Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Biol Rep ; 51(1): 806, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001993

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the second most deathly worldwide and third most common cancer, CRC is a very heterogeneous disease where tumors can form by both environmental and genetic risk factors and includes epigenetic and genetic alternations. Inhibitors of DNA binding proteins (ID) are a class of helix-loop-helix transcription regulatory factors; these proteins are considered a family of four highly preserved transcriptional regulators (ID1-4), shown to play significant roles in many processes that are associated with tumor development. ID family plays as negatively dominant antagonists of other essential HLH proteins, concluding the creation of non-functional heterodimers and regulation of the transcription process. MATERIALS AND METHODS: 120 Fresh tissue and blood samples Forty (40) samples of fresh tissue and blood were collected from patients diagnosed with CRC, twenty (20) samples were collected from a patient diagnosed as healthy. The (qRT-PCR) method is a sensitive technique for the quantifying of steady-state mRNA levels that used to evaluation the expression levels of ID (1-4) gene. RESULTS: The findings indicate downregulation in ID1 in tissue with a highly significant change between patients and control groups, where upregulation in the ID1 gene is shown in blood samples.ID2 gene also demonstrated high significant change where show upregulation in tissue and downregulation in blood sample. ID3 and ID4 genes show downregulation in tissue and blood samples with a significant change in ID3 blood samples between patient and blood groups. CONCLUSION: Because of the regulation function of the ID family in many processes, the up or down regulation of IDs genes in tumors Proves how important its tumor development, and therefore those proteins can be used as an indicator for CRC.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Proteínas Inibidoras de Diferenciação , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Iraque , Masculino , Regulação Neoplásica da Expressão Gênica/genética , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Proteína 1 Inibidora de Diferenciação/genética , Proteína 1 Inibidora de Diferenciação/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo
2.
Nat Commun ; 15(1): 5078, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871720

RESUMO

T cell receptor (TCR) signaling regulates important developmental transitions, partly through induction of the E protein antagonist, Id3. Although normal γδ T cell development depends on Id3, Id3 deficiency produces different phenotypes in distinct γδ T cell subsets. Here, we show that Id3 deficiency impairs development of the Vγ3+ subset, while markedly enhancing development of NKγδT cells expressing the invariant Vγ1Vδ6.3 TCR. These effects result from Id3 regulating both the generation of the Vγ1Vδ6.3 TCR and its capacity to support development. Indeed, the Trav15 segment, which encodes the Vδ6.3 TCR subunit, is directly bound by E proteins that control its expression. Once expressed, the Vγ1Vδ6.3 TCR specifies the innate-like NKγδT cell fate, even in progenitors beyond the normally permissive perinatal window, and this is enhanced by Id3-deficiency. These data indicate that the paradoxical behavior of NKγδT cells in Id3-deficient mice is determined by its stereotypic Vγ1Vδ6.3 TCR complex.


Assuntos
Proteínas Inibidoras de Diferenciação , Receptores de Antígenos de Linfócitos T gama-delta , Animais , Proteínas Inibidoras de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/genética , Camundongos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Diferenciação Celular , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transdução de Sinais
3.
Breast Cancer Res Treat ; 207(1): 91-101, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38702584

RESUMO

PURPOSE: Inhibitor of differentiation 4 (ID4) is a dominant-negative regulator of basic helix-loop-helix (bHLH) transcription factors. The expression of ID4 is dysregulated in various breast cancer subtypes, indicating a potential role for ID4 in subtype-specific breast cancer development. This study aims to elucidate the epigenetic regulation of ID4 within breast cancer subtypes, with a particular focus on DNA methylation and chromatin accessibility. METHODS: Bioinformatic analyses were conducted to assess DNA methylation and chromatin accessibility in ID4 regulatory regions across breast cancer subtypes. Gene Set Enrichment Analysis (GSEA) was conducted to identify related gene sets. Transcription factor binding within ID4 enhancer and promoter regions was explored. In vitro experiments involved ER+ breast cancer cell lines treated with estradiol (E2) and Tamoxifen. RESULTS: Distinct epigenetic profiles of ID4 were observed, revealing increased methylation and reduced chromatin accessibility in luminal subtypes compared to the basal subtype. Gene Set Enrichment Analysis (GSEA) implicated estrogen-related pathways, suggesting a potential link between estrogen signaling and the regulation of ID4 expression. Transcription factor analysis identified ER and FOXA1 as regulators of ID4 enhancer regions. In vitro experiments confirmed the role of ER, demonstrating reduced ID4 expression and increased methylation with estradiol treatment. Conversely, Tamoxifen treatment increased ID4 expression, indicating the potential involvement of ER signaling through ERα in the epigenetic regulation of ID4 in breast cancer cells. CONCLUSION: This study shows the intricate epigenetic regulation of ID4 in breast cancer, highlighting subtype-specific differences in DNA methylation and chromatin accessibility.


Assuntos
Neoplasias da Mama , Cromatina , Biologia Computacional , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito , Proteínas Inibidoras de Diferenciação , Regiões Promotoras Genéticas , Humanos , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Feminino , Biologia Computacional/métodos , Cromatina/metabolismo , Cromatina/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Linhagem Celular Tumoral , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Elementos Facilitadores Genéticos , Estradiol/farmacologia
4.
Arterioscler Thromb Vasc Biol ; 44(6): 1265-1282, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38602102

RESUMO

BACKGROUND: Endothelial cells regulate their cell cycle as blood vessels remodel and transition to quiescence downstream of blood flow-induced mechanotransduction. Laminar blood flow leads to quiescence, but how flow-mediated quiescence is established and maintained is poorly understood. METHODS: Primary human endothelial cells were exposed to laminar flow regimens and gene expression manipulations, and quiescence depth was analyzed via time-to-cell cycle reentry after flow cessation. Mouse and zebrafish endothelial expression patterns were examined via scRNA-seq (single-cell RNA sequencing) analysis, and mutant or morphant fish lacking p27 were analyzed for endothelial cell cycle regulation and in vivo cellular behaviors. RESULTS: Arterial flow-exposed endothelial cells had a distinct transcriptome, and they first entered a deep quiescence, then transitioned to shallow quiescence under homeostatic maintenance conditions. In contrast, venous flow-exposed endothelial cells entered deep quiescence early that did not change with homeostasis. The cell cycle inhibitor p27 (CDKN1B) was required to establish endothelial flow-mediated quiescence, and expression levels positively correlated with quiescence depth. p27 loss in vivo led to endothelial cell cycle upregulation and ectopic sprouting, consistent with loss of quiescence. HES1 and ID3, transcriptional repressors of p27 upregulated by arterial flow, were required for quiescence depth changes and the reduced p27 levels associated with shallow quiescence. CONCLUSIONS: Endothelial cell flow-mediated quiescence has unique properties and temporal regulation of quiescence depth that depends on the flow stimulus. These findings are consistent with a model whereby flow-mediated endothelial cell quiescence depth is temporally regulated downstream of p27 transcriptional regulation by HES1 and ID3. The findings are important in understanding endothelial cell quiescence misregulation that leads to vascular dysfunction and disease.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27 , Células Endoteliais , Peixe-Zebra , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Animais , Humanos , Células Endoteliais/metabolismo , Mecanotransdução Celular , Proteínas Inibidoras de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Ciclo Celular , Camundongos , Células Cultivadas , Fatores de Tempo , Fluxo Sanguíneo Regional , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proliferação de Células , Proteínas de Neoplasias
5.
Blood ; 144(2): 187-200, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38620074

RESUMO

ABSTRACT: SRY-related HMG-box gene 11 (SOX11) is a transcription factor overexpressed in mantle cell lymphoma (MCL), a subset of Burkitt lymphomas (BL) and precursor lymphoid cell neoplasms but is absent in normal B cells and other B-cell lymphomas. SOX11 has an oncogenic role in MCL but its contribution to BL pathogenesis remains uncertain. Here, we observed that the presence of Epstein-Barr virus (EBV) and SOX11 expression were mutually exclusive in BL. SOX11 expression in EBV-negative (EVB-) BL was associated with an IG∷MYC translocation generated by aberrant class switch recombination, whereas in EBV-negative (EBV-)/SOX11-negative (SOX11-) tumors the IG∷MYC translocation was mediated by mistaken somatic hypermutations. Interestingly, EBV- SOX11-expressing BL showed higher frequency of SMARCA4 and ID3 mutations than EBV-/SOX11- cases. By RNA sequencing, we identified a SOX11-associated gene expression profile, with functional annotations showing partial overlap with the SOX11 transcriptional program of MCL. Contrary to MCL, no differences on cell migration or B-cell receptor signaling were found between SOX11- and SOX11-positive (SOX11+) BL cells. However, SOX11+ BL showed higher adhesion to vascular cell adhesion molecule 1 (VCAM-1) than SOX11- BL cell lines. Here, we demonstrate that EBV- BL comprises 2 subsets of cases based on SOX11 expression. The mutual exclusion of SOX11 and EBV, and the association of SOX11 with a specific genetic landscape suggest a role of SOX11 in the early pathogenesis of BL.


Assuntos
Linfoma de Burkitt , Herpesvirus Humano 4 , Fatores de Transcrição SOXC , Humanos , Linfoma de Burkitt/genética , Linfoma de Burkitt/virologia , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Herpesvirus Humano 4/genética , Regulação Neoplásica da Expressão Gênica , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/virologia , Mutação , DNA Helicases/genética , DNA Helicases/metabolismo , Translocação Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Masculino , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Proteínas Nucleares
6.
Biochem Biophys Res Commun ; 708: 149789, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38513475

RESUMO

The tumor suppressor p53 prevents cancer development by regulating dozens of target genes with diverse biological functions. Although numerous p53 target genes have been identified to date, the dynamics and function of the regulatory network centered on p53 have not yet been fully elucidated. We herein identified inhibitor of DNA-binding/differentiation-3 (ID3) as a direct p53 target gene. p53 bound the distal promoter of ID3 and positively regulated its transcription. ID3 expression was significantly decreased in clinical lung cancer tissues, and was closely associated with overall survival outcomes in these patients. Functionally, ID3 deficiency promoted the metastatic ability of lung cancer cells through its effects on the transcriptional regulation of CDH1. Furthermore, the ectopic expression of ID3 in p53-knockdown cells restored E-cadherin expression. Collectively, the present results demonstrate that ID3 plays a tumor-suppressive role as a downstream effector of p53 and impedes lung cancer cell metastasis by regulating E-cadherin expression.


Assuntos
Neoplasias Pulmonares , Humanos , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Phytomedicine ; 128: 155493, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38484626

RESUMO

BACKGROUND: ID3 (inhibitor of DNA binding/differentiation-3) is a transcription factor that enables metastasis by promoting stem cell-like properties in endothelial and tumor cells. The milk thistle flavonolignan silibinin is a phytochemical with anti-metastatic potential through largely unknown mechanisms. HYPOTHESIS/PURPOSE: We have mechanistically investigated the ability of silibinin to inhibit the aberrant activation of ID3 in brain endothelium and non-small cell lung cancer (NSCLC) models. METHODS: Bioinformatic analyses were performed to investigate the co-expression correlation between ID3 and bone morphogenic protein (BMP) ligands/BMP receptors (BMPRs) genes in NSCLC patient datasets. ID3 expression was assessed by immunoblotting and qRT-PCR. Luciferase reporter assays were used to evaluate the gene sequences targeted by silibinin to regulate ID3 transcription. In silico computational modeling and LanthaScreen TR-FRET kinase assays were used to characterize and validate the BMPR inhibitory activity of silibinin. Tumor tissues from NSCLC xenograft models treated with oral silibinin were used to evaluate the in vivo anti-ID3 effects of silibinin. RESULTS: Analysis of lung cancer patient datasets revealed a top-ranked positive association of ID3 with the BMP9 endothelial receptor ACVRL1/ALK1 and the BMP ligand BMP6. Silibinin treatment blocked the BMP9-induced activation of the ALK1-phospho-SMAD1/5-ID3 axis in brain endothelial cells. Constitutive, acquired, and adaptive expression of ID3 in NSCLC cells were all significantly downregulated in response to silibinin. Silibinin blocked ID3 transcription via BMP-responsive elements in ID3 gene enhancers. Silibinin inhibited the kinase activities of BMPRs in the micromolar range, with the lower IC50 values occurring against ACVRL1/ALK1 and BMPR2. In an in vivo NSCLC xenograft model, tumoral overexpression of ID3 was completely suppressed by systematically achievable oral doses of silibinin. CONCLUSIONS: ID3 is a largely undruggable metastasis-promoting transcription factor. Silibinin is a novel suppressor of ID3 that may be explored as a novel therapeutic approach to interfere with the metastatic dissemination capacity of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteínas Inibidoras de Diferenciação , Neoplasias Pulmonares , Proteínas de Neoplasias , Silibina , Silibina/farmacologia , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Humanos , Animais , Linhagem Celular Tumoral , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Nus , Receptores de Ativinas Tipo I/metabolismo , Receptores de Ativinas Tipo I/genética , Silimarina/farmacologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Morfogenética Óssea 6 , Silybum marianum/química , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Feminino
8.
Glia ; 72(7): 1236-1258, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38515287

RESUMO

The purpose of this study was to investigate how ID factors regulate the ability of Müller glia (MG) to reprogram into proliferating MG-derived progenitor cells (MGPCs) in the chick retina. We found that ID1 is transiently expressed by maturing MG (mMG), whereas ID4 is maintained in mMG in embryonic retinas. In mature retinas, ID4 was prominently expressed by resting MG, but following retinal damage ID4 was rapidly upregulated and then downregulated in MGPCs. By contrast, ID1, ID2, and ID3 were low in resting MG and then upregulated in MGPCs. Inhibition of ID factors following retinal damage decreased numbers of proliferating MGPCs. Inhibition of IDs, after MGPC proliferation, significantly increased numbers of progeny that differentiated as neurons. In damaged or undamaged retinas inhibition of IDs increased levels of p21Cip1 in MG. In response to damage or insulin+FGF2 levels of CDKN1A message and p21Cip1 protein were decreased, absent in proliferating MGPCs, and elevated in MG returning to a resting phenotype. Inhibition of notch- or gp130/Jak/Stat-signaling in damaged retinas increased levels of ID4 but not p21Cip1 in MG. Although ID4 is the predominant isoform expressed by MG in the chick retina, id1 and id2a are predominantly expressed by resting MG and downregulated in activated MG and MGPCs in zebrafish retinas. We conclude that ID factors have a significant impact on regulating the responses of MG to retinal damage, controlling the ability of MG to proliferate by regulating levels of p21Cip1, and suppressing the neurogenic potential of MGPCs.


Assuntos
Proliferação de Células , Células Ependimogliais , Proteínas Inibidoras de Diferenciação , Retina , Animais , Proliferação de Células/fisiologia , Proliferação de Células/efeitos dos fármacos , Proteínas Inibidoras de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Retina/metabolismo , Retina/citologia , Células Ependimogliais/metabolismo , Células Ependimogliais/fisiologia , Neurogênese/fisiologia , Neurogênese/efeitos dos fármacos , Embrião de Galinha , Células-Tronco Neurais/metabolismo , Galinhas , Neuroglia/metabolismo , Células-Tronco/metabolismo , Células-Tronco/fisiologia
9.
Nature ; 626(8000): 864-873, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326607

RESUMO

Macrophage activation is controlled by a balance between activating and inhibitory receptors1-7, which protect normal tissues from excessive damage during infection8,9 but promote tumour growth and metastasis in cancer7,10. Here we report that the Kupffer cell lineage-determining factor ID3 controls this balance and selectively endows Kupffer cells with the ability to phagocytose live tumour cells and orchestrate the recruitment, proliferation and activation of natural killer and CD8 T lymphoid effector cells in the liver to restrict the growth of a variety of tumours. ID3 shifts the macrophage inhibitory/activating receptor balance to promote the phagocytic and lymphoid response, at least in part by buffering the binding of the transcription factors ELK1 and E2A at the SIRPA locus. Furthermore, loss- and gain-of-function experiments demonstrate that ID3 is sufficient to confer this potent anti-tumour activity to mouse bone-marrow-derived macrophages and human induced pluripotent stem-cell-derived macrophages. Expression of ID3 is therefore necessary and sufficient to endow macrophages with the ability to form an efficient anti-tumour niche, which could be harnessed for cell therapy in cancer.


Assuntos
Proteínas Inibidoras de Diferenciação , Células de Kupffer , Neoplasias , Animais , Humanos , Camundongos , Células da Medula Óssea/citologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linhagem da Célula , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas Inibidoras de Diferenciação/deficiência , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Células de Kupffer/citologia , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Fígado/imunologia , Fígado/patologia , Ativação de Macrófagos , Proteínas de Neoplasias , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Fagocitose