Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.426
Filtrar
1.
Protein Sci ; 33(6): e5016, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747381

RESUMO

RAF kinases are key components of the RAS-MAPK signaling pathway, which drives cell growth and is frequently overactivated in cancer. Upstream signaling activates the small GTPase RAS, which recruits RAF to the cell membrane, driving a transition of the latter from an auto-inhibited monomeric conformation to an active dimer. Despite recent progress, mechanistic details underlying RAF activation remain unclear, particularly the role of RAS and the membrane in mediating this conformational rearrangement of RAF together with 14-3-3 to permit RAF kinase domain dimerization. Here, we reconstituted an active complex of dimeric BRAF, a 14-3-3 dimer and two KRAS4B on a nanodisc bilayer and verified that its assembly is GTP-dependent. Biolayer interferometry (BLI) was used to compare the binding affinities of monomeric versus dimeric full-length BRAF:14-3-3 complexes for KRAS4B-conjugated nanodiscs (RAS-ND) and to investigate the effects of membrane lipid composition and spatial density of KRAS4B on binding. 1,2-Dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) and higher KRAS4B density enhanced the interaction of BRAF:14-3-3 with RAS-ND to different degrees depending on BRAF oligomeric state. We utilized our reconstituted system to dissect the effects of KRAS4B and the membrane on the kinase activity of monomeric and dimeric BRAF:14-3-3 complexes, finding that KRAS4B or nanodiscs alone were insufficient to stimulate activity, whereas RAS-ND increased activity of both states of BRAF. The reconstituted assembly of full-length BRAF with 14-3-3 and KRAS on a cell-free, defined lipid bilayer offers a more holistic biophysical perspective to probe regulation of this multimeric signaling complex at the membrane surface.


Assuntos
Proteínas 14-3-3 , Nanoestruturas , Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas p21(ras) , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Humanos , Nanoestruturas/química , Multimerização Proteica , Ligação Proteica , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(20): e2316266121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709923

RESUMO

Neurons regulate the microtubule-based transport of certain vesicles selectively into axons or dendrites to ensure proper polarization of function. The mechanism of this polarized vesicle transport is still not fully elucidated, though it is known to involve kinesins, which drive anterograde transport on microtubules. Here, we explore how the kinesin-3 family member KIF13A is regulated such that vesicles containing transferrin receptor (TfR) travel only to dendrites. In experiments involving live-cell imaging, knockout of KIF13A, BioID assay, we found that the kinase MARK2 phosphorylates KIF13A at a 14-3-3 binding motif, strengthening interaction of KIF13A with 14-3-3 such that it dissociates from TfR-containing vesicles, which therefore cannot enter axons. Overexpression of KIF13A or knockout of MARK2 leads to axonal transport of TfR-containing vesicles. These results suggest a unique kinesin-based mechanism for polarized transport of vesicles to dendrites.


Assuntos
Proteínas 14-3-3 , Dendritos , Cinesinas , Proteínas Serina-Treonina Quinases , Receptores da Transferrina , Cinesinas/metabolismo , Cinesinas/genética , Proteínas 14-3-3/metabolismo , Dendritos/metabolismo , Fosforilação , Receptores da Transferrina/metabolismo , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Humanos , Sítios de Ligação , Microtúbulos/metabolismo , Ratos , Camundongos , Ligação Proteica
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732131

RESUMO

Overexpression of the 14-3-3ε protein is associated with suppression of apoptosis in cutaneous squamous cell carcinoma (cSCC). This antiapoptotic activity of 14-3-3ε is dependent on its binding to CDC25A; thus, inhibiting 14-3-3ε - CDC25A interaction is an attractive therapeutic approach to promote apoptosis in cSCC. In this regard, designing peptide inhibitors of 14-3-3ε - CDC25A interactions is of great interest. This work reports the rational design of peptide analogs of pS, a CDC25A-derived peptide that has been shown to inhibit 14-3-3ε-CDC25A interaction and promote apoptosis in cSCC with micromolar IC50. We designed new peptide analogs in silico by shortening the parent pS peptide from 14 to 9 amino acid residues; then, based on binding motifs of 14-3-3 proteins, we introduced modifications in the pS(174-182) peptide. We studied the binding of the peptides using conventional molecular dynamics (MD) and steered MD simulations, as well as biophysical methods. Our results showed that shortening the pS peptide from 14 to 9 amino acids reduced the affinity of the peptide. However, substituting Gln176 with either Phe or Tyr amino acids rescued the binding of the peptide. The optimized peptides obtained in this work can be candidates for inhibition of 14-3-3ε - CDC25A interactions in cSCC.


Assuntos
Proteínas 14-3-3 , Simulação de Dinâmica Molecular , Ligação Proteica , Fosfatases cdc25 , Fosfatases cdc25/metabolismo , Fosfatases cdc25/química , Fosfatases cdc25/antagonistas & inibidores , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/química , Humanos , Peptídeos/química , Peptídeos/metabolismo , Sequência de Aminoácidos
5.
Genes (Basel) ; 15(4)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38674334

RESUMO

There are about 14,000 pseudogenes that are mutated or truncated sequences resembling functional parent genes. About two-thirds of pseudogenes are processed, while others are duplicated. Although initially thought dead, emerging studies indicate they have functional and regulatory roles. We study 14-3-3ζ, an adaptor protein that regulates cytokine signaling and inflammatory diseases, including rheumatoid arthritis, cancer, and neurological disorders. To understand how 14-3-3ζ (gene symbol YWHAZ) performs diverse functions, we examined the human genome and identified nine YWHAZ pseudogenes spread across many chromosomes. Unlike the 32 kb exon-to-exon sequence in YWHAZ, all pseudogenes are much shorter and lack introns. Out of six, four YWHAZ exons are highly conserved, but the untranslated region (UTR) shows significant diversity. The putative amino acid sequence of pseudogenes is 78-97% homologous, resulting in striking structural similarities with the parent protein. The OMIM and Decipher database searches revealed chromosomal loci containing pseudogenes are associated with human diseases that overlap with the parent gene. To the best of our knowledge, this is the first report on pseudogenes of the 14-3-3 family protein and their implications for human health. This bioinformatics-based study introduces a new insight into the complexity of 14-3-3ζ's functions in biology.


Assuntos
Proteínas 14-3-3 , Genoma Humano , Pseudogenes , Humanos , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Pseudogenes/genética , Éxons/genética
6.
Molecules ; 29(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675584

RESUMO

To understand the biological relevance and mode of action of artificial protein ligands, crystal structures with their protein targets are essential. Here, we describe and investigate all known crystal structures that contain a so-called "molecular tweezer" or one of its derivatives with an attached natural ligand on the respective target protein. The aromatic ring system of these compounds is able to include lysine and arginine side chains, supported by one or two phosphate groups that are attached to the half-moon-shaped molecule. Due to their marked preference for basic amino acids and the fully reversible binding mode, molecular tweezers are able to counteract pathologic protein aggregation and are currently being developed as disease-modifying therapies against neurodegenerative diseases such as Alzheimer's and Parkinson's disease. We analyzed the corresponding crystal structures with 14-3-3 proteins in complex with mono- and diphosphate tweezers. Furthermore, we solved crystal structures of two different tweezer variants in complex with the enzyme Δ1-Pyrroline-5-carboxyl-dehydrogenase (P5CDH) and found that the tweezers are bound to a lysine and methionine side chain, respectively. The different binding modes and their implications for affinity and specificity are discussed, as well as the general problems in crystallizing protein complexes with artificial ligands.


Assuntos
Ligação Proteica , Cristalografia por Raios X , Ligantes , Humanos , Modelos Moleculares , Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Sítios de Ligação , Proteínas/química , Conformação Proteica
7.
Cell Rep ; 43(4): 114054, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38578832

RESUMO

Cell fate conversion is associated with extensive post-translational modifications (PTMs) and architectural changes of sub-organelles, yet how these events are interconnected remains unknown. We report here the identification of a phosphorylation code in 14-3-3 binding motifs (PC14-3-3) that greatly stimulates induced cardiomyocyte (iCM) formation from fibroblasts. PC14-3-3 is identified in pivotal functional proteins for iCM reprogramming, including transcription factors and chromatin modifiers. Akt1 kinase and protein phosphatase 2A are the key writer and key eraser of the PC14-3-3 code, respectively. PC14-3-3 activation induces iCM formation with the presence of only Tbx5. In contrast, PC14-3-3 inhibition by mutagenesis or inhibitor-mediated code removal abolishes reprogramming. We discover that key PC14-3-3-embedded factors, such as histone deacetylase 4 (Hdac4), Mef2c, and Foxo1, form Hdac4-organized inhibitory nuclear condensates. PC14-3-3 activation disrupts Hdac4 condensates to promote cardiac gene expression. Our study suggests that sub-organelle dynamics regulated by a PTM code could be a general mechanism for stimulating cell reprogramming.


