Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 164, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38337031

RESUMO

Accurate mitosis is coordinated by the spindle assembly checkpoint (SAC) through the mitotic checkpoint complex (MCC), which inhibits the anaphase-promoting complex or cyclosome (APC/C). As an essential regulator, Cdc20 promotes mitotic exit through activating APC/C and monitors kinetochore-microtubule attachment through activating SAC. Cdc20 requires multiple interactions with APC/C and MCC subunits to elicit these functions. Functionally assessing these interactions within cells requires efficient depletion of endogenous Cdc20, which is highly difficult to achieve by RNA interference (RNAi). Here we generated Cdc20 RNAi-sensitive cell lines which display a penetrant metaphase arrest by a single RNAi treatment. In this null background, we accurately measured the contribution of each known motif of Cdc20 on APC/C and SAC activation. The CRY box, a previously identified degron, was found critical for SAC by promoting MCC formation and its interaction with APC/C. These data reveal additional regulation within the SAC and establish a novel method to interrogate Cdc20.


Assuntos
Proteínas Cdc20 , Pontos de Checagem da Fase M do Ciclo Celular , Fuso Acromático , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdc20/química , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/genética , Fuso Acromático/genética , Fuso Acromático/metabolismo , Transdução de Sinais , Humanos
2.
Nature ; 617(7959): 154-161, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100900

RESUMO

Mitotic defects activate the spindle-assembly checkpoint, which inhibits the anaphase-promoting complex co-activator CDC20 to induce a prolonged cell cycle arrest1,2. Once errors are corrected, the spindle-assembly checkpoint is silenced, allowing anaphase onset to occur. However, in the presence of persistent unresolvable errors, cells can undergo 'mitotic slippage', exiting mitosis into a tetraploid G1 state and escaping the cell death that results from a prolonged arrest. The molecular logic that enables cells to balance these duelling mitotic arrest and slippage behaviours remains unclear. Here we demonstrate that human cells modulate the duration of their mitotic arrest through the presence of conserved, alternative CDC20 translational isoforms. Downstream translation initiation results in a truncated CDC20 isoform that is resistant to spindle-assembly-checkpoint-mediated inhibition and promotes mitotic exit even in the presence of mitotic perturbations. Our study supports a model in which the relative levels of CDC20 translational isoforms control the duration of mitotic arrest. During a prolonged mitotic arrest, new protein synthesis and differential CDC20 isoform turnover create a timer, with mitotic exit occurring once the truncated Met43 isoform achieves sufficient levels. Targeted molecular changes or naturally occurring cancer mutations that alter CDC20 isoform ratios or its translational control modulate mitotic arrest duration and anti-mitotic drug sensitivity, with potential implications for the diagnosis and treatment of human cancers.


Assuntos
Proteínas Cdc20 , Pontos de Checagem da Fase M do Ciclo Celular , Biossíntese de Proteínas , Humanos , Proteínas Cdc20/química , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fuso Acromático/metabolismo , Iniciação Traducional da Cadeia Peptídica
3.
Nature ; 559(7713): 274-278, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29973720

RESUMO

The maintenance of genome stability during mitosis is coordinated by the spindle assembly checkpoint (SAC) through its effector the mitotic checkpoint complex (MCC), an inhibitor of the anaphase-promoting complex (APC/C, also known as the cyclosome)1,2. Unattached kinetochores control MCC assembly by catalysing a change in the topology of the ß-sheet of MAD2 (an MCC subunit), thereby generating the active closed MAD2 (C-MAD2) conformer3-5. Disassembly of free MCC, which is required for SAC inactivation and chromosome segregation, is an ATP-dependent process driven by the AAA+ ATPase TRIP13. In combination with p31comet, an SAC antagonist6, TRIP13 remodels C-MAD2 into inactive open MAD2 (O-MAD2)7-10. Here, we present a mechanism that explains how TRIP13-p31comet disassembles the MCC. Cryo-electron microscopy structures of the TRIP13-p31comet-C-MAD2-CDC20 complex reveal that p31comet recruits C-MAD2 to a defined site on the TRIP13 hexameric ring, positioning the N terminus of C-MAD2 (MAD2NT) to insert into the axial pore of TRIP13 and distorting the TRIP13 ring to initiate remodelling. Molecular modelling suggests that by gripping MAD2NT within its axial pore, TRIP13 couples sequential ATP-driven translocation of its hexameric ring along MAD2NT to push upwards on, and simultaneously rotate, the globular domains of the p31comet-C-MAD2 complex. This unwinds a region of the αA helix of C-MAD2 that is required to stabilize the C-MAD2 ß-sheet, thus destabilizing C-MAD2 in favour of O-MAD2 and dissociating MAD2 from p31comet. Our study provides insights into how specific substrates are recruited to AAA+ ATPases through adaptor proteins and suggests a model of how translocation through the axial pore of AAA+ ATPases is coupled to protein remodelling.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Mad2/química , Proteínas Mad2/metabolismo , ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/ultraestrutura , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Sítios de Ligação , Biocatálise/efeitos dos fármacos , Proteínas Cdc20/química , Proteínas Cdc20/metabolismo , Proteínas Cdc20/ultraestrutura , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/ultraestrutura , Microscopia Crioeletrônica , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Proteínas Mad2/ultraestrutura , Modelos Moleculares , Conformação Proteica , Fuso Acromático/efeitos dos fármacos , Especificidade por Substrato
4.
Proc Natl Acad Sci U S A ; 114(47): 12524-12529, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29109278

RESUMO

During DNA replication, chromatin is disrupted ahead of the replication fork, and epigenetic information must be restored behind the fork. How epigenetic marks are inherited through DNA replication remains poorly understood. Histone H3 lysine 9 (H3K9) methylation and histone hypoacetylation are conserved hallmarks of heterochromatin. We previously showed that the inheritance of H3K9 methylation during DNA replication depends on the catalytic subunit of DNA polymerase epsilon, Cdc20. Here we show that the histone-fold subunit of Pol epsilon, Dpb4, interacts an uncharacterized small histone-fold protein, SPCC16C4.22, to form a heterodimer in fission yeast. We demonstrate that SPCC16C4.22 is nonessential for viability and corresponds to the true ortholog of Dpb3. We further show that the Dpb3-Dpb4 dimer associates with histone deacetylases, chromatin remodelers, and histones and plays a crucial role in the inheritance of histone hypoacetylation in heterochromatin. We solve the 1.9-Å crystal structure of Dpb3-Dpb4 and reveal that they form the H2A-H2B-like dimer. Disruption of Dpb3-Dpb4 dimerization results in loss of heterochromatin silencing. Our findings reveal a link between histone deacetylation and H3K9 methylation and suggest a mechanism for how two processes are coordinated during replication. We propose that the Dpb3-Dpb4 heterodimer together with Cdc20 serves as a platform for the recruitment of chromatin modifiers and remodelers that mediate heterochromatin assembly during DNA replication, and ensure the faithful inheritance of epigenetic marks in heterochromatin.


Assuntos
Proteínas Cdc20/química , DNA Polimerase II/química , Epigênese Genética , Heterocromatina/química , Histonas/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/genética , Animais , Sítios de Ligação , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Clonagem Molecular , Cristalografia por Raios X , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Replicação do DNA , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
5.
Nat Cell Biol ; 19(12): 1433-1440, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29084198

RESUMO

Protein phosphatase 2A (PP2A) in complex with B55 regulatory subunits reverses cyclin-dependent kinase 1 (Cdk1) phosphorylations at mitotic exit. Interestingly, threonine and serine residues phosphorylated by Cdk1 display distinct phosphorylation dynamics, but the biological significance remains unexplored. Here we demonstrate that the phosphothreonine preference of PP2A-B55 provides an essential regulatory element of mitotic exit. To allow rapid activation of the anaphase-promoting complex/cyclosome (APC/C) co-activator Cdc20, inhibitory phosphorylation sites are conserved as threonines while serine substitutions delay dephosphorylation and Cdc20 activation. Conversely, to ensure timely activation of the interphase APC/C co-activator Cdh1, inhibitory phosphorylation sites are conserved as serines, and threonine substitutions result in premature Cdh1 activation. Furthermore, rapid translocation of the chromosomal passenger complex to the central spindle is prevented by mutation of a single phosphorylated threonine to serine in inner centromere protein (INCENP), leading to failure of cytokinesis. Altogether, the findings of our work reveal that the inherent residue preference of a protein phosphatase can provide temporal regulation in biological processes.


Assuntos
Mitose/fisiologia , Serina/metabolismo , Treonina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteína Quinase CDC2/metabolismo , Proteínas Cdc20/química , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas Cdh1/química , Proteínas Cdh1/genética , Proteínas Cdh1/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Sequência Conservada , Células HeLa , Humanos , Cinética , Fosforilação , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Interferência de RNA , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Curr Biol ; 27(8): 1213-1220, 2017 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-28366743

RESUMO

The mitotic checkpoint is a cellular safeguard that prevents chromosome missegregation in eukaryotic cells [1, 2]. Suboptimal functioning may foster chromosome missegregation in cancer cells [3]. Checkpoint signaling produces the "mitotic checkpoint complex" (MCC), which prevents anaphase by targeting Cdc20, the activator of the anaphase-promoting complex/cyclosome (APC/C). Recent biochemical and structural studies revealed that the human MCC binds two Cdc20 molecules, one (Cdc20M) through well-characterized, cooperative binding to Mad2 and Mad3/BubR1 (forming the "core MCC") and the other one (Cdc20A) through additional binding sequences in Mad3/BubR1 [4-6]. Here, we dissect the different functionality of these sites in vivo. We show in fission yeast that, at low Cdc20 concentrations, Cdc20M binding is sufficient for checkpoint activity and Cdc20A binding becomes dispensable. Cdc20A binding is mediated by the conserved Mad3 ABBA-KEN2-ABBA motif [7, 8], which we find additionally required for binding of the MCC to the APC/C and for MCC disassembly. Strikingly, deletion of the APC/C subunit Apc15 mimics mutations in this motif, revealing a shared function. This function of Apc15 may be masked in human cells by independent mediators of MCC-APC/C binding. Our data provide important in vivo support for the recent structure-based models and functionally dissect three elements of Cdc20 inhibition: (1) sequestration of Cdc20 in the core MCC, sufficient at low Cdc20 concentrations; (2) inhibition of a second Cdc20 through the Mad3 C terminus, independent of Mad2 binding to this Cdc20 molecule; and (3) occupancy of the APC/C with full MCC, where Mad3 and Apc15 are involved.


Assuntos
Proteínas Cdc20/química , Proteínas de Ciclo Celular/química , Complexos Multiproteicos/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas Cdc20/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Humanos , Pontos de Checagem da Fase M do Ciclo Celular , Complexos Multiproteicos/metabolismo , Schizosaccharomyces , Homologia de Sequência
7.
Cell Signal ; 33: 41-48, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28189585

RESUMO

The anaphase-promoting complex (APC) is a ubiquitin ligase responsible for promoting the degradation of many cell cycle regulators. One of the activators and substrate-binding proteins for the APC is Cdc20. It has been shown previously that Cdc20 can promote its own degradation by the APC in normal cycling cells mainly through a cis-degradation mode (i.e. via an intramolecular mechanism). However, how Cdc20 is degraded during the spindle assembly checkpoint (SAC) is still not fully clear. In this study, we used a dual-Cdc20 system to investigate this issue and found that the cis-degradation mode is also the major pathway responsible for Cdc20 degradation during the SAC. In addition, we found that there is an inverse relationship between APCCdc20 activity and the transcriptional activity of the CDC20 promoter, which likely occurs through feedback regulation by APCCdc20 substrates, such as the cyclins Clb2 and Clb5. These findings contribute to our understanding of how the inhibition of APCCdc20 activity and enhanced Cdc20 degradation are required for proper spindle checkpoint arrest.


Assuntos
Proteínas Cdc20/genética , Regulação Fúngica da Expressão Gênica , Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Transcrição Gênica , Motivos de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdc20/química , Proteínas Cdc20/metabolismo , Regiões Promotoras Genéticas/genética , Proteólise , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
8.
Sci Rep ; 7: 41072, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112196

RESUMO

The mitotic checkpoint complex (MCC) is formed from two sub-complexes of CDC20-MAD2 and BUBR1-BUB3, and current models suggest that it is generated exclusively by the kinetochores after nuclear envelope breakdown (NEBD). However, neither sub-complex has been visualised in vivo, and when and where they are formed during the cell cycle and their response to different SAC conditions remains elusive. Using single cell analysis in HeLa cells, we show that the CDC20-MAD2 complex is cell cycle regulated with a "Bell" shaped profile and peaks at prometaphase. Its formation begins in early prophase before NEBD when the SAC has not been activated. The complex prevents the premature degradation of cyclin B1. Tpr, a component of the NPCs (nuclear pore complexes), facilitates the formation of this prophase form of the CDC20-MAD2 complex but is inactive later in mitosis. Thus, we demonstrate that the CDC20-MAD2 complex could also be formed independently of the SAC. Moreover, in prolonged arrest caused by nocodazole treatment, the overall levels of the CDC20-MAD2 complex are gradually, but significantly, reduced and this is associated with lower levels of cyclin B1, which brings a new insight into the mechanism of mitotic "slippage" of the arrested cells.


Assuntos
Proteínas Cdc20/genética , Cinetocoros , Proteínas Mad2/genética , Complexos Multiproteicos/genética , Proteínas Cdc20/química , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Ciclina B1/genética , Células HeLa , Humanos , Proteínas Mad2/química , Mitose/genética , Complexos Multiproteicos/química
9.
Mol Cell ; 64(6): 1144-1153, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27939943

RESUMO

The Spindle Assembly Checkpoint (SAC) ensures genomic stability by preventing sister chromatid separation until all chromosomes are attached to the spindle. It catalyzes the production of the Mitotic Checkpoint Complex (MCC), which inhibits Cdc20 to inactivate the Anaphase Promoting Complex/Cyclosome (APC/C). Here we show that two Cdc20-binding motifs in BubR1 of the recently identified ABBA motif class are crucial for the MCC to recognize active APC/C-Cdc20. Mutating these motifs eliminates MCC binding to the APC/C, thereby abolishing the SAC and preventing cells from arresting in response to microtubule poisons. These ABBA motifs flank a KEN box to form a cassette that is highly conserved through evolution, both in the arrangement and spacing of the ABBA-KEN-ABBA motifs, and association with the amino-terminal KEN box required to form the MCC. We propose that the ABBA-KEN-ABBA cassette holds the MCC onto the APC/C by binding the two Cdc20 molecules in the MCC-APC/C complex.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/genética , Proteínas Cdc20/genética , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Serina-Treonina Quinases/genética , Motivos de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase/química , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Evolução Biológica , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas Cdc20/química , Proteínas Cdc20/metabolismo , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Sequência Conservada , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Expressão Gênica , Células HeLa , Humanos , Mutação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Imagem com Lapso de Tempo
10.
Mol Cell ; 64(1): 12-23, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27716480

RESUMO

The anaphase-promoting complex or cyclosome (APC/C) is a ubiquitin ligase that polyubiquitinates specific substrates at precise times in the cell cycle, thereby triggering the events of late mitosis in a strict order. The robust substrate specificity of the APC/C prevents the potentially deleterious degradation of non-APC/C substrates and also averts the cell-cycle errors and genomic instability that could result from mistimed degradation of APC/C targets. The APC/C recognizes short linear sequence motifs, or degrons, on its substrates. The specific and timely modification and degradation of APC/C substrates is likely to be modulated by variations in degron sequence and context. We discuss the extensive affinity, specificity, and selectivity determinants encoded in APC/C degrons, and we describe some of the extrinsic mechanisms that control APC/C-substrate recognition. As an archetype for protein motif-driven regulation of cell function, the APC/C-substrate interaction provides insights into the general properties of post-translational regulatory systems.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Anáfase , Proteínas Cdc20/metabolismo , Processamento de Proteína Pós-Traducional , Motivos de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase/química , Ciclossomo-Complexo Promotor de Anáfase/genética , Animais , Sítios de Ligação , Proteínas Cdc20/química , Proteínas Cdc20/genética , Humanos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteólise , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Ubiquitinação
11.
Nature ; 536(7617): 431-436, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27509861

RESUMO

In the dividing eukaryotic cell, the spindle assembly checkpoint (SAC) ensures that each daughter cell inherits an identical set of chromosomes. The SAC coordinates the correct attachment of sister chromatid kinetochores to the mitotic spindle with activation of the anaphase-promoting complex (APC/C), the E3 ubiquitin ligase responsible for initiating chromosome separation. In response to unattached kinetochores, the SAC generates the mitotic checkpoint complex (MCC), which inhibits the APC/C and delays chromosome segregation. By cryo-electron microscopy, here we determine the near-atomic resolution structure of a human APC/C­MCC complex (APC/C(MCC)). Degron-like sequences of the MCC subunit BubR1 block degron recognition sites on Cdc20, the APC/C coactivator subunit responsible for substrate interactions. BubR1 also obstructs binding of the initiating E2 enzyme UbcH10 to repress APC/C ubiquitination activity. Conformational variability of the complex enables UbcH10 association, and structural analysis shows how the Cdc20 subunit intrinsic to the MCC (Cdc20(MCC)) is ubiquitinated, a process that results in APC/C reactivation when the SAC is silenced.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/antagonistas & inibidores , Ciclossomo-Complexo Promotor de Anáfase/ultraestrutura , Microscopia Crioeletrônica , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura , Ciclossomo-Complexo Promotor de Anáfase/química , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Biocatálise , Proteínas Cdc20/química , Proteínas Cdc20/metabolismo , Proteínas Cdc20/ultraestrutura , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Humanos , Cinetocoros/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/ultraestrutura , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Fuso Acromático/química , Relação Estrutura-Atividade , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/ultraestrutura , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
12.
Nature ; 533(7602): 260-264, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27120157

RESUMO

In eukaryotes, the anaphase-promoting complex (APC/C, also known as the cyclosome) regulates the ubiquitin-dependent proteolysis of specific cell-cycle proteins to coordinate chromosome segregation in mitosis and entry into the G1 phase. The catalytic activity of the APC/C and its ability to specify the destruction of particular proteins at different phases of the cell cycle are controlled by its interaction with two structurally related coactivator subunits, Cdc20 and Cdh1. Coactivators recognize substrate degrons, and enhance the affinity of the APC/C for its cognate E2 (refs 4-6). During mitosis, cyclin-dependent kinase (Cdk) and polo-like kinase (Plk) control Cdc20- and Cdh1-mediated activation of the APC/C. Hyperphosphorylation of APC/C subunits, notably Apc1 and Apc3, is required for Cdc20 to activate the APC/C, whereas phosphorylation of Cdh1 prevents its association with the APC/C. Since both coactivators associate with the APC/C through their common C-box and Ile-Arg tail motifs, the mechanism underlying this differential regulation is unclear, as is the role of specific APC/C phosphorylation sites. Here, using cryo-electron microscopy and biochemical analysis, we define the molecular basis of how phosphorylation of human APC/C allows for its control by Cdc20. An auto-inhibitory segment of Apc1 acts as a molecular switch that in apo unphosphorylated APC/C interacts with the C-box binding site and obstructs engagement of Cdc20. Phosphorylation of the auto-inhibitory segment displaces it from the C-box-binding site. Efficient phosphorylation of the auto-inhibitory segment, and thus relief of auto-inhibition, requires the recruitment of Cdk-cyclin in complex with a Cdk regulatory subunit (Cks) to a hyperphosphorylated loop of Apc3. We also find that the small-molecule inhibitor, tosyl-l-arginine methyl ester, preferentially suppresses APC/C(Cdc20) rather than APC/C(Cdh1), and interacts with the binding sites of both the C-box and Ile-Arg tail motifs. Our results reveal the mechanism for the regulation of mitotic APC/C by phosphorylation and provide a rationale for the development of selective inhibitors of this state.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Mitose , Fosfoproteínas/metabolismo , Motivos de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase/química , Ciclossomo-Complexo Promotor de Anáfase/ultraestrutura , Antígenos CD , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/química , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Subunidade Apc3 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Apoenzimas/metabolismo , Sítios de Ligação , Caderinas/química , Caderinas/metabolismo , Caderinas/ultraestrutura , Proteínas Cdc20/antagonistas & inibidores , Proteínas Cdc20/química , Proteínas Cdc20/metabolismo , Proteínas Cdc20/ultraestrutura , Microscopia Crioeletrônica , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Ativação Enzimática , Humanos , Modelos Moleculares , Fosfoproteínas/química , Fosfoproteínas/ultraestrutura , Fosforilação , Ligação Proteica , Conformação Proteica , Tosilarginina Metil Éster/farmacologia
13.
Proc Natl Acad Sci U S A ; 113(19): E2570-8, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27114510

RESUMO

Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/C(CDC20) activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/C(CDC20) activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/C(CDC20) activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdc20/metabolismo , Mitose/fisiologia , Ciclossomo-Complexo Promotor de Anáfase/química , Sítios de Ligação , Proteínas Cdc20/química , Ativação Enzimática , Células HeLa , Humanos , Mutagênese Sítio-Dirigida/métodos , Fosforilação , Ligação Proteica , Transfecção/métodos
14.
Proc Natl Acad Sci U S A ; 112(36): 11252-7, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26305957

RESUMO

The spindle checkpoint senses unattached kinetochores during prometaphase and inhibits the anaphase-promoting complex or cyclosome (APC/C), thus ensuring accurate chromosome segregation. The checkpoint protein mitotic arrest deficient 2 (Mad2) is an unusual protein with multiple folded states. Mad2 adopts the closed conformation (C-Mad2) in a Mad1-Mad2 core complex. In mitosis, kinetochore-bound Mad1-C-Mad2 recruits latent, open Mad2 (O-Mad2) from the cytosol and converts it to an intermediate conformer (I-Mad2), which can then bind and inhibit the APC/C activator cell division cycle 20 (Cdc20) as C-Mad2. Here, we report the crystal structure and NMR analysis of I-Mad2 bound to C-Mad2. Although I-Mad2 retains the O-Mad2 fold in crystal and in solution, its core structural elements undergo discernible rigid-body movements and more closely resemble C-Mad2. Residues exhibiting methyl chemical shift changes in I-Mad2 form a contiguous, interior network that connects its C-Mad2-binding site to the conformationally malleable C-terminal region. Mutations of residues at the I-Mad2-C-Mad2 interface hinder I-Mad2 formation and impede the structural transition of Mad2. Our study provides insight into the conformational activation of Mad2 and establishes the basis of allosteric communication between two distal sites in Mad2.


Assuntos
Proteínas Mad2/química , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Ciclossomo-Complexo Promotor de Anáfase/química , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Sítios de Ligação/genética , Calorimetria , Proteínas Cdc20/química , Proteínas Cdc20/metabolismo , Cristalografia por Raios X , Humanos , Cinetocoros/metabolismo , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Espectroscopia de Ressonância Magnética , Mitose , Modelos Moleculares , Mutação , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína
15.
Mol Biol Cell ; 26(5): 843-58, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25540434

RESUMO

The anaphase-promoting complex/cyclosome (APC/C) controls a variety of cellular processes through its ability to target numerous protein substrates for timely degradation. Substrate selection by this ubiquitin ligase depends on related activator proteins, Cdc20 and Cdh1, which bind and activate the APC/C at distinct cell cycle stages. Biochemical and structural studies revealed that Cdc20 and Cdh1 carry conserved receptor domains to recognize specific sequence motifs in substrates, such as D and KEN boxes. The mechanisms for ordered degradation of APC/C substrates, however, remain incompletely understood. Here we describe minimal degradation sequences (degrons) sufficient for rapid APC/C-Cdh1-specific in vivo degradation. The polo kinase Cdc5-derived degron contained an essential KEN motif, whereas a single RxxL-type D box was the relevant signal in the Cdc20-derived degradation domain, indicating that either motif may support specific recognition by Cdh1. In both degrons, the APC/C recognition motif was flanked by a nuclear localization sequence. Forced localization of the degron constructs revealed that proteolysis mediated by APC/C-Cdh1 is restricted to the nucleus and maximally active in the nucleoplasm. Levels of Iqg1, a cytoplasmic Cdh1 substrate, decreased detectably later than the nucleus-localized Cdh1 substrate Ase1, indicating that confinement to the nucleus may allow for temporal control of APC/C-Cdh1-mediated proteolysis.


Assuntos
Proteínas Cdc20/química , Proteínas Cdh1/química , Proteínas de Ciclo Celular/química , Proteínas Serina-Treonina Quinases/química , Proteólise , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Sítios de Ligação , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Nat Commun ; 5: 5563, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25482201

RESUMO

Improperly attached kinetochores activate the spindle assembly checkpoint (SAC) and by an unknown mechanism catalyse the binding of two checkpoint proteins, Mad2 and BubR1, to Cdc20 forming the mitotic checkpoint complex (MCC). Here, to address the functional role of Cdc20 kinetochore localization in the SAC, we delineate the molecular details of its interaction with kinetochores. We find that BubR1 recruits the bulk of Cdc20 to kinetochores through its internal Cdc20 binding domain (IC20BD). We show that preventing Cdc20 kinetochore localization by removal of the IC20BD has a limited effect on the SAC because the IC20BD is also required for efficient SAC silencing. Indeed, the IC20BD can disrupt the MCC providing a mechanism for its role in SAC silencing. We thus uncover an unexpected dual function of the second Cdc20 binding site in BubR1 in promoting both efficient SAC signalling and SAC silencing.


Assuntos
Proteínas Cdc20/química , Proteínas Serina-Treonina Quinases/química , Fuso Acromático , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Inativação Gênica , Células HEK293 , Células HeLa , Humanos , Cinetocoros/metabolismo , Proteínas Mad2/metabolismo , Microtúbulos/química , Mitose , Dados de Sequência Molecular , Mutação , Interferência de RNA , Homologia de Sequência de Aminoácidos , Transdução de Sinais
17.
Nature ; 514(7524): 646-9, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25156254

RESUMO

Protein machines are multi-subunit protein complexes that orchestrate highly regulated biochemical tasks. An example is the anaphase-promoting complex/cyclosome (APC/C), a 13-subunit ubiquitin ligase that initiates the metaphase-anaphase transition and mitotic exit by targeting proteins such as securin and cyclin B1 for ubiquitin-dependent destruction by the proteasome. Because blocking mitotic exit is an effective approach for inducing tumour cell death, the APC/C represents a potential novel target for cancer therapy. APC/C activation in mitosis requires binding of Cdc20 (ref. 5), which forms a co-receptor with the APC/C to recognize substrates containing a destruction box (D-box). Here we demonstrate that we can synergistically inhibit APC/C-dependent proteolysis and mitotic exit by simultaneously disrupting two protein-protein interactions within the APC/C-Cdc20-substrate ternary complex. We identify a small molecule, called apcin (APC inhibitor), which binds to Cdc20 and competitively inhibits the ubiquitylation of D-box-containing substrates. Analysis of the crystal structure of the apcin-Cdc20 complex suggests that apcin occupies the D-box-binding pocket on the side face of the WD40-domain. The ability of apcin to block mitotic exit is synergistically amplified by co-addition of tosyl-l-arginine methyl ester, a small molecule that blocks the APC/C-Cdc20 interaction. This work suggests that simultaneous disruption of multiple, weak protein-protein interactions is an effective approach for inactivating a protein machine.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/química , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Carbamatos/farmacologia , Diaminas/farmacologia , Mitose/efeitos dos fármacos , Tosilarginina Metil Éster/farmacologia , Sítios de Ligação/efeitos dos fármacos , Proteínas Cdc20/química , Proteínas Cdc20/metabolismo , Morte Celular/efeitos dos fármacos , Cristalografia por Raios X , Sinergismo Farmacológico , Ligação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
18.
EMBO Rep ; 15(3): 264-72, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24464857

RESUMO

The spindle assembly checkpoint (SAC) delays progression into anaphase until all chromosomes have aligned on the metaphase plate by inhibiting Cdc20, the mitotic co-activator of the APC/C. Mad2 and BubR1 bind and inhibit Cdc20, thereby forming the mitotic checkpoint complex (MCC), which can bind stably to the APC/C. Whether MCC formation per se is sufficient for a functional SAC or MCC association with the APC/C is required remains unclear. Here, we analyze the role of two conserved motifs in Cdc20, IR and C-Box, in binding of the MCC to the APC/C. Mutants in both motifs assemble the MCC normally, but IR motif integrity is particularly important for stable binding to the APC/C. Cells expressing Cdc20 with a mutated IR motif have a compromised SAC, as uninhibited Cdc20 can compete with the MCC for APC/C binding and activate it. We thus show that stable MCC association with the APC/C is critical for a functional SAC.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdc20/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Mad2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Proteínas Cdc20/química , Proteínas Cdc20/genética , Sequência Conservada , Células HeLa , Humanos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA