Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Neurobiol Learn Mem ; 185: 107535, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34624524

RESUMO

Context memory formation is a complex process that requires transcription in many subregions of the brain including the dorsal hippocampus and retrosplenial cortex. One critical gene necessary for memory formation is the circadian gene Period1 (Per1), which has been shown to function in the dorsal hippocampus to modulate spatial memory in addition to its well-documented role in regulating the diurnal clock within the suprachiasmatic nucleus (SCN). We recently found that alterations in Per1 expression in the dorsal hippocampus can modulate spatial memory formation, with reduced hippocampal Per1 impairing memory and overexpression of Per1 ameliorating age-related impairments in spatial memory. Whether Per1 similarly functions within other memory-relevant brain regions is currently unknown. Here, to test whether Per1 is a general mechanism that modulates memory across the brain, we tested the role of Per1 in the retrosplenial cortex (RSC), a brain region necessary for context memory formation. First, we demonstrate that context fear conditioning drives a transient increase in Per1 mRNA expression within the anterior RSC that peaks 60 m after training. Next, using HSV-CRISPRi-mediated knockdown of Per1, we show that reducing Per1 within the anterior RSC before context fear acquisition impairs memory in both male and female mice. In contrast, overexpressing Per1 with either HSV-CRISPRa or HSV-Per1 before context fear acquisition drives a sex-specific memory impairment; males show impaired context fear memory whereas females are not affected by Per1 overexpression. Finally, as Per1 levels are known to rhythmically oscillate across the day/night cycle, we tested the possibility that Per1 overexpression might have different effects on memory depending on the time of day. In contrast to the impairment in memory we observed during the daytime, Per1 overexpression has no effect on context fear memory during the night in either male or female mice. Together, our results indicate that Per1 modulates memory in the anterior retrosplenial cortex in addition to its documented role in regulating memory within the dorsal hippocampus, although this role may differ between males and females.


Assuntos
Medo/fisiologia , Giro do Cíngulo/fisiologia , Consolidação da Memória , Proteínas Circadianas Period/fisiologia , Animais , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Condicionamento Clássico/fisiologia , Feminino , Edição de Genes , Giro do Cíngulo/metabolismo , Masculino , Consolidação da Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fatores Sexuais
2.
Sci Rep ; 11(1): 16152, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373551

RESUMO

Chemical communication via pheromones is an integral component in insect behavior, particularly for mate searching and reproduction. Aggregation pheromones, that attract conspecifics of both sexes, are particularly common and have been identified for hundreds of species. These pheromones are among the most ecologically selective pest suppression agents. In this study, we identified an activating effect of the aggregation pheromone of the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenibroidae) on a highly conserved circadian clock gene (Tctimeless). Tribolium castaneum is one of the most damaging cosmopolitan pest of flour and other stored food products. Its male produced aggregation pheromone, 4,8-dimethyldecanal (DMD), attracts both conspecific males and females and is used for pest management via monitoring and mating disruption. The Tctimeless gene is an essential component for daily expression patterns of the circadian clock and plays vital roles in eclosion, egg production, and embryonic development. In this study, we demonstrate that constant exposure to the species-specific aggregation pheromone led to Tctimeless up-regulation and a different pattern of rhythmic locomotive behavior. We propose that changing the well-adapted "alarm clock", using DMD is liable to reduce fitness and can be highly useful for pest management.


Assuntos
Relógios Circadianos/genética , Genes de Insetos , Tribolium/genética , Tribolium/fisiologia , Aldeídos/administração & dosagem , Aldeídos/metabolismo , Animais , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/fisiologia , Feminino , Perfilação da Expressão Gênica , Genes de Insetos/efeitos dos fármacos , Controle de Insetos , Proteínas de Insetos/genética , Proteínas de Insetos/fisiologia , Masculino , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/fisiologia , Feromônios/administração & dosagem , Feromônios/fisiologia , Reprodução/efeitos dos fármacos , Reprodução/genética , Reprodução/fisiologia , Comportamento Social , Tribolium/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34426495

