open-source software and website, DSFworld (https://gestwickilab.shinyapps.io/dsfworld/). In addition to these improved fitting capabilities, DSFworld also includes features that overcome the practical limitations of many analysis workflows, including automatic reformatting of raw data exported from common qPCR instruments, labeling of data based on experimental variables, and flexible interactive plotting. We hope that DSFworld will enable more streamlined and accurate calculation of Tma values for DSF experiments.


Assuntos
Fluorometria , Software , Fluorometria/métodos , Temperatura de Transição , Proteínas/química
9.
Proc Natl Acad Sci U S A ; 121(21): e2400260121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743624

RESUMO

We introduce ZEPPI (Z-score Evaluation of Protein-Protein Interfaces), a framework to evaluate structural models of a complex based on sequence coevolution and conservation involving residues in protein-protein interfaces. The ZEPPI score is calculated by comparing metrics for an interface to those obtained from randomly chosen residues. Since contacting residues are defined by the structural model, this obviates the need to account for indirect interactions. Further, although ZEPPI relies on species-paired multiple sequence alignments, its focus on interfacial residues allows it to leverage quite shallow alignments. ZEPPI can be implemented on a proteome-wide scale and is applied here to millions of structural models of dimeric complexes in the Escherichia coli and human interactomes found in the PrePPI database. PrePPI's scoring function is based primarily on the evaluation of protein-protein interfaces, and ZEPPI adds a new feature to this analysis through the incorporation of evolutionary information. ZEPPI performance is evaluated through applications to experimentally determined complexes and to decoys from the CASP-CAPRI experiment. As we discuss, the standard CAPRI scores used to evaluate docking models are based on model quality and not on the ability to give yes/no answers as to whether two proteins interact. ZEPPI is able to detect weak signals from PPI models that the CAPRI scores define as incorrect and, similarly, to identify potential PPIs defined as low confidence by the current PrePPI scoring function. A number of examples that illustrate how the combination of PrePPI and ZEPPI can yield functional hypotheses are provided.


Assuntos
Proteoma , Proteoma/metabolismo , Humanos , Mapeamento de Interação de Proteínas/métodos , Modelos Moleculares , Escherichia coli/metabolismo , Escherichia coli/genética , Bases de Dados de Proteínas , Ligação Proteica , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas/química , Proteínas/metabolismo , Alinhamento de Sequência
10.
PLoS One ; 19(5): e0302504, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743747

RESUMO

To enable personalized medicine, it is important yet highly challenging to accurately predict disease-causing mutations in target proteins at high throughput. Previous computational methods have been developed using evolutionary information in combination with various biochemical and structural features of protein residues to discriminate neutral vs. deleterious mutations. However, the power of these methods is often limited because they either assume known protein structures or treat residues independently without fully considering their interactions. To address the above limitations, we build upon recent progress in machine learning, network analysis, and protein language models, and develop a sequences-based variant site prediction workflow based on the protein residue contact networks: 1. We employ and integrate various methods of building protein residue networks using state-of-the-art coevolution analysis tools (RaptorX, DeepMetaPSICOV, and SPOT-Contact) powered by deep learning. 2. We use machine learning algorithms (Random Forest, Gradient Boosting, and Extreme Gradient Boosting) to optimally combine 20 network centrality scores to jointly predict key residues as hot spots for disease mutations. 3. Using a dataset of 107 proteins rich in disease mutations, we rigorously evaluate the network scores individually and collectively (via machine learning). This work supports a promising strategy of combining an ensemble of network scores based on different coevolution analysis methods (and optionally predictive scores from other methods) via machine learning to predict hotspot sites of disease mutations, which will inform downstream applications of disease diagnosis and targeted drug design.


Assuntos
Aprendizado de Máquina , Polimorfismo de Nucleotídeo Único , Humanos , Algoritmos , Biologia Computacional/métodos , Mutação , Proteínas/genética , Proteínas/química , Evolução Molecular
11.
Sci Data ; 11(1): 495, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744964

RESUMO

Single amino acid substitutions can profoundly affect protein folding, dynamics, and function. The ability to discern between benign and pathogenic substitutions is pivotal for therapeutic interventions and research directions. Given the limitations in experimental examination of these variants, AlphaMissense has emerged as a promising predictor of the pathogenicity of missense variants. Since heterogenous performance on different types of proteins can be expected, we assessed the efficacy of AlphaMissense across several protein groups (e.g. soluble, transmembrane, and mitochondrial proteins) and regions (e.g. intramembrane, membrane interacting, and high confidence AlphaFold segments) using ClinVar data for validation. Our comprehensive evaluation showed that AlphaMissense delivers outstanding performance, with MCC scores predominantly between 0.6 and 0.74. We observed low performance on disordered datasets and ClinVar data related to the CFTR ABC protein. However, a superior performance was shown when benchmarked against the high quality CFTR2 database. Our results with CFTR emphasizes AlphaMissense's potential in pinpointing functional hot spots, with its performance likely surpassing benchmarks calculated from ClinVar and ProteinGym datasets.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/química , Proteínas/química , Proteínas/genética , Dobramento de Proteína , Humanos , Bases de Dados de Proteínas , Substituição de Aminoácidos , Mutação de Sentido Incorreto
12.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38739759

RESUMO

Proteins interact with diverse ligands to perform a large number of biological functions, such as gene expression and signal transduction. Accurate identification of these protein-ligand interactions is crucial to the understanding of molecular mechanisms and the development of new drugs. However, traditional biological experiments are time-consuming and expensive. With the development of high-throughput technologies, an increasing amount of protein data is available. In the past decades, many computational methods have been developed to predict protein-ligand interactions. Here, we review a comprehensive set of over 160 protein-ligand interaction predictors, which cover protein-protein, protein-nucleic acid, protein-peptide and protein-other ligands (nucleotide, heme, ion) interactions. We have carried out a comprehensive analysis of the above four types of predictors from several significant perspectives, including their inputs, feature profiles, models, availability, etc. The current methods primarily rely on protein sequences, especially utilizing evolutionary information. The significant improvement in predictions is attributed to deep learning methods. Additionally, sequence-based pretrained models and structure-based approaches are emerging as new trends.


Assuntos
Biologia Computacional , Ácidos Nucleicos , Proteínas , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/química , Proteínas/química , Proteínas/metabolismo , Biologia Computacional/métodos , Ligantes , Ligação Proteica , Humanos
13.
Nat Commun ; 15(1): 4029, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740745

RESUMO

Protein folds and the local environments they create can be compared using a variety of differently designed measures, such as the root mean squared deviation, the global distance test, the template modeling score or the local distance difference test. Although these measures have proven to be useful for a variety of tasks, each fails to fully incorporate the valuable chemical information inherent to atoms and residues, and considers these only partially and indirectly. Here, we develop the highly flexible local composition Hellinger distance (LoCoHD) metric, which is based on the chemical composition of local residue environments. Using LoCoHD, we analyze the chemical heterogeneity of amino acid environments and identify valines having the most conserved-, and arginines having the most variable chemical environments. We use LoCoHD to investigate structural ensembles, to evaluate critical assessment of structure prediction (CASP) competitors, to compare the results with the local distance difference test (lDDT) scoring system, and to evaluate a molecular dynamics simulation. We show that LoCoHD measurements provide unique information about protein structures that is distinct from, for example, those derived using the alignment-based RMSD metric, or the similarly distance matrix-based but alignment-free lDDT metric.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Proteínas/química , Aminoácidos/química , Conformação Proteica , Dobramento de Proteína , Algoritmos , Biologia Computacional/métodos
14.
BMC Genomics ; 25(1): 466, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741045

RESUMO

BACKGROUND: Protein-protein interactions (PPIs) hold significant importance in biology, with precise PPI prediction as a pivotal factor in comprehending cellular processes and facilitating drug design. However, experimental determination of PPIs is laborious, time-consuming, and often constrained by technical limitations. METHODS: We introduce a new node representation method based on initial information fusion, called FFANE, which amalgamates PPI networks and protein sequence data to enhance the precision of PPIs' prediction. A Gaussian kernel similarity matrix is initially established by leveraging protein structural resemblances. Concurrently, protein sequence similarities are gauged using the Levenshtein distance, enabling the capture of diverse protein attributes. Subsequently, to construct an initial information matrix, these two feature matrices are merged by employing weighted fusion to achieve an organic amalgamation of structural and sequence details. To gain a more profound understanding of the amalgamated features, a Stacked Autoencoder (SAE) is employed for encoding learning, thereby yielding more representative feature representations. Ultimately, classification models are trained to predict PPIs by using the well-learned fusion feature. RESULTS: When employing 5-fold cross-validation experiments on SVM, our proposed method achieved average accuracies of 94.28%, 97.69%, and 84.05% in terms of Saccharomyces cerevisiae, Homo sapiens, and Helicobacter pylori datasets, respectively. CONCLUSION: Experimental findings across various authentic datasets validate the efficacy and superiority of this fusion feature representation approach, underscoring its potential value in bioinformatics.


Assuntos
Biologia Computacional , Mapeamento de Interação de Proteínas , Mapeamento de Interação de Proteínas/métodos , Biologia Computacional/métodos , Algoritmos , Helicobacter pylori/metabolismo , Helicobacter pylori/genética , Máquina de Vetores de Suporte , Proteínas/metabolismo , Proteínas/química , Humanos , Mapas de Interação de Proteínas , Bases de Dados de Proteínas
15.
Curr Protoc ; 4(5): e1047, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720559

RESUMO

Recent advancements in protein structure determination and especially in protein structure prediction techniques have led to the availability of vast amounts of macromolecular structures. However, the accessibility and integration of these structures into scientific workflows are hindered by the lack of standardization among publicly available data resources. To address this issue, we introduced the 3D-Beacons Network, a unified platform that aims to establish a standardized framework for accessing and displaying protein structure data. In this article, we highlight the importance of standardized approaches for accessing protein structure data and showcase the capabilities of 3D-Beacons. We describe four protocols for finding and accessing macromolecular structures from various specialist data resources via 3D-Beacons. First, we describe three scenarios for programmatically accessing and retrieving data using the 3D-Beacons API. Next, we show how to perform sequence-based searches to find structures from model providers. Then, we demonstrate how to search for structures and fetch them directly into a workflow using JalView. Finally, we outline the process of facilitating access to data from providers interested in contributing their structures to the 3D-Beacons Network. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Programmatic access to the 3D-Beacons API Basic Protocol 2: Sequence-based search using the 3D-Beacons API Basic Protocol 3: Accessing macromolecules from 3D-Beacons with JalView Basic Protocol 4: Enhancing data accessibility through 3D-Beacons.


Assuntos
Conformação Proteica , Proteínas , Proteínas/química , Bases de Dados de Proteínas , Software
17.
Sci Data ; 11(1): 458, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710720

RESUMO

The advent of single-particle cryo-electron microscopy (cryo-EM) has brought forth a new era of structural biology, enabling the routine determination of large biological molecules and their complexes at atomic resolution. The high-resolution structures of biological macromolecules and their complexes significantly expedite biomedical research and drug discovery. However, automatically and accurately building atomic models from high-resolution cryo-EM density maps is still time-consuming and challenging when template-based models are unavailable. Artificial intelligence (AI) methods such as deep learning trained on limited amount of labeled cryo-EM density maps generate inaccurate atomic models. To address this issue, we created a dataset called Cryo2StructData consisting of 7,600 preprocessed cryo-EM density maps whose voxels are labelled according to their corresponding known atomic structures for training and testing AI methods to build atomic models from cryo-EM density maps. Cryo2StructData is larger than existing, publicly available datasets for training AI methods to build atomic protein structures from cryo-EM density maps. We trained and tested deep learning models on Cryo2StructData to validate its quality showing that it is ready for being used to train and test AI methods for building atomic models.


Assuntos
Inteligência Artificial , Microscopia Crioeletrônica , Proteínas , Microscopia Crioeletrônica/métodos , Proteínas/química , Proteínas/ultraestrutura , Modelos Moleculares , Conformação Proteica
18.
Prog Nucl Magn Reson Spectrosc ; 140-141: 42-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705635

RESUMO

Most proteins perform their functions in crowded and complex cellular environments where weak interactions are ubiquitous between biomolecules. These complex environments can modulate the protein folding energy landscape and hence affect protein stability. NMR is a nondestructive and effective method to quantify the kinetics and equilibrium thermodynamic stability of proteins at an atomic level within crowded environments and living cells. Here, we review NMR methods that can be used to measure protein stability, as well as findings of studies on protein stability in crowded environments mimicked by polymer and protein crowders and in living cells. The important effects of chemical interactions on protein stability are highlighted and compared to spatial excluded volume effects.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Estabilidade Proteica , Proteínas , Proteínas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Termodinâmica , Humanos , Dobramento de Proteína , Cinética , Espectroscopia de Ressonância Magnética/métodos
19.
Methods Mol Biol ; 2800: 103-113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709481

RESUMO

The spatial resolution of conventional light microscopy is restricted by the diffraction limit to hundreds of nanometers. Super-resolution microscopy enables single digit nanometer resolution by circumventing the diffraction limit of conventional light microscopy. DNA point accumulation for imaging in nanoscale topography (DNA-PAINT) belongs to the family of single-molecule localization super-resolution approaches. Unique features of DNA-PAINT are that it allows for sub-nanometer resolution, spectrally unlimited multiplexing, proximity detection, and quantitative counting of target molecules. Here, we describe prerequisites for efficient DNA-PAINT microscopy.


Assuntos
DNA , Imagem Individual de Molécula , DNA/química , Imagem Individual de Molécula/métodos , Microscopia de Fluorescência/métodos , Proteínas/química , Nanotecnologia/métodos
20.
Mol Cell ; 84(9): 1802-1810.e4, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701741

RESUMO

Polyphosphate (polyP) is a chain of inorganic phosphate that is present in all domains of life and affects diverse cellular phenomena, ranging from blood clotting to cancer. A study by Azevedo et al. described a protein modification whereby polyP is attached to lysine residues within polyacidic serine and lysine (PASK) motifs via what the authors claimed to be covalent phosphoramidate bonding. This was based largely on the remarkable ability of the modification to survive extreme denaturing conditions. Our study demonstrates that lysine polyphosphorylation is non-covalent, based on its sensitivity to ionic strength and lysine protonation and absence of phosphoramidate bond formation, as analyzed via 31P NMR. Ionic interaction with lysine residues alone is sufficient for polyP modification, and we present a new list of non-PASK lysine repeat proteins that undergo polyP modification. This work clarifies the biochemistry of polyP-lysine modification, with important implications for both studying and modulating this phenomenon. This Matters Arising paper is in response to Azevedo et al. (2015), published in Molecular Cell. See also the Matters Arising Response by Azevedo et al. (2024), published in this issue.


Assuntos
Amidas , Lisina , Ácidos Fosfóricos , Polifosfatos , Lisina/metabolismo , Lisina/química , Polifosfatos/química , Polifosfatos/metabolismo , Fosforilação , Humanos , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteínas/metabolismo , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...