Assuntos
Proteínas 14-3-3 , Reprogramação Celular , Histona Desacetilases , Miócitos Cardíacos , Proteínas 14-3-3/metabolismo , Histona Desacetilases/metabolismo , Fosforilação , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Camundongos , Humanos , Fibroblastos/metabolismo , Fatores de Transcrição MEF2/metabolismo , Motivos de Aminoácidos , Ligação Proteica
8.
ACS Chem Neurosci ; 15(9): 1926-1936, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635928

RESUMO

The aggregation of α-synuclein (αS) plays a key role in Parkinson's disease (PD) etiology. While the onset of PD is age-related, the cellular quality control system appears to regulate αS aggregation throughout most human life. Intriguingly, the protein 14-3-3τ has been demonstrated to delay αS aggregation and the onset of PD in various models. However, the molecular mechanisms behind this delay remain elusive. Our study confirms the delay in αS aggregation by 14-3-3τ, unveiling a concentration-dependent relation. Utilizing microscale thermophoresis (MST) and single-molecule burst analysis, we quantified the early αS multimers and concluded that these multimers exhibit properties that classify them as nanoscale condensates that form in a cooperative process, preceding the critical nucleus for fibril formation. Significantly, the αS multimer formation mechanism changes dramatically in the presence of scaffold protein 14-3-3τ. Our data modeling suggests that 14-3-3τ modulates the multimerization process, leading to the creation of mixed multimers or co-condensates, comprising both αS and 14-3-3τ. These mixed multimers form in a noncooperative process. They are smaller, more numerous, and distinctively not on the pathway to amyloid formation. Importantly, 14-3-3τ thus acts in the very early stage of αS multimerization, ensuring that αS does not aggregate but remains soluble and functional. This offers long-sought novel entries for the pharmacological modulation of PD.


Assuntos
Proteínas 14-3-3 , Amiloide , Multimerização Proteica , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Proteínas 14-3-3/metabolismo , Humanos , Amiloide/metabolismo , Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas/metabolismo
9.
Biomed Pharmacother ; 174: 116542, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574620

RESUMO

Previous studies have demonstrated that the underlying mechanisms of myocardial ischemia/reperfusion injury (MIRI) are complex and involve multiple types of regulatory cell death, including ferroptosis, apoptosis, and autophagy. Thus, we aimed to identify the mechanisms underlying MIRI and validate the protective role of epigallocatechin-3-gallate (EGCG) and its related mechanisms in MIRI. An in vivo and in vitro models of MIRI were constructed. The results showed that pretreatment with EGCG could attenuate MIRI, as indicated by increased cell viability, reduced lactate dehydrogenase (LDH) activity and apoptosis, inhibited iron overload, abnormal lipid metabolism, preserved mitochondrial function, decreased infarct size, maintained cardiac function, decreased reactive oxygen species (ROS) level, and reduced TUNEL-positive cells. Additionally, EGCG pretreatment could attenuate ferroptosis, apoptosis, and autophagy induced by MIRI via upregulating 14-3-3η protein levels. Furthermore, the protective effects of EGCG could be abolished with pAd/14-3-3η-shRNA or Compound C11 (a 14-3-3η inhibitor) but not pAd/NC-shRNA. In conclusion, EGCG pretreatment attenuated ferroptosis, apoptosis, and autophagy by mediating 14-3-3η and protected cardiomyocytes against MIRI.


Assuntos
Proteínas 14-3-3 , Apoptose , Autofagia , Catequina , Catequina/análogos & derivados , Ferroptose , Traumatismo por Reperfusão Miocárdica , Catequina/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Animais , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Proteínas 14-3-3/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Cardiotônicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ratos Sprague-Dawley
10.
Mol Biol Cell ; 35(6): ar81, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38598291

RESUMO

Neurons are polarized and typically extend multiple dendrites and one axon. To maintain polarity, vesicles carrying dendritic proteins are arrested upon entering the axon. To determine whether kinesin regulation is required for terminating anterograde axonal transport, we overexpressed the dendrite-selective kinesin KIF13A. This caused mistargeting of dendrite-selective vesicles to the axon and a loss of dendritic polarity. Polarity was not disrupted if the kinase MARK2/Par1b was coexpressed. MARK2/Par1b is concentrated in the proximal axon, where it maintains dendritic polarity-likely by phosphorylating S1371 of KIF13A, which lies in a canonical 14-3-3 binding motif. We probed for interactions of KIF13A with 14-3-3 isoforms and found that 14-3-3ß and 14-3-3ζ bound KIF13A. Disruption of MARK2 or 14-3-3 activity by small molecule inhibitors caused a loss of dendritic polarity. These data show that kinesin regulation is integral for dendrite-selective transport. We propose a new model in which KIF13A that moves dendrite-selective vesicles in the proximal axon is phosphorylated by MARK2. Phosphorylated KIF13A is then recognized by 14-3-3, which causes dissociation of KIF13A from the vesicle and termination of transport. These findings define a new paradigm for the regulation of vesicle transport by localized kinesin tail phosphorylation, to restrict dendrite-selective vesicles from entering the axon.


Assuntos
Proteínas 14-3-3 , Axônios , Dendritos , Cinesinas , Cinesinas/metabolismo , Dendritos/metabolismo , Proteínas 14-3-3/metabolismo , Animais , Axônios/metabolismo , Fosforilação , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Polaridade Celular/fisiologia , Transporte Axonal/fisiologia , Ratos , Neurônios/metabolismo
11.
Med Oncol ; 41(5): 100, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538804

RESUMO

Colorectal cancer (CRC) ranks as the third most prevalent cancer type globally. Nevertheless, the fundamental mechanisms driving CRC progression remain ambiguous, and the prognosis for the majority of patients diagnosed at an advanced stage is dismal. YWHA/14-3-3 proteins serve as central nodes in several signaling pathways and are closely related to tumorigenesis and progression. However, their exact roles in CRC are still poorly elucidated. In this study, we revealed that YWHAG was the most significantly upregulated member of the YWHA/14-3-3 family in CRC tissues and was associated with a poor prognosis. Subsequent phenotypic experiments showed that YWHAG promoted the proliferation, migration, and invasion of CRC cells. Mechanistically, RNA-seq data showed that multiple signaling pathways, including Wnt and epithelial-mesenchymal transition, were potentially regulated by YWHAG. CTTN was identified as a YWHAG-associated protein, and mediated its tumor-promoting functions by activating the Wnt/ß-catenin signaling in CRC cells. In summary, our data indicate that YWHAG facilitates the proliferation, migration, and invasion of CRC cells by modulating the CTTN-Wnt/ß-catenin signaling pathway, which offers a novel perspective for the treatment of CRC.


Assuntos
Neoplasias Colorretais , beta Catenina , Humanos , beta Catenina/metabolismo , Via de Sinalização Wnt , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Prognóstico , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Transição Epitelial-Mesenquimal , Cortactina/metabolismo , Proteínas 14-3-3/metabolismo
12.
J Agric Food Chem ; 72(13): 7043-7054, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38509000

RESUMO

14-3-3ζ protein, the key target in the regulation and control of integrin ß3 outside-in signaling, is an attractive new strategy to inhibit thrombosis without affecting hemostasis. In this study, 4'-O-methylbavachalconeB (4-O-MB) in Psoraleae Fructus was identified as a 14-3-3ζ ligand with antithrombosis activity by target fishing combined with ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) analysis. The competitive inhibition analysis showed that 4-O-MB targeted 14-3-3ζ and blocked the 14-3-3ζ/integrin ß3 interaction with inhibition constant (Ki) values of 9.98 ± 0.22 µM. Molecular docking and amino acid mutation experiments confirmed that 4-O-MB specifically bound to 14-3-3ζ through LSY9 and SER28 to regulate the 14-3-3ζ/integrin ß3 interaction. Besides, 4-O-MB affected the integrin ß3 early outside-in signal by inhibiting AKT and c-Src phosphorylation. Meanwhile, 4-O-MB could inhibit ADP-, collagen-, or thrombin-induced platelet aggregation function but had no effect on platelet adhesion to collagen-coated surfaces in vivo. Administration of 4-O-MB could significantly inhibit thrombosis formation without disturbing hemostasis in mice. These findings provide new prospects for the antithrombotic effects of Psoraleae Fructus and the potential application of 4-O-MB as lead compounds in the therapy of thrombosis by targeting 14-3-3ζ.


Assuntos
Agregação Plaquetária , Trombose , Camundongos , Animais , Integrina beta3/genética , Integrina beta3/química , Integrina beta3/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/farmacologia , Simulação de Acoplamento Molecular , Trombose/tratamento farmacológico , Trombose/genética , Trombose/metabolismo , Colágeno/metabolismo , Plaquetas/metabolismo
13.
Pediatr Surg Int ; 40(1): 63, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38431920

RESUMO

PURPOSE: Necrotizing enterocolitis (NEC) is a significant contributor to neonatal mortality. This study aimed to investigate the role of high levels of miR-375-3p in breast milk in the development of NEC and elucidate its mechanism. METHODS: Differential expression of miR-375-3p in the intestines of breast-fed and formula-fed mice was confirmed using real-time polymerase chain reaction (RT-PCR). NEC mice models were established, and intestinal injury was assessed using HE staining. RT-PCR and Western blot were conducted to examine the expression of miR-375-3p, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein ß (YWHAB), as well as the inflammatory in IEC-6 cells, and intestinal tissues obtained from NEC mice and patients. Flow cytometry and cell counting kit-8 (CCK-8) were employed to elucidate the impact of miR-375-3p and YWHAB on cell apoptosis and proliferation. RESULTS: Breastfeeding increases miR-375-3p expression in the intestines. The expression of miR-375-3p in NEC intestinal tissues exhibited a significant decrease compared to the healthy group. Additionally, the expression of interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α) was higher in the NEC group compared to the control group. Down-regulation of miR-375-3p inhibited IEC-6 cell proliferation, increased apoptosis, and elevated secretion of inflammatory factors. Bioinformatics revealed that YWHAB may be a target of miR-375-3p. RT-PCR and Western blot indicated a down-regulation of YWHAB expression in intestines of NEC patients and mice. Furthermore, YWHAB was found to be positively connected with miR-375-3p. Knockdown miR-375-3p down-regulated YWHAB expression in cells. Inhibition of YWHAB exhibited similar effects to miR-375-3p in IEC-6 cells. YWHAB plasmid partially reverse cellular functional impairment induced by miR-375-3p knockdown. CONCLUSIONS: Breastfeeding elevated miR-375-3p expression in intestines in neonatal mice. MiR-375-3p leads to a decrease in apoptosis of intestinal epithelial cells, an increase in cell proliferation, and a concomitant reduction in the expression of inflammatory factors partly through targeting YWHAB.


Assuntos
Proteínas 14-3-3 , Enterocolite Necrosante , Doenças do Recém-Nascido , MicroRNAs , Animais , Feminino , Humanos , Recém-Nascido , Camundongos , Proteínas 14-3-3/metabolismo , Traumatismos Abdominais , Enterocolite Necrosante/metabolismo , Doenças Fetais , MicroRNAs/genética
14.
PLoS One ; 19(3): e0298820, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38452156

RESUMO

BACKGROUND: 14-3-3 proteins are ubiquitous proteins that play a role in cardiac physiology (e.g., metabolism, development, and cell cycle). Furthermore, 14-3-3 proteins were proposed to regulate the electrical function of the heart by interacting with several cardiac ion channels, including the voltage-gated sodium channel Nav1.5. Given the many cardiac arrhythmias associated with Nav1.5 dysfunction, understanding its regulation by the protein partners is crucial. AIMS: In this study, we aimed to investigate the role of 14-3-3 proteins in the regulation of the human cardiac sodium channel Nav1.5. METHODS AND RESULTS: Amongst the seven 14-3-3 isoforms, only 14-3-3η (encoded by YWHAH gene) weakly co-immunoprecipitated with Nav1.5 when heterologously co-expressed in tsA201 cells. Total and cell surface expression of Nav1.5 was however not modified by 14-3-3η overexpression or inhibition with difopein, and 14-3-3η did not affect physical interaction between Nav1.5 α-α subunits. The current-voltage relationship and the amplitude of Nav1.5-mediated sodium peak current density were also not changed. CONCLUSIONS: Our findings illustrate that the direct implication of 14-3-3 proteins in regulating Nav1.5 is not evident in a transformed human kidney cell line tsA201.


Assuntos
Proteínas 14-3-3 , Canais de Sódio Disparados por Voltagem , Humanos , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Miócitos Cardíacos/metabolismo , Linhagem Celular , Arritmias Cardíacas , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo
15.
Int J Biol Macromol ; 266(Pt 2): 130802, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492709

RESUMO

Tau protein is an intrinsically disordered protein that plays a key role in Alzheimer's disease (AD). In brains of AD patients, Tau occurs abnormally phosphorylated and aggregated in neurofibrillary tangles (NFTs). Together with Tau, 14-3-3 proteins - abundant cytosolic dimeric proteins - were found colocalized in the NFTs. However, so far, the molecular mechanism of the process leading to pathological changes in Tau structure as well as the direct involvement of 14-3-3 proteins are not well understood. Here, we aimed to reveal the effects of phosphorylation by protein kinase A (PKA) on Tau structural preferences and provide better insight into the interaction between Tau and 14-3-3 proteins. We also addressed the impact of monomerization-inducing phosphorylation of 14-3-3 at S58 on the binding to Tau protein. Using multidimensional nuclear magnetic resonance spectroscopy (NMR), chemical cross-linking analyzed by mass spectrometry (MS) and PAGE, we unveiled differences in their binding affinity, stoichiometry, and interfaces with single-residue resolution. We revealed that the interaction between 14-3-3 and Tau proteins is mediated not only via the 14-3-3 amphipathic binding grooves, but also via less specific interactions with 14-3-3 protein surface and, in the case of monomeric 14-3-3, also partially via the exposed dimeric interface. In addition, the hyperphosphorylation of Tau changes its affinity to 14-3-3 proteins. In conclusion, we propose quite complex interaction mode between the Tau and 14-3-3 proteins.


Assuntos
Proteínas 14-3-3 , Ligação Proteica , Proteínas tau , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/química , Proteínas tau/metabolismo , Proteínas tau/química , Humanos , Fosforilação , Multimerização Proteica , Doença de Alzheimer/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Moleculares
16.
Dig Dis Sci ; 69(4): 1253-1262, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38361148

RESUMO

BACKGROUND: Intrahepatic cholestasis of pregnancy (ICP) is associated with adverse pregnancy outcomes; however, the underlying mechanisms are not fully understood. AIMS: This study aimed to determine the role of exosomal miR-6891-5p in placental trophoblast dysfunction in ICP and identify new biomarkers for ICP diagnosis. METHODS: Serum samples were collected from ICP patients and healthy pregnant women, and serum exosomes were extracted and identified. Fluorescent dye labeling of exosomes and cell-verified cell phagocytosis were performed. In vitro experiments were conducted by adding taurocholic acid to simulate the ICP environment. Cell proliferation and apoptosis levels were detected using flow cytometry and the cell counting kit-8 assay. Mimics were constructed to overexpress miR-6891-5p in cells, and the binding site between miR-6891-5p and YWHAE was verified using luciferase reporter genes. RESULTS: miR-6891-5p expression was significantly decreased in serum exosomes of ICP patients. Co-culturing with exosomes derived from ICP patients' serum (ICP-Exos) decreased HTR-8/SVeno cell proliferation and increased apoptosis levels. miR-6891-5p upregulation in HTR-8/SVeno cells significantly increased cell viability and reduced cell apoptosis levels, as determined by the cell counting kit-8 assay and flow cytometry. A double luciferase assay confirmed that miR-6891-5p affected the expression of the downstream YWHAE protein. CONCLUSIONS: This study indicates that serum exosomes from ICP patients can impact the apoptosis of placental trophoblast HTR-8/SVeno cells through the miR-6891-5P/YWHAE pathway and can serve as specific molecular markers for ICP diagnosis.


Assuntos
Colestase Intra-Hepática , Exossomos , MicroRNAs , Complicações na Gravidez , Feminino , Humanos , Gravidez , Proteínas 14-3-3/metabolismo , Apoptose , Proliferação de Células , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/metabolismo , Exossomos/genética , Luciferases/metabolismo , MicroRNAs/sangue , MicroRNAs/genética , MicroRNAs/metabolismo , Placenta/metabolismo , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo
17.
Oncogene ; 43(13): 931-943, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341472

RESUMO

Copy number alterations are crucial for the development of gastric cancer (GC). Here, we identified Transmembrane Protein 65 (TMEM65) amplification by genomic hybridization microarray to profile copy-number variations in GC. TMEM65 mRNA level was significantly up-regulated in GC compared to adjacent normal tissues, and was positively associated with TMEM65 amplification. High TMEM65 expression or DNA copy number predicts poor prognosis (P < 0.05) in GC. Furtherly, GC patients with TMEM65 amplification (n = 129) or overexpression (n = 78) significantly associated with shortened survival. Ectopic expression of TMEM65 significantly promoted cell proliferation, cell cycle progression and cell migration/invasion ability, but inhibited apoptosis (all P < 0.05). Conversely, silencing of TMEM65 in GC cells showed opposite abilities on cell function in vitro and suppressed tumor growth and lung metastasis in vivo (all P < 0.01). Moreover, TMEM65 depletion by VNP-encapsulated TMEM65-siRNA significantly suppressed tumor growth in subcutaneous xenograft model. Mechanistically, TMEM65 exerted oncogenic effects through activating PI3K-Akt-mTOR signaling pathway, as evidenced of increased expression of key regulators (p-Akt, p-GSK-3ß, p-mTOR) by Western blot. YWHAZ (Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase) was identified as a direct downstream effector of TMEM65. Direct binding of TMEM65 with YWHAZ in the cytoplasm inhibited ubiquitin-mediated degradation of YWHAZ. Moreover, oncogenic effect of TMEM65 was partly dependent on YWHAZ. In conclusion, TMEM65 promotes gastric tumorigenesis by activating PI3K-Akt-mTOR signaling via cooperating with YWHAZ. TMEM65 overexpression may serve as an independent new biomarker and is a therapeutic target in GC.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias Gástricas , Humanos , Proteínas 14-3-3/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica , Glicogênio Sintase Quinase 3 beta/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo
18.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119690, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367915

RESUMO

The scaffold protein 14-3-3ζ is an established regulator of adipogenesis and postnatal adiposity. We and others have demonstrated the 14-3-3ζ interactome to be diverse and dynamic, and it can be examined to identify novel regulators of physiological processes, including adipogenesis. In the present study, we sought to determine if factors that influence adipogenesis during the development of obesity could be identified in the 14-3-3ζ interactome found in white adipose tissue of lean or obese TAP-tagged-14-3-3ζ overexpressing mice. Using mass spectrometry, differences in the abundance of novel, as well as established, adipogenic factors within the 14-3-3ζ interactome could be detected in adipose tissues. One novel candidate was revealed to be plakoglobin, the homolog of the known adipogenic inhibitor, ß-catenin, and herein, we report that plakoglobin is involved in adipocyte differentiation. Plakoglobin is expressed in murine 3T3-L1 cells and is primarily localized to the nucleus, where its abundance decreases during adipogenesis. Depletion of plakoglobin by siRNA inhibited adipogenesis and reduced PPARγ2 expression, and similarly, plakoglobin depletion in human adipose-derived stem cells also impaired adipogenesis and reduced lipid accumulation post-differentiation. Transcriptional assays indicated that plakoglobin does not participate in Wnt/ß-catenin signaling, as its depletion did not affect Wnt3a-mediated transcriptional activity. Taken together, our results establish plakoglobin as a novel regulator of adipogenesis in vitro and highlights the ability of using the 14-3-3ζ interactome to identify potential pro-obesogenic factors.


Assuntos
Proteínas 14-3-3 , Adipócitos , gama Catenina , Animais , Humanos , Camundongos , Proteínas 14-3-3/metabolismo , Adipócitos/metabolismo , Adipogenia/genética , beta Catenina/genética , beta Catenina/metabolismo , gama Catenina/genética , gama Catenina/metabolismo , Obesidade/metabolismo , Via de Sinalização Wnt
19.
Cancer Commun (Lond) ; 44(3): 361-383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407929

RESUMO

BACKGROUND: Lymphatic metastasis is one of the most common metastatic routes and indicates a poor prognosis in clear-cell renal cell carcinoma (ccRCC). N-acetyltransferase 10 (NAT10) is known to catalyze N4-acetylcytidine (ac4C) modification of mRNA and participate in many cellular processes. However, its role in the lymphangiogenic process of ccRCC has not been reported. This study aimed to elucidate the role of NAT10 in ccRCC lymphangiogenesis, providing valuable insights into potential therapeutic targets for intervention. METHODS: ac4C modification and NAT10 expression levels in ccRCC were assessed using public databases and clinical samples. Functional investigations involved manipulating NAT10 expression in cellular and mouse models to study its role in ccRCC. Mechanistic insights were gained through a combination of RNA sequencing, mass spectrometry, co-immunoprecipitation, RNA immunoprecipitation, immunofluorescence, and site-specific mutation analyses. RESULTS: We found that ac4C modification and NAT10 expression levels increased in ccRCC. NAT10 promoted tumor progression and lymphangiogenesis of ccRCC by enhancing the nuclear import of Yes1-associated transcriptional regulator (YAP1). Subsequently, we identified ankyrin repeat and zinc finger peptidyl tRNA hydrolase 1 (ANKZF1) as the functional target of NAT10, and its upregulation in ccRCC was caused by NAT10-mediated ac4C modification. Mechanistic analyses demonstrated that ANKZF1 interacted with tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon (YWHAE) to competitively inhibit cytoplasmic retention of YAP1, leading to transcriptional activation of pro-lymphangiogenic factors. CONCLUSIONS: These results suggested a pro-cancer role of NAT10-mediated acetylation in ccRCC and identified the NAT10/ANKZF1/YAP1 axis as an under-reported pathway involving tumor progression and lymphangiogenesis in ccRCC.


Assuntos
Proteínas 14-3-3 , Carcinoma de Células Renais , Proteínas de Transporte , Neoplasias Renais , Acetiltransferases N-Terminal , Proteínas de Sinalização YAP , Animais , Camundongos , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Linfangiogênese/genética , Processos Neoplásicos , Proteínas de Transporte/metabolismo , Acetiltransferases N-Terminal/metabolismo , Proteínas 14-3-3/metabolismo , Proteínas de Sinalização YAP/metabolismo
20.
Funct Integr Genomics ; 24(2): 33, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363382

RESUMO

Non-small cell lung cancer (NSCLC) encompasses approximately 85% of all lung cancer cases and is the foremost cancer type worldwide; it is prevalent in both sexes and known for its high fatality rate. Expanding scientific inquiry underscores the indispensability of microRNAs in NSCLC. Here, we probed the impact of miR-873-5p on NSCLC development and chemoresistance. qRT‒PCR was used to measure the miR-873-5p level in NSCLC cells with or without chemoresistance. A model of miR-873-5p overexpression was constructed. The proliferation and viability of NSCLC cells were evaluated through CCK8 and colony formation experiments. Cell migration and invasion were monitored via Transwell assays. Western blotting was used to determine the levels of YWHAE, PI3K, AKT, EMT, apoptosis, and autophagy-related proteins. The sensitivity of NSCLC cells to the chemotherapeutic agent gefitinib was assessed. Additionally, the correlation of YWHAE with miR-873-5p was validated via a dual-luciferase reporter assay and RNA immunoprecipitation (RIP). Overexpressed miR-873-5p suppressed migration, proliferation, invasion, and EMT while concurrently stimulating apoptotic processes. miR-873-5p was downregulated in NSCLC cells resistant to gefitinib. Upregulating miR-873-5p reversed gefitinib resistance by inducing autophagy. YWHAE was confirmed to be a downstream target of miR-873-5p. YWHAE overexpression promoted the malignant behaviors of NSCLC cells and boosted tumor growth, while these effects were reversed following miR-873-5p overexpression. Subsequent investigations revealed that overexpressing YWHAE promoted PI3K/AKT pathway activation, with miR-873-5p displaying inhibitory effects on the YWHAE-mediated PI3K/AKT signaling cascade. miR-873-5p affects proliferation, invasion, migration, EMT, autophagy, and chemoresistance in NSCLC by controlling the YWHAE/PI3K/AKT axis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Masculino , Feminino , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Gefitinibe , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Autofagia/genética , Proliferação de Células/genética , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...