RESUMO

Exercise and circadian biology are closely intertwined with physiology and metabolism, yet the functional interaction between circadian clocks and exercise capacity is only partially characterized. Here, we tested different clock mutant mouse models to examine the effect of the circadian clock and clock proteins, namely PERIODs and BMAL1, on exercise capacity. We found that daytime variance in endurance exercise capacity is circadian clock controlled. Unlike wild-type mice, which outperform in the late compared with the early part of their active phase, PERIODs- and BMAL1-null mice do not show daytime variance in exercise capacity. It appears that BMAL1 impairs and PERIODs enhance exercise capacity in a daytime-dependent manner. An analysis of liver and muscle glycogen stores as well as muscle lipid utilization suggested that these daytime effects mostly relate to liver glycogen levels and correspond to the animals' feeding behavior. Furthermore, given that exercise capacity responds to training, we tested the effect of training at different times of the day and found that training in the late compared with the early part of the active phase improves exercise performance. Overall, our findings suggest that clock proteins shape exercise capacity in a daytime-dependent manner through changes in liver glycogen levels, likely due to their effect on animals' feeding behavior.


Assuntos
Proteínas CLOCK/fisiologia , Tolerância ao Exercício/fisiologia , Condicionamento Físico Animal/fisiologia , Fatores de Transcrição ARNTL/fisiologia , Animais , Proteínas CLOCK/genética , Comportamento Alimentar , Feminino , Luz , Glicogênio Hepático/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculos/metabolismo , Mutação , Proteínas Circadianas Period/fisiologia , Fotoperíodo , Caracteres Sexuais , Fatores de Tempo
4.
FASEB J ; 35(5): e21530, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33813752

RESUMO

Circadian clock is involved in regulating most renal physiological functions, including water and electrolyte balance and blood pressure homeostasis, however, the role of circadian clock in renal pathophysiology remains largely unknown. Here we aimed to investigate the role of Bmal1, a core clock component, in the development of renal fibrosis, the hallmark of pathological features in many renal diseases. The inducible Bmal1 knockout mice (iKO) whose gene deletion occurred in adulthood were used in the study. Analysis of the urinary water, sodium and potassium excretion showed that the iKO mice exhibit abolished diurnal variations. In the model of renal fibrosis induced by unilateral ureteral obstruction, the iKO mice displayed significantly decreased tubulointerstitial fibrosis reflected by attenuated collagen deposition and mitigated expression of fibrotic markers α-SMA and fibronectin. The hedgehog pathway transcriptional effectors Gli1 and Gli2, which have been reported to be involved in the pathogenesis of renal fibrosis, were significantly decreased in the iKO mice. Mechanistically, ChIP assay and luciferase reporter assay revealed that BMAL1 bound to the promoter of and activate the transcription of Gli2, but not Gli1, suggesting that the involvement of Bmal1 in renal fibrosis was possibly mediated via Gli2-dependent mechanisms. Furthermore, treatment with TGF-ß increased Bmal1 in cultured murine proximal tubular cells. Knockdown of Bmal1 abolished, while overexpression of Bmal1 increased, Gli2 and the expression of fibrosis-related genes. Collectively, these results revealed a prominent role of the core clock gene Bmal1 in tubulointerstitial fibrosis. Moreover, we identified Gli2 as a novel target of Bmal1, which may mediate the adverse effect of Bmal1 in obstructive nephropathy.


Assuntos
Fatores de Transcrição ARNTL/fisiologia , Fibrose/prevenção & controle , Regulação da Expressão Gênica , Nefropatias/prevenção & controle , Proteínas Circadianas Period/fisiologia , Proteína Gli2 com Dedos de Zinco/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Fibrose/etiologia , Fibrose/metabolismo , Fibrose/patologia , Nefropatias/etiologia , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo
5.
Science ; 371(6527): 411-415, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33479155

RESUMO

Anopheles mating is initiated by the swarming of males at dusk followed by females flying into the swarm. Here, we show that mosquito swarming and mating are coordinately guided by clock genes, light, and temperature. Transcriptome analysis shows up-regulation of the clock genes period (per) and timeless (tim) in the head of field-caught swarming Anopheles coluzzii males. Knockdown of per and tim expression affects Anopheles gambiae s.s. and Anopheles stephensi male mating in the laboratory, and it reduces male An. coluzzii swarming and mating under semifield conditions. Light and temperature affect mosquito mating, possibly by modulating per and/or tim expression. Moreover, the desaturase gene desat1 is up-regulated and rhythmically expressed in the heads of swarming males and regulates the production of cuticular hydrocarbons, including heptacosane, which stimulates mating activity.


Assuntos
Anopheles/fisiologia , Proteínas CLOCK/fisiologia , Voo Animal , Interação Gene-Ambiente , Proteínas Circadianas Period/fisiologia , Feromônios/biossíntese , Comportamento Sexual Animal , Animais , Anopheles/genética , Proteínas CLOCK/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Luz , Masculino , Proteínas Circadianas Period/genética , Temperatura , Transcriptoma
6.
J Biol Rhythms ; 34(6): 645-657, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31436125

RESUMO

While circadian rhythms in physiology and behavior demonstrate remarkable day-to-day precision, they are also able to exhibit plasticity in a variety of parameters and under a variety of conditions. After-effects are one type of plasticity in which exposure to non-24-h light-dark cycles (T-cycles) will alter the animal's free-running rhythm in subsequent constant conditions. We use a mathematical model to explore whether the concept of synaptic plasticity can explain the observation of after-effects. In this model, the SCN is composed of a set of individual oscillators randomly selected from a normally distributed population. Each cell receives input from a defined set of oscillators, and the overall period of a cell is a weighted average of its own period and that of its inputs. The influence that an input has on its target's period is determined by the proximity of the input cell's period to the imposed T-cycle period, such that cells with periods near T will have greater influence. Such an arrangement is able to duplicate the phenomenon of after-effects, with relatively few inputs per cell (~4-5) being required. When the variability of periods between oscillators is low, the system is quite robust and results in minimal after-effects, while systems with greater between-cell variability exhibit greater magnitude after-effects. T-cycles that produce maximal after-effects have periods within ~2.5 to 3 h of the population period. Overall, this model demonstrates that synaptic plasticity in the SCN network could contribute to plasticity of the circadian period.


Assuntos
Ritmo Circadiano , Modelos Teóricos , Plasticidade Neuronal , Proteínas Circadianas Period/fisiologia , Fotoperíodo , Animais , Comportamento Animal , Camundongos , Proteínas Circadianas Period/genética , Núcleo Supraquiasmático/fisiologia
7.
Commun Biol ; 2: 246, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31286063

RESUMO

Circadian clocks are endogenous molecular oscillators that temporally organize behavioral activity thereby contributing to the fitness of organisms. To synchronize the fly circadian clock with the daily fluctuations of light and temperature, these environmental cues are sensed both via brain clock neurons, and by light and temperature sensors located in the peripheral nervous system. Here we demonstrate that the TRPA channel PYREXIA (PYX) is required for temperature synchronization of the key circadian clock protein PERIOD. We observe a molecular synchronization defect explaining the previously reported defects of pyx mutants in behavioral temperature synchronization. Surprisingly, surgical ablation of pyx-mutant antennae partially rescues behavioral synchronization, indicating that antennal temperature signals are modulated by PYX function to synchronize clock neurons in the brain. Our results suggest that PYX protects antennal neurons from faulty signaling that would otherwise interfere with temperature synchronization of the circadian clock neurons in the brain.


Assuntos
Encéfalo/fisiologia , Cálcio/fisiologia , Relógios Circadianos , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Proteínas Circadianas Period/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Animais Geneticamente Modificados , Ritmo Circadiano , Cruzamentos Genéticos , Proteínas de Drosophila/genética , Feminino , Genótipo , Luz , Masculino , Mutação , Neurônios/fisiologia , Oscilometria , Proteínas Circadianas Period/genética , Temperatura , Fatores de Transcrição/fisiologia , Canais de Potencial de Receptor Transitório/genética
8.
Commun Biol ; 2: 232, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31263776

RESUMO

In mammals, the circadian rhythms are regulated by the central clock located in the hypothalamic suprachiasmatic nucleus (SCN), which is composed of heterogeneous neurons with various neurotransmitters. Among them an inhibitory neurotransmitter, γ-Amino-Butyric-Acid (GABA), is expressed in almost all SCN neurons, however, its role in the circadian physiology is still unclear. Here, we show that the SCN of fetal mice lacking vesicular GABA transporter (VGAT-/-) or GABA synthesizing enzyme, glutamate decarboxylase (GAD65-/-/67-/-), shows burst firings associated with large Ca2+ spikes throughout 24 hours, which spread over the entire SCN slice in synchrony. By contrast, circadian PER2 rhythms in VGAT-/- and GAD65-/-/67-/- SCN remain intact. SCN-specific VGAT deletion in adult mice dampens circadian behavior rhythm. These findings indicate that GABA in the fetal SCN is necessary for refinement of the circadian firing rhythm and, possibly, for stabilizing the output signals, but not for circadian integration of multiple cellular oscillations.


Assuntos
Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Cálcio/metabolismo , Glutamato Descarboxilase/fisiologia , Camundongos , Proteínas Circadianas Period/fisiologia , Transdução de Sinais/fisiologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/fisiologia
9.
FASEB J ; 33(9): 10528-10537, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31260634

RESUMO

The circadian clock is important for cellular and organ function. However, its function in sickle cell disease (SCD), a life-threatening hemolytic disorder, remains unknown. Here, we performed an unbiased microarray screen, which revealed significantly altered expression of circadian rhythmic genes, inflammatory response genes, and iron metabolic genes in SCD Berkeley transgenic mouse lungs compared with controls. Given the vital role of period 2 (Per2) in the core clock and the unrecognized role of Per2 in SCD, we transplanted the bone marrow (BM) of SCD mice to Per2Luciferase mice, which revealed that Per2 expression was up-regulated in SCD mouse lung. Next, we transplanted the BM of SCD mice to period 1 (Per1)/Per2 double deficient [Per1/Per2 double knockout (dKO)] and wild-type mice, respectively. We discovered that Per1/Per2 dKO mice transplanted with SCD BM (SCD → Per1/Per2 dKO) displayed severe irradiation sensitivity and were more susceptible to an early death. Although we observed an increase of peripheral inflammatory cells, we did not detect differences in erythrocyte sickling. However, there was further lung damage due to elevated pulmonary congestion, inflammatory cell infiltration, iron overload, and secretion of IL-6 in lavage fluid. Overall, we demonstrate that Per1/Per2 is beneficial to counteract elevated systemic inflammation, lung tissue inflammation, and iron overload in SCD.-Adebiyi, M. G., Zhao, Z., Ye, Y., Manalo, J., Hong, Y., Lee, C. C., Xian, W., McKeon, F., Culp-Hill, R., D' Alessandro, A., Kellems, R. E., Yoo, S.-H., Han, L., Xia, Y. Circadian period 2: a missing beneficial factor in sickle cell disease by lowering pulmonary inflammation, iron overload, and mortality.


Assuntos
Anemia Falciforme/mortalidade , Relógios Circadianos , Ritmo Circadiano/genética , Sobrecarga de Ferro/mortalidade , Proteínas Circadianas Period/fisiologia , Pneumonia/mortalidade , Anemia Falciforme/genética , Anemia Falciforme/terapia , Animais , Transplante de Medula Óssea , Perfilação da Expressão Gênica , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/terapia , Camundongos , Camundongos Knockout , Pneumonia/genética , Pneumonia/terapia
10.
Curr Pharm Des ; 25(10): 1075-1090, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31096895

RESUMO

Throughout the evolutionary time, all organisms and species on Earth evolved with an adaptation to consistent oscillations of sunlight and darkness, now recognized as 'circadian rhythm.' Single-cellular to multisystem organisms use circadian biology to synchronize to the external environment and provide predictive adaptation to changes in cellular homeostasis. Dysregulation of circadian biology has been implicated in numerous prevalent human diseases, and subsequently targeting the circadian machinery may provide innovative preventative or treatment strategies. Discovery of 'peripheral circadian clocks' unleashed widespread investigations into the potential roles of clock biology in cellular, tissue, and organ function in healthy and diseased states. Particularly, oxygen-sensing pathways (e.g. hypoxia inducible factor, HIF1), are critical for adaptation to changes in oxygen availability in diseases such as myocardial ischemia. Recent investigations have identified a connection between the circadian rhythm protein Period 2 (PER2) and HIF1A that may elucidate an evolutionarily conserved cellular network that can be targeted to manipulate metabolic function in stressed conditions like hypoxia or ischemia. Understanding the link between circadian and hypoxia pathways may provide insights and subsequent innovative therapeutic strategies for patients with myocardial ischemia. This review addresses our current understanding of the connection between light-sensing pathways (PER2), and oxygen-sensing pathways (HIF1A), in the context of myocardial ischemia and lays the groundwork for future studies to take advantage of these two evolutionarily conserved pathways in the treatment of myocardial ischemia.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Relógios Circadianos , Hipóxia/patologia , Isquemia Miocárdica/fisiopatologia , Ritmo Circadiano , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Proteínas Circadianas Period/fisiologia
11.
PLoS One ; 14(5): e0217368, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31136603

RESUMO

Environmental circadian disruption (ECD), characterized by repeated or long-term disruption in environmental timing cues which require the internal circadian clock to change its phase to resynchronize with the environment, is associated with numerous serious health issues in humans. While animal and isolated cell models exist to study the effects of destabilizing the relationship between the circadian system and the environment, neither approach provides an ideal solution. Here, we developed an in vitro model which incorporates both elements of a reductionist cellular model and disruption of the clock/environment relationship using temperature as an environmental cue, as occurs in vivo. Using this approach, we have demonstrated that some effects of in vivo ECD can be reproduced using only isolated peripheral oscillators. Specifically, we report exaggerated inflammatory responses to endotoxin following repeated environmental circadian disruption in explanted spleens. This effect requires a functional circadian clock but not the master brain clock, the suprachiasmatic nucleus (SCN). Further, we report that this is a result of cumulative, rather than acute, circadian disruption as has been previously observed in vivo. Finally, such effects appear to be tissue specific as it does not occur in lung, which is less sensitive to the temperature cycles employed to induce ECD. Taken together, the present study suggests that this model could be a valuable tool for dissecting the causes and effects of circadian disruption both in isolated components of physiological systems as well as the aggregated interactions of these systems that occur in vivo.


Assuntos
Relógios Circadianos/fisiologia , Inflamação/fisiopatologia , Núcleo Supraquiasmático/fisiologia , Animais , Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Endotoxinas/toxicidade , Meio Ambiente , Feminino , Técnicas In Vitro , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Especificidade de Órgãos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/fisiologia , Baço/efeitos dos fármacos , Baço/fisiologia , Núcleo Supraquiasmático/efeitos dos fármacos , Temperatura
12.
Cells ; 8(4)2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30979023

RESUMO

The floral perianth, comprising sepals and petals, conceals the sexual organs and attracts pollinators. The coordination of growth and scent emission is not fully understood. We have analyzed the effect of knocking down CHANEL (PhCHL), the ZEITLUPE ortholog in petunia (PhCHL) by hairpin RNAs. Plants with low PhCHL mRNA had overall decreased size. Growth evaluation using time lapse image analysis showed that early leaf movement was not affected by RNAi:PhCHL, but flower angle movement was modified, moving earlier during the day in knockdown plants than in wild types. Despite differences in stem length, growth rate was not significantly affected by loss of PhCHL. In contrast, petal growth displayed lower growth rate in RNAi:PhCHL. Decreased levels of PhCHL caused strongly modified scent profiles, including changes in composition and timing of emission resulting in volatile profiles highly divergent from the wild type. Our results show a role of PhCHL in controlling growth and development of vegetative and reproductive organs in petunia. The different effects of PhCHL on organ development indicate an organ-specific interpretation of the down regulation of PhCHL. Through the control of both timing and quantitative volatile emissions, PhCHL appears to be a major coordinator of scent profiles.


Assuntos
Flores/crescimento & desenvolvimento , Odorantes/análise , Proteínas Circadianas Period , Petunia , Regulação da Expressão Gênica de Plantas , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/fisiologia , Petunia/genética , Petunia/crescimento & desenvolvimento
13.
Proc Natl Acad Sci U S A ; 116(12): 5721-5726, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30833404

RESUMO

The Drosophila circadian oscillator relies on a negative transcriptional feedback loop, in which the PERIOD (PER) and TIMELESS (TIM) proteins repress the expression of their own gene by inhibiting the activity of the CLOCK (CLK) and CYCLE (CYC) transcription factors. A series of posttranslational modifications contribute to the oscillations of the PER and TIM proteins but few posttranscriptional mechanisms have been described that affect mRNA stability. Here we report that down-regulation of the POP2 deadenylase, a key component of the CCR4-NOT deadenylation complex, alters behavioral rhythms. Down-regulating POP2 specifically increases TIM protein and tim mRNA but not tim pre-mRNA, supporting a posttranscriptional role. Indeed, reduced POP2 levels induce a lengthening of tim mRNA poly(A) tail. Surprisingly, such effects are lost in per0 mutants, supporting a PER-dependent inhibition of tim mRNA deadenylation by POP2. We report a deadenylation mechanism that controls the oscillations of a core clock gene transcript.


Assuntos
Relógios Circadianos/fisiologia , Proteínas de Drosophila/fisiologia , Proteínas Circadianas Period/fisiologia , Fatores de Transcrição ARNTL/genética , Animais , Proteínas CLOCK/genética , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Regulação para Baixo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Proteínas Circadianas Period/metabolismo , Fosforilação , RNA Mensageiro/metabolismo , Ribonucleases , Transcrição Gênica
14.
Sci Rep ; 9(1): 196, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30655599

RESUMO

The circadian clock generates behavioral rhythms to maximize an organism's physiological efficiency. Light induces the formation of these rhythms by synchronizing cellular clocks. In zebrafish, the circadian clock components Period2 (zPER2) and Cryptochrome1a (zCRY1a) are light-inducible, however their physiological functions are unclear. Here, we investigated the roles of zPER2 and zCRY1a in regulating locomotor activity and behavioral rhythms. zPer2/zCry1a double knockout (DKO) zebrafish displayed defects in total locomotor activity and in forming behavioral rhythms when briefly exposed to light for 3-h. Exposing DKO zebrafish to 12-h light improved behavioral rhythm formation, but not total activity. Our data suggest that the light-inducible circadian clock regulator zCRY2a supports rhythmicity in DKO animals exposed to 12-h light. Single cell imaging analysis revealed that zPER2, zCRY1a, and zCRY2a function in synchronizing cellular clocks. Furthermore, microarray analysis of DKO zebrafish showed aberrant expression of genes involved regulating cellular metabolism, including ATP production. Overall, our results suggest that zPER2, zCRY1a and zCRY2a help to synchronize cellular clocks in a light-dependent manner, thus contributing to behavioral rhythm formation in zebrafish. Further, zPER2 and zCRY1a regulate total physical activity, likely via regulating cellular energy metabolism. Therefore, these circadian clock components regulate the rhythmicity and amount of locomotor behavior.


Assuntos
Relógios Circadianos/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Proteínas CLOCK/fisiologia , Criptocromos/fisiologia , Luz , Locomoção , Proteínas Circadianas Period/fisiologia , Análise de Célula Única , Proteínas de Peixe-Zebra/fisiologia
15.
Sci Rep ; 9(1): 307, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670712

RESUMO

miRNAs are important regulators of diverse cellular processes including proliferation, apoptosis, and differentiation. In the context of bone marrow derived stromal cell and adipose derived stromal cell differentiation, miRNAs are established regulators of both differentiation or stemness depending on their target. Furthermore, miRNA dysregulation can play a key role in various disease states. Here we show that miR-181a is regulated in a circadian manner and is induced during both immortalized bone marrow derived stromal cell (iBMSC) as well as primary patient adipose derived stromal cell (PASC) adipogenesis. Enhanced expression of miR-181a in iBMSCs  and PASCs produced a robust increase in adipogenesis through the direct targeting of the circadian factor period circadian regulator 3 (PER3). Furthermore, we show that knocking down endogenous miR-181a expression in iBMSC has a profound inhibitory effect on iBMSC adipogenesis through its regulation of PER3. Additionally, we found that miR-181a regulates the circadian dependency of the adipogenesis master regulator PPARγ. Taken together, our data identify a previously unknown functional link between miR-181a and the circadian machinery in immortalized bone marrow stromal cells and adipose derived stromal cells highlighting its importance in iBMSC and ASC adipogenesis and circadian biology.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , MicroRNAs/fisiologia , Proteínas Circadianas Period/fisiologia , Células Estromais/metabolismo , Adipogenia , Tecido Adiposo/citologia , Animais , Células da Medula Óssea/citologia , Linhagem Celular , Células Cultivadas , Humanos , MicroRNAs/farmacologia , Proteínas Circadianas Period/efeitos dos fármacos
16.
Endocr Rev ; 40(1): 66-95, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169559

RESUMO

A plethora of physiological processes show stable and synchronized daily oscillations that are either driven or modulated by biological clocks. A circadian pacemaker located in the suprachiasmatic nucleus of the ventral hypothalamus coordinates 24-hour oscillations of central and peripheral physiology with the environment. The circadian clockwork involved in driving rhythmic physiology is composed of various clock genes that are interlocked via a complex feedback loop to generate precise yet plastic oscillations of ∼24 hours. This review focuses on the specific role of the core clockwork gene Period1 and its paralogs on intra-oscillator and extra-oscillator functions, including, but not limited to, hippocampus-dependent processes, cardiovascular function, appetite control, as well as glucose and lipid homeostasis. Alterations in Period gene function have been implicated in a wide range of physical and mental disorders. At the same time, a variety of conditions including metabolic disorders also impact clock gene expression, resulting in circadian disruptions, which in turn often exacerbates the disease state.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Homeostase/fisiologia , Proteínas Circadianas Period/fisiologia , Transdução de Sinais/fisiologia , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Homeostase/genética , Humanos , Proteínas Circadianas Period/genética , Transdução de Sinais/genética
17.
Addict Biol ; 24(5): 946-957, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30091820

RESUMO

Drug addiction is a chronic and relapsing brain disorder, influenced by complex interactions between endogenous and exogenous factors. Per2, a circadian gene, plays a role in drug addiction. Previous studies using Per2-knockout mice have shown a role for Per2 in cocaine, morphine and alcohol addiction. In the present study, we investigated the role of Per2 in methamphetamine (METH) addiction using Per2-overexpression and knockout mice. We observed locomotor sensitization responses to METH administration, and rewarding effects using a conditioned place preference test. In addition, we measured expression levels of dopamine and dopamine-related genes (monoamine oxidase A, DA receptor 1, DA receptor 2, DA active transporter, tyrosine hydroxylase and cAMP response element-binding protein 1) in the striatum of the mice after repeated METH treatments, using qRT-PCR. Per2-overexpressed mice showed decreased locomotor sensitization and rewarding effects of METH compared to the wildtype mice, whereas the opposite was observed in Per2 knockout mice. Both types of transgenic mice showed altered expression levels of dopamine-related genes after repeated METH administration. Specifically, we observed lower dopamine levels in Per2-overexpressed mice and higher levels in Per2-knockout mice. Taken together, Per2 expression levels may influence the addictive effects of METH through the dopaminergic system in the striatum of mice.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/fisiopatologia , Estimulantes do Sistema Nervoso Central/farmacologia , Metanfetamina/farmacologia , Proteínas Circadianas Period/fisiologia , Animais , Condicionamento Psicológico/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Técnicas de Inativação de Genes , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Proteínas Circadianas Period/deficiência , Proteínas Circadianas Period/metabolismo , Equilíbrio Postural/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Recompensa , Síndrome de Abstinência a Substâncias/fisiopatologia
18.
Cell Metab ; 29(3): 653-667.e6, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30527742

RESUMO

Although emerging evidence indicates an important role of the circadian clock in modulating the diurnal oscillation of mammalian target of rapamycin complex 1 (mTORC1) signaling, the underlying molecular mechanism remains elusive. Here we show that Period2 (Per2), a core clock protein, functions as a scaffold protein to tether tuberous sclerosis complex 1 (Tsc1), Raptor, and mTOR together to specifically suppress the activity of mTORC1 complex. Due to the loss of its inhibition of mTORC1, Per2 deficiency significantly enhances protein synthesis and cell proliferation but reduces autophagy. Furthermore, we find that the glucagon-Creb/Crtc2 signaling cascade induces Per2 expression, which mediates the suppression of mTORC1 in mouse liver during fasting. Our study not only uncovers a novel role of Per2 in regulating the mTORC1 pathway, but also sheds new light on the mechanism of fasting inhibition on mTORC1 in the liver.


Assuntos
Fígado/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Circadianas Period/fisiologia , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Animais , Linhagem Celular , Glucagon/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição/metabolismo
19.
J Neurosci ; 38(50): 10631-10643, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30373768

RESUMO

The animal circadian timing system interprets environmental time cues and internal metabolic status to orchestrate circadian rhythms of physiology, allowing animals to perform necessary tasks in a time-of-day-dependent manner. Normal progression of circadian rhythms is dependent on the daily cycling of core transcriptional factors that make up cell-autonomous molecular oscillators. In Drosophila, PERIOD (PER), TIMELESS (TIM), CLOCK (CLK), and CYCLE (CYC) are core clock proteins that function in a transcriptional-translational feedback mechanism to regulate the circadian transcriptome. Posttranslational modifications of core clock proteins provide precise temporal control over when they are active as regulators of clock-controlled genes. In particular, phosphorylation is a key regulatory mechanism that dictates the subcellular localization, stability, and transcriptional activity of clock proteins. Previously, casein kinase 1α (CK1α) has been identified as a kinase that phosphorylates mammalian PER1 and modulates its stability, but the mechanisms by which it modulates PER protein stability is still unclear. Using Drosophila as a model, we show that CK1α has an overall function of speeding up PER metabolism and is required to maintain the 24 h period of circadian rhythms. Our results indicate that CK1α collaborates with the key clock kinase DOUBLETIME (DBT) in both the cytoplasm and the nucleus to regulate the timing of PER-dependent repression of the circadian transcriptome. Specifically, we observe that CK1α promotes PER nuclear localization by antagonizing the activity of DBT to inhibit PER nuclear translocation. Furthermore, CK1α enhances DBT-dependent PER phosphorylation and degradation once PER moves into the nucleus.SIGNIFICANCE STATEMENT Circadian clocks are endogenous timers that integrate environmental signals to impose temporal control over organismal physiology over the 24 h day/night cycle. To maintain the 24 h period length of circadian clocks and to ensure that circadian rhythms are in synchrony with the external environment, key proteins that make up the molecular oscillator are extensively regulated by phosphorylation to ensure that they perform proper time-of-day-specific functions. Casein kinase 1α (CK1α) has previously been identified as a kinase that phosphorylates mammalian PERIOD (PER) proteins to promote their degradation, but the mechanism by which it modulates PER stability is unclear. In this study, we characterize the mechanisms by which CK1α interacts with DOUBLETIME (DBT) to achieve the overall function of speeding up PER metabolism and to ensure proper time-keeping.


Assuntos
Proteínas CLOCK/fisiologia , Caseína Quinase 1 épsilon/fisiologia , Caseína Quinase Ialfa/fisiologia , Relógios Circadianos/fisiologia , Proteínas de Drosophila/fisiologia , Proteínas Circadianas Period/fisiologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Drosophila , Locomoção/fisiologia , Masculino
20.
Genes Cells ; 23(5): 393-399, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29644786

RESUMO

Mammalian circadian rhythms are phase-adjusted and amplified by external cues such as light and food. While the light input pathway via the central clock, the suprachiasmatic nucleus, has been well defined, the mechanism of feeding-induced circadian resetting remains undefined, particularly in humans. Animal studies have indicated that insulin, a pancreatic hormone that is secreted rapidly in response to feeding, is an input factor for a few peripheral clocks, such as liver and adipose tissue. In this study, using plucked and cultured hair follicles as a representative human peripheral clock, we examined the effect of insulin on circadian characteristics of clock gene expression. Our results demonstrate that insulin phase-shifts or amplifies the clock gene expression rhythms of ex vivo cultured hair follicles in a phase-responsive manner. To reduce the possibility that differences in species, genetic or environmental background, and experimental methods affected experimental outcomes, we also treated surgically extracted whisker follicles of Period2::Luciferase (Per2Luc ) mice with insulin and found that the effect of insulin on clock gene expression was reproducible. These results suggest the possibility that feeding-induced insulin resets peripheral circadian clocks in humans.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Folículo Piloso/metabolismo , Insulina/farmacologia , Proteínas Circadianas Period/metabolismo , Animais , Células Cultivadas , Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Comportamento Alimentar , Regulação da Expressão Gênica/efeitos dos fármacos , Folículo Piloso/citologia , Folículo Piloso/efeitos dos fármacos , Humanos , Hipoglicemiantes/farmacologia , Luz , Masculino , Camundongos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/fisiologia , Fotoperíodo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...