Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.086
Filtrar
1.
Toxins (Basel) ; 16(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38668610

RESUMO

Ribosome-inactivating proteins (RIPs) are a group of proteins with rRNA N-glycosylase activity that irreversibly inhibit protein synthesis and consequently cause cell death. Recently, an RIP called ledodin has been found in shiitake; it is cytotoxic, strongly inhibits protein synthesis, and shows rRNA N-glycosylase activity. In this work, we isolated and characterized a 50 kDa cytotoxic protein from shiitake that we named edodin. Edodin inhibits protein synthesis in a mammalian cell-free system, but not in insect-, yeast-, and bacteria-derived systems. It exhibits rRNA N-glycosylase and DNA-nicking activities, which relate it to plant RIPs. It was also shown to be toxic to HeLa and COLO 320 cells. Its structure is not related to other RIPs found in plants, bacteria, or fungi, but, instead, it presents the characteristic structure of the fold type I of pyridoxal phosphate-dependent enzymes. Homologous sequences have been found in other fungi of the class Agaricomycetes; thus, edodin could be a new type of toxin present in many fungi, some of them edible, which makes them of great interest in health, both for their involvement in food safety and for their potential biomedical and biotechnological applications.


Assuntos
Ribossomos , Cogumelos Shiitake , Humanos , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Cogumelos Shiitake/química , Células HeLa , Animais , Micotoxinas/toxicidade , Micotoxinas/química , Proteínas Inativadoras de Ribossomos/química , Proteínas Inativadoras de Ribossomos/farmacologia , Proteínas Fúngicas/química , Proteínas Fúngicas/toxicidade , Proteínas Fúngicas/farmacologia , Proteínas Fúngicas/metabolismo , Linhagem Celular Tumoral
2.
Nutrients ; 16(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38337742

RESUMO

Different protein sources can impact gut microbiota composition and abundance, and also participate in health regulation. In this study, mice were gavaged with yeast protein (YP), soybean protein isolate (SPI), and whey protein isolate (WPI) for 28 days. Body weights showed similar patterns across different protein administration groups. The ileum in YP-supplemented mice exhibited good morphology, and tight-junction (TJ) proteins were slightly upregulated. Immunoglobulin (Ig)A, IgM, and IgG levels in the ileum of different protein groups were significantly increased (p < 0.05). Interleukin (IL)-10 levels were significantly increased, whereas IL-6 levels were significantly reduced in the YP group when compared with the control (C) (p < 0.05). Glutathione peroxidase (GSH-Px) levels in the ileum were significantly increased in the YP group (p < 0.05). These results indicate that YP potentially improved intestinal immunity and inflammatory profiles. The relative abundances of Parabacteroides, Prevotella, and Pseudobutyrivibrio in the YP group were more enriched when compared with the C and SPI groups, and Parabacteroides was significantly upregulated when compared with the WPI group (p < 0.05). Overall, the results indicate that YP upregulates the beneficial bacteria and improves ileal immunity and anti-inflammatory capabilities.


Assuntos
Microbioma Gastrointestinal , Animais , Camundongos , Proteínas do Soro do Leite/farmacologia , Proteínas de Soja/farmacologia , Intestinos , Proteínas Fúngicas/farmacologia
3.
Photodiagnosis Photodyn Ther ; 44: 103822, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37778716

RESUMO

Candida albicans readily develops resistance to fluconazole. Magnetic iron oxide nanoparticles (denoted as MION) and antimicrobial photodynamic therapy are attracting attention as therapeutic agents. This study aims to investigate the inhibitory efficacy of MION alone and combined with visible light against C. albicans and expression analysis of hyphal wall protein 1 (HWP1) and agglutinin-like sequence 1 (ALS1) genes in C. albicans. Antifungal susceptibility testing, photodynamic activity assay, reactive oxygen species (ROS) production assay and gene expression analysis were determined in C. albicans treated with MION alone and combined with visible light. MION at 1 × minimum inhibitory concentration (MIC) level (500 µg/mL) exhibited antifungal activity against C. albicans isolates. Further, 1 × MIC levels of MION alone and combined with visible light displayed remarkable fungicidal effects at 24 and 48 h after treatment. The MION combined with visible light caused the highest levels of ROS production by all C. albicans isolates. The relative RT-PCR data showed significant downregulation of HWP1 and ALS1 genes which are the key virulence genes in C. albicans. Differences in gene expression of  HWP1 and ALS1 were more significant in MION combined with visible light treatments than MION alone. Our study sheds a novel light on facile development of effective treatment of C. albicans especially fluconazole-resistant C. albicans infections. The hyphae-specific genes HWP1 and ALS1 could be probable molecular targets for MION alone and combined with visible light in C. albicans.


Assuntos
Candida albicans , Fotoquimioterapia , Candida albicans/genética , Fluconazol/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacologia , Hifas/metabolismo , Espécies Reativas de Oxigênio , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro , Luz , Biofilmes
4.
Arch Oral Biol ; 154: 105757, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37419061

RESUMO

OBJECTIVE: The aim of the current work was to assess the molecular mechanisms of fluconazole-resistant Candida glabrata strains isolated from oropharyngeal candidiasis (OPC) in head and neck patients, as well as evaluation of virulence factors. DESIGN: Antifungal susceptibility pattern of sixty six clinical isolates of C. glabrata were evaluated by broth-microdilution method. The expression of ERG11, CDR1, CDR2, PDR1 genes as well as ERG11 gene capable of possible mutations was also detected in 21 fluconazol-resistant C. glabrata isolates. Phospholipase and proteinase activity of these isolates was estimated, too. The correlation between the virulence factors, antifungal susceptibility patterns and cancer type was also analyzed. RESULTS: Seven synonymous and four non-synonymous mutations were found in 21 fluconazole-resistant C. glabrata isolates; subsequently, four amino acid substitutions including H257P, Q47H, S487Y and I285N were then reported for the first time. High expression of CDR1 and PDR1 in related to other gene findings were tested in these isolates. Additionally, there was no significant difference between stage of cancer and MIC of all antimicrobial drugs. Significant differences between MIC of fluconazole, voriconazole and cancer types were also, found. The proteinase activity (92.4%) was higher than phospholipase activity in the isolates. Further, no significant difference between proteinase (rs: 0.003), phospholipase (rs: -0.107) activity and fluconazole MICs was observed. CONCLUSION: C. glabrata isolated from OPC in head and neck patients represented high capacities for proteolytic enzymes activity and high mRNA level of CDR1 and PDR1 gene and ERG11 mutations play an important role in azole drug resistance.


Assuntos
Candidíase Bucal , Neoplasias de Cabeça e Pescoço , Humanos , Antifúngicos/farmacologia , Azóis/farmacologia , Fluconazol/farmacologia , Candida glabrata/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacologia , Farmacorresistência Fúngica/genética , Fatores de Virulência , Testes de Sensibilidade Microbiana
5.
Appl Microbiol Biotechnol ; 107(7-8): 2423-2436, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36811707

RESUMO

Industrial fungi need a strong environmental stress tolerance to ensure acceptable efficiency and yields. Previous studies shed light on the important role that Aspergillus nidulans gfdB, putatively encoding a NAD+-dependent glycerol-3-phosphate dehydrogenase, plays in the oxidative and cell wall integrity stress tolerance of this filamentous fungus model organism. The insertion of A. nidulans gfdB into the genome of Aspergillus glaucus strengthened the environmental stress tolerance of this xerophilic/osmophilic fungus, which may facilitate the involvement of this fungus in various industrial and environmental biotechnological processes. On the other hand, the transfer of A. nidulans gfdB to Aspergillus wentii, another promising industrial xerophilic/osmophilic fungus, resulted only in minor and sporadic improvement in environmental stress tolerance and meanwhile partially reversed osmophily. Because A. glaucus and A. wentii are phylogenetically closely related species and both fungi lack a gfdB ortholog, these results warn us that any disturbance of the stress response system of the aspergilli may elicit rather complex and even unforeseeable, species-specific physiological changes. This should be taken into consideration in any future targeted industrial strain development projects aiming at the fortification of the general stress tolerance of these fungi. KEY POINTS: • A. wentii c' gfdB strains showed minor and sporadic stress tolerance phenotypes. • The osmophily of A. wentii significantly decreased in the c' gfdB strains. • Insertion of gfdB caused species-specific phenotypes in A. wentii and A. glaucus.


Assuntos
Aspergillus nidulans , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/farmacologia , Glicerolfosfato Desidrogenase/genética , Estresse Fisiológico , Fenótipo
6.
Int J Biol Macromol ; 227: 45-57, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521713

RESUMO

Lung cancer has the highest mortality among cancer-related deaths worldwide. Among lung cancers, non-small cell lung cancer (NSCLC) is the most common histological type. In the previous research, we isolated a protein (D1) from Boletus bicolor that inhibits the proliferation of NSCLC cell lines. In this study, we elucidated the internalization mechanism and antitumor mechanism of protein D1 in A549 cells. Protein D1 has a strong inhibitory effect on A549 cells. It binds to secretory carrier membrane protein 3 on the A549 cell membrane and enters A549 cells by clathrin-mediated endocytosis. In vitro, protein D1 activates mitogen-activated protein kinase (MAPK) signaling pathway. JNK and p38MAPK are the biological targets for protein D1. In vivo, protein D1 inhibits the tumor growth of NSCLC xenografts by inducing apoptosis and inhibiting cell proliferation. Protein D1 alters the expression of genes related to apoptosis, cell cycle, and MAPK signaling pathway in tumor cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Apoptose , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Endocitose , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Proteínas Fúngicas/farmacologia
7.
Front Biosci (Elite Ed) ; 15(4): 22, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-38163933

RESUMO

BACKGROUND: Currently, the role of microRNAs in plant immune responses is being actively studied. Thus, our aim was to research the effect of Stagonospora nodorum (Berk.) NEs SnToxA and SnTox3 on the expression of miRNAs involved in the wheat-S. nodorum interaction and to determine the role of phytohormones in this process. METHODS: The expressions of nine conserved microRNAs were studied by quantitative real-time polymerase chain reaction in three different wheat genotypes of bread spring wheat (Triticum aestivum L.) infected with S. nodorum. Phytohormone treatments (trans-zeatin, 2-chloroethylphosphonic acid (etefone is the chemical precursor of ethylene), and salicylic acid) were applied. The results were compared with disease symptoms, the redox status of plants, and the expression of fungal necrotrophic effector (NE) genes of SnToxA and SnTox3 and genes of SnPf2, SnStuA, alongside SnCon7 transcription factors (TFs). RESULTS: Salicylic acid (SA) and cytokinins (CK) are involved in the development of defense reactions in wheat plants against S. nodorum, by regulating the expression of fungal NEs and TFs genes, inducing an oxidative burst in all three wheat genotypes. Moreover, ethylene enhanced the virulence of the pathogen by increasing the expression of fungal NE and TF genes, thereby resulting in a decrease in the generation of reactive oxygen species in all three cultivars. The nine miRNAs played a role in the development of wheat resistance against S. nodorum. NE SnTox3 mainly suppressed the expression of three miRNAs: miR159, miR393, and miR408, while NE SnToxA suppressed miR166 expression. Conversely, treatment with CK and SA increased the expression of miR159 and miR408; treatment with CK increased the expression of miR393 and miR166. Ethylene inhibited the expression of miR159, miR408, miR393, and miR166. Suppression of miP159 expression by NE SnTox3 was most likely associated with the activation of the ethylene signaling pathway. NEs SnToxA and SnTox3 suppressed the expression of miR408, whose role most likely consisted of inhibiting the catalase activity, via SA and CK regulation. In addition, NE SnToxA hijacked the SA signaling pathway and manipulated it for fungal growth and development. Fungal TFs SnPf2 and SnStuA could be involved in the regulation of these processes indirectly through the regulation of the expression of NE genes. CONCLUSIONS: The results of this work show, for the first time, the role of microRNAs in the development of wheat resistance against S. nodorum and the effect of S. nodorum NEs SnToxA and SnTox3 on the activity of plant microRNAs.


Assuntos
MicroRNAs , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/microbiologia , Fatores de Virulência/metabolismo , Fatores de Virulência/farmacologia , Interações Hospedeiro-Patógeno/genética , Transdução de Sinais , Etilenos/metabolismo , Etilenos/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacologia
8.
Mol Cell Neurosci ; 120: 103735, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35562037

RESUMO

A traumatic brain injury (TBI) causes abnormal proliferation of neuroglial cells, and over-release of glutamate induces oxidative stress and inflammation and leads to neuronal death, memory deficits, and even death if the condition is severe. There is currently no effective treatment for TBI. Recent interests have focused on the benefits of supplements or natural products like Ganoderma. Studies have indicated that immunomodulatory protein from Ganoderma microsporum (GMI) inhibits oxidative stress in lung cancer cells A549 and induces cancer cell death by causing intracellular autophagy. However, no evidence has shown the application of GMI on TBI. Thus, this study addressed whether GMI could be used to prevent or treat TBI through its anti-inflammation and antioxidative effects. We used glutamate-induced excitotoxicity as in vitro model and penetrating brain injury as in vivo model of TBI. We found that GMI inhibits the generation of intracellular reactive oxygen species and reduces neuronal death in cortical neurons against glutamate excitotoxicity. In neurite injury assay, GMI promotes neurite regeneration, the length of the regenerated neurite was even longer than that of the control group. The animal data show that GMI alleviates TBI-induced spatial memory deficits, expedites the restoration of the injured areas, induces the secretion of brain-derived neurotrophic factors, increases the superoxide dismutase 1 (SOD-1) and lowers the astroglial proliferation. It is the first paper to apply GMI to brain-injured diseases and confirms that GMI reduces oxidative stress caused by TBI and improves neurocognitive function. Moreover, the effects show that prevention is better than treatment. Thus, this study provides a potential treatment in naturopathy against TBI.


Assuntos
Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Ganoderma , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacologia , Ganoderma/metabolismo , Glutamatos/metabolismo , Fatores Imunológicos/metabolismo , Fatores Imunológicos/farmacologia , Transtornos da Memória , Estresse Oxidativo
9.
Food Funct ; 13(6): 3185-3197, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35225320

RESUMO

An N-glycosidic polysaccharide-peptide complex CMPS-80 was obtained from the fruiting body of C. militaris. Of importance, CMPS-80 significantly ameliorated formation of atherosclerotic lesions and plasma lipid profiles in apolipoprotein E-deficient mice. Integrated informatics analysis suggested that CMPS-80 can modulate multiple lncRNA-microRNA-mRNA axes. CMPS-80 has a potential application for prevention of hyperlipidemia and atherosclerosis.


Assuntos
Aterosclerose/prevenção & controle , Cordyceps/química , Proteínas Fúngicas/farmacologia , MicroRNAs/genética , Polissacarídeos/farmacologia , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/sangue , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/prevenção & controle , Proteínas Fúngicas/química , Expressão Gênica , Fígado/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Peptídeos/química , Peptídeos/farmacologia , Polissacarídeos/química , Proteoglicanas , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Triglicerídeos/sangue
10.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054864

RESUMO

Penicillium digitatum is a widespread pathogen responsible for the postharvest decay of citrus, one of the most economically important crops worldwide. Currently, chemical fungicides are still the main strategy to control the green mould disease caused by the fungus. However, the increasing selection and proliferation of fungicide-resistant strains require more efforts to explore new alternatives acting via new or unexplored mechanisms for postharvest disease management. To date, several non-chemical compounds have been investigated for the control of fungal pathogens. In this scenario, understanding the molecular determinants underlying P. digitatum's response to biological and chemical antifungals may help in the development of safer and more effective non-chemical control methods. In this work, a proteomic approach based on isobaric labelling and a nanoLC tandem mass spectrometry approach was used to investigate molecular changes associated with P. digitatum's response to treatments with α-sarcin and beetin 27 (BE27), two proteins endowed with antifungal activity. The outcomes of treatments with these biological agents were then compared with those triggered by the commonly used chemical fungicide thiabendazole (TBZ). Our results showed that differentially expressed proteins mainly include cell wall-degrading enzymes, proteins involved in stress response, antioxidant and detoxification mechanisms and metabolic processes such as thiamine biosynthesis. Interestingly, specific modulations in response to protein toxins treatments were observed for a subset of proteins. Deciphering the inhibitory mechanisms of biofungicides and chemical compounds, together with understanding their effects on the fungal physiology, will provide a new direction for improving the efficacy of novel antifungal formulations and developing new control strategies.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Penicillium/efeitos dos fármacos , Espectrometria de Massas em Tandem , Antioxidantes/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Cromatografia Líquida , Endorribonucleases/farmacologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacologia , Testes de Sensibilidade Microbiana , Penicillium/crescimento & desenvolvimento , Proteômica , Tiabendazol/farmacologia
11.
FEMS Yeast Res ; 22(1)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35040997

RESUMO

The increasing prevalence of fluconazole-resistant clinical isolates of Candida spp. strongly hinders the widespread use of the drug. To tackle this problem, great efforts have been made to fully understand the fungal response to fluconazole. In this work, we show that the role of Zap1 in Candida glabrata goes beyond regulating yeast adaptation to zinc deficiency. In line with our previous observation that deletion of ZAP1 makes yeast cells more sensitive to fluconazole, we found that the mutant CgΔzap1 accumulates higher levels of the drug, which correlates well with its lower levels of ergosterol. Surprisingly, Zap1 is a negative regulator of the drug efflux transporter gene CDR1 and of its regulator, PDR1. The apparent paradox of drug accumulation in cells where genes encoding transporters relevant for drug extrusion are being overexpressed led us to postulate that their activity could be impaired. In agreement, Zap1-depleted cells present, in addition to decreased ergosterol levels, an altered composition of membrane phospholipids, which together should impact membrane function and impair the detoxification of fluconazole. Overall, our study brings to light Zap1 as an important hub in Candida glabrata response to fluconazole.


Assuntos
Candida glabrata , Fluconazol , Proteínas Fúngicas , Antifúngicos/farmacologia , Candida , Candida glabrata/efeitos dos fármacos , Candida glabrata/genética , Farmacorresistência Fúngica , Ergosterol , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/farmacologia , Testes de Sensibilidade Microbiana
12.
J Bacteriol ; 204(1): e0045021, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34662241

RESUMO

Microbial metabolism is often considered modular, but metabolic engineering studies have shown that transferring pathways, or modules, between organisms is not always straightforward. The Thi5-dependent pathway(s) for synthesis of the pyrimidine moiety of thiamine from Saccharomyces cerevisiae and Legionella pneumophila functioned differently when incorporated into the metabolic network of Salmonella enterica. Function of Thi5 from Saccharomyces cerevisiae (ScThi5) required modification of the underlying metabolic network, while LpThi5 functioned with the native network. Here we probe the metabolic requirements for heterologous function of ScThi5 and report strong genetic and physiological evidence for a connection between alpha-ketoglutarate (αKG) levels and ScThi5 function. The connection was built with two classes of genetic suppressors linked to metabolic flux or metabolite pool changes. Further, direct modulation of nitrogen assimilation through nutritional or genetic modification implicated αKG levels in Thi5 function. Exogenous pyridoxal similarly improved ScThi5 function in S. enterica. Finally, directly increasing αKG and PLP with supplementation improved function of both ScThi5 and relevant variants of Thi5 from Legionella pneumophila (LpThi5). The data herein suggest structural differences between ScThi5 and LpThi5 impact their level of function in vivo and implicate αKG in supporting function of the Thi5 pathway when placed in the heterologous metabolic network of S. enterica. IMPORTANCE Thiamine biosynthesis is a model metabolic node that has been used to extend our understanding of metabolic network structure and individual enzyme function. The requirements for in vivo function of the Thi5-dependent pathway found in Legionella and yeast are poorly characterized. Here we suggest that αKG modulates function of the Thi5 pathway in S. enterica and provide evidence that structural variation between ScThi5 and LpThi5 contributes to their functional differences in a Salmonella enterica host.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/farmacologia , Ácidos Cetoglutáricos/metabolismo , Piridoxal/metabolismo , Saccharomyces cerevisiae/química , Salmonella enterica/efeitos dos fármacos , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/fisiologia , Glucose , Ácidos Cetoglutáricos/farmacologia , Redes e Vias Metabólicas/fisiologia , Mutação , Piridoxal/farmacologia
13.
Protein Expr Purif ; 190: 106006, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34742913

RESUMO

l-asparaginase is a chemotherapeutic drug used in the treatment of acute lymphoblastic leukemia, a malignant disorder in children. l-asparaginase helps in removing acrylamide found in fried and baked foods which is carcinogenic in nature. The search for new therapeutic enzymes is of great interest in both medical and food applications. The present work aims to isolate the intracellular l-asparaginase from endophytic fungi Chaetomium sp. The intracellular enzyme was partially purified by chromatographic techniques. Molecular weight of enzyme was found to be ~66 kDa by SDS PAGE analysis. The enzyme is highly specific for l-asparagine and did not show glutaminase and urease activity. Maximum enzyme activity was found to be 58 ± 5 U/mL at 40 °C, pH 7.0 with 2 µg of protein. Intracellular l-asparaginase from Chaetomium sp. exhibited anticancer activity on human blood cancer (MOLT-4) cells.


Assuntos
Antineoplásicos , Asparaginase , Chaetomium/enzimologia , Proteínas Fúngicas , Glutaminase/química , Urease/química , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Asparaginase/química , Asparaginase/isolamento & purificação , Asparaginase/farmacologia , Linhagem Celular Tumoral , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/farmacologia , Humanos
14.
Int J Biol Macromol ; 195: 398-411, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34921890

RESUMO

Detection and study of biologically active compounds seems a promising area of research in cancer diagnostics and therapies. The glycoprotein and polysaccharide fractions showing high cytotoxicity towards several human and animal cancer cell lines: A549, Hep-2, HeLa, С6 and SPEV-2 were isolated from basidiomycete Lentinus edodes vegetative mycelium and fruiting body and further characterized. It was found that water-soluble glycoprotein fractions caused the most significant, 70-100% inhibition of metabolic activity of SPЕV-2, А549 and С6 cell lines. The effective concentrations of glycoprotein fractions reducing the viability of cancer cell lines were determined. The protein and subunit composition of fractions was studied; the highly active galactose-specific lectins were found to be present in these fractions. Comparative analysis of transcriptomes of L. edodes vegetative mycelium, fruiting body and primordium revealed the presence of carbohydrate-binding glycoproteins (lectins) specific for each stage of basidiomycete morphogenesis. Histological examination revealed some morphological indicators of immune system activation and the absence of toxic effect on gastro-intestinal mucosa of animals at peroral administration of fungal glycoprotein fractions. Fungal protein and, in particular, lectin preparations derived from L. еdodes vegetative mycelium might be considered as novel prospective tools in cancer diagnostics and therapies.


Assuntos
Proteínas Fúngicas/farmacologia , Cogumelos Shiitake/química , Cogumelos Shiitake/metabolismo , Basidiomycota/química , Basidiomycota/metabolismo , Linhagem Celular Tumoral , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Galactose/metabolismo , Células HeLa , Humanos , Lectinas/química , Micélio/química , Polissacarídeos/química , Polissacarídeos/metabolismo
15.
Int J Biol Macromol ; 196: 151-162, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-34920062

RESUMO

Arginine deiminase is a well-recognized guanidino-modifying hydrolase that catalyzes the conversion of L-arginine to citrulline and ammonia. Their biopotential to regress tumors via amino acid deprivation therapy (AADT) has been well established. PEGylated formulation of recombinant Mycoplasma ADI is in the last-phase clinical trials against various arginine-auxotrophic cancers like hepatocellular carcinoma, melanoma, and mesothelioma. Recently, ADIs have attained immense importance in several other biomedical applications, namely treatment of Alzheimer's, as an antiviral drug, bioproduction of nutraceutical L-citrulline and bio-analytics involving L-arginine detection. Considering the wide applications of this biodrug, the demand for ADI is expected to escalate several-fold in the coming years. However, the sustainable production aspects of the enzyme with improved pharmacokinetics is still limited, creating bottlenecks for effective biopharmaceutical development. To circumvent the lacunae in enzyme production with appropriate paradigms of 'quality-by-design' an explicit overview of its properties with 'biobetter' formulations strategies are required. Present review provides an insight into all the potential biomedical applications of ADI along with the improvements required for its reach to clinics. Recent research advances with special emphasis on the development of ADI as a 'biobetter' enzyme have also been comprehensively elaborated.


Assuntos
Desenvolvimento de Medicamentos , Hidrolases/química , Hidrolases/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/farmacologia , Pesquisa Biomédica , Tecnologia Biomédica , Catálise , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Proteínas Fúngicas/química , Proteínas Fúngicas/farmacologia , Humanos , Redes e Vias Metabólicas , Engenharia de Proteínas , Relação Estrutura-Atividade
16.
J Agric Food Chem ; 69(51): 15538-15543, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34915705

RESUMO

As a global health problem, the source of triazole resistance in Aspergillus fumigatus has gained much attention. This study was conducted to explore whether the triazole plant regulator paclobutrazol could evolve triazole resistance in A. fumigatus. The results indicated that two triazole-resistant strains with hereditary stability were isolated from liquid medium and soil. The up-regulation of cyp51A, cyp51B, AtrF, cdr1B, AfuMDR1, AfuMDR2, and AfuMDR4 played an important role in these resistant strains. The triazole-resistance in A. fumigatus could depend on the selective pressure of paclobutrazol concentration and exposure time. These results indicate that the application of paclobutrazol may result in the emergency of triazole resistance in A. fumigatus and thus have a potential risk for the treatment of invasive aspergillosis.


Assuntos
Aspergillus fumigatus , Farmacorresistência Fúngica , Antifúngicos/farmacologia , Aspergillus fumigatus/genética , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/farmacologia , Testes de Sensibilidade Microbiana , Triazóis/farmacologia
17.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830071

RESUMO

Enhancing the phagocytosis of immune cells with medicines provides benefits to the physiological balance by removing foreign pathogens and apoptotic cells. The fungal immunomodulatory protein (FIP) possessing various immunopotentiation functions may be a good candidate for such drugs. However, the effect and mechanism of FIP on the phagocytic activity is limitedly investigated. Therefore, the present study determined effects of Cordyceps militaris immunomodulatory protein (CMIMP), a novel FIP reported to induce cytokines secretion, on the phagocytosis using three different types of models, including microsphere, Escherichia Coli and Candida albicans. CMIMP not only significantly improved the phagocytic ability (p < 0.05), but also enhanced the bactericidal activity (p < 0.05). Meanwhile, the cell size, especially the cytoplasm size, was markedly increased by CMIMP (p < 0.01), accompanied by an increase in the F-actin expression (p < 0.001). Further experiments displayed that CMIMP-induced phagocytosis, cell size and F-actin expression were alleviated by the specific inhibitor of TLR4 (p < 0.05). Similar results were observed in the treatment with the inhibitor of the NF-κB pathway (p < 0.05). In conclusion, it could be speculated that CMIMP promoted the phagocytic ability of macrophages through increasing F-actin expression and cell size in a TLR4-NF-κB pathway dependent way.


Assuntos
Cordyceps/química , Proteínas Fúngicas/farmacologia , Fatores Imunológicos/farmacologia , Macrófagos , NF-kappa B/imunologia , Fagocitose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/imunologia , Animais , Candida albicans/imunologia , Escherichia coli/imunologia , Proteínas Fúngicas/química , Fatores Imunológicos/química , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Células RAW 264.7 , Transdução de Sinais/imunologia
18.
Nutrients ; 13(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34836346

RESUMO

Acute liver failure (ALF) refers to the sudden loss of liver function and is accompanied by several complications. In a previous study, we revealed the protective effect of Centella asiatica 50% ethanol extract (CA-HE50) on acetaminophen-induced liver injury. In the present study, we investigate the hepatoprotective effect of CA-HE50 in a lipopolysaccharide/galactosamine (LPS-D-Gal)-induced ALF animal model and compare it to existing therapeutic silymarin, Lentinus edodes mycelia (LEM) extracts, ursodeoxycholic acid (UDCA) and dimethyl diphenyl bicarboxylate (DDB). Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were decreased in the CA-HE50, silymarin, LEM, UDCA and DDB groups compared to the vehicle control group. In particular, AST and ALT levels of the 200 mg/kg CA-HE50 group were significantly decreased compared to positive control groups. Lactate dehydrogenase (LDH) levels were significantly decreased in the CA-HE50, silymarin, LEM, UDCA and DDB groups compared to the vehicle control group and LDH levels of the 200 mg/kg CA-HE50 group were similar to those of the positive control groups. Superoxide dismutase (SOD) activity was significantly increased in the 100 mg/kg CA-HE50, LEM and UDCA groups compared to the vehicle control group and, in particular, the 100 mg/kg CA-HE50 group increased significantly compared to positive control groups. In addition, the histopathological lesion score was significantly decreased in the CA-HE50 and positive control groups compared with the vehicle control group and the histopathological lesion score of the 200 mg/kg CA-HE50 group was similar to that of the positive control groups. These results show that CA-HE50 has antioxidant and hepatoprotective effects at a level similar to that of silymarin, LEM, UDCA and DDB, which are known to have hepatoprotective effects; further, CA-HE50 has potential as a prophylactic and therapeutic agent in ALF.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Falência Hepática Aguda/tratamento farmacológico , Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Triterpenos/farmacologia , Alanina Transaminase/sangue , Animais , Antioxidantes/farmacologia , Aspartato Aminotransferases/sangue , Centella , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Dioxóis/farmacologia , Modelos Animais de Doenças , Proteínas Fúngicas/farmacologia , Galactosamina , Lipopolissacarídeos , Falência Hepática Aguda/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/farmacologia , Silimarina/farmacologia , Ácido Ursodesoxicólico/farmacologia
19.
Molecules ; 26(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34771120

RESUMO

Medicinal mushrooms are increasingly being recognized as an important therapeutic modality in complementary oncology. Until now, more than 800 mushroom species have been known to possess significant pharmacological properties, of which antitumor and immunomodulatory properties have been the most researched. Besides a number of medicinal mushroom preparations being used as dietary supplements and nutraceuticals, several isolates from mushrooms have been used as official antitumor drugs in clinical settings for several decades. Various proteomic approaches allow for the identification of a large number of differentially regulated proteins serendipitously, thereby providing an important platform for a discovery of new potential therapeutic targets and approaches as well as biomarkers of malignant disease. This review is focused on the current state of proteomic research into antitumor mechanisms of some of the most researched medicinal mushroom species, including Phellinus linteus, Ganoderma lucidum, Auricularia auricula, Agrocybe aegerita, Grifola frondosa, and Lentinus edodes, as whole body extracts or various isolates, as well as of complex extract mixtures.


Assuntos
Agaricales/química , Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Proteínas Fúngicas/farmacologia , Proteoma , Proteômica , Agaricales/classificação , Agaricales/metabolismo , Antineoplásicos/química , Produtos Biológicos/química , Misturas Complexas/química , Misturas Complexas/farmacologia , Polissacarídeos Fúngicos/química , Proteínas Fúngicas/química , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Proteoglicanas/química , Proteômica/métodos , Relação Estrutura-Atividade
20.
Biomed Pharmacother ; 144: 112339, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34656057

RESUMO

Colorectal cancer is the second deadly cancer in the world. Trametes versicolor is a traditional Chinese medicinal mushroom with a long history of being used to regulate immunity and prevent cancer. Trametes versicolor mushroom extract demonstrates strongly cell growth inhibitory activity on human colorectal tumor cells. In this study, we characterized a novel 12-kDa protein that named musarin, which was purified from Trametes versicolor mushroom extract and showed significant growth inhibition on multiple human colorectal cancer cell lines in vitro. The protein sequence of musarin was determined through enzyme digestion and MS/MS analysis. Furthermore, Musarin, in particular, strongly inhibits aggressive human colorectal cancer stem cell-like CD24+CD44+ HT29 proliferation in vitro and in a NOD/SCID murine xenograft model. Through whole transcription profile and gene enrichment analysis of musarin-treated CSCs-like cells, major signaling pathways and network modulated by musarin have been enriched, including the bioprocess of the Epithelial-Mesenchymal Transition, the EGFR-Ras signaling pathway and enzyme inhibitor activity. Musarin demonstrated tyrosine kinase inhibitory activity in vitro. Musarin strongly attenuated EGFR expression and down-regulated phosphorylation level, thereby slowing cancer cells proliferation. In addition, oral ingestion of musarin significantly inhibited CD24+CD44+ HT29 generated tumor development in SCID/NOD mice with less side effects in microgram doses. Targeting self-renewal aggressive stem-cell like cancer cell proliferation, with higher water solubility and lower cytotoxicity, musarin has shown strong potence to be developed as a promising novel therapeutic drug candidate against colorectal cancers, especially those that acquire chemo-resistance.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Proteínas Fúngicas/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Polyporaceae , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/toxicidade , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/toxicidade , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Células HT29 , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Polyporaceae/química , Inibidores de Proteínas Quinases/isolamento & purificação , Inibidores de Proteínas Quinases/toxicidade , Transdução de Sinais , Transcriptoma , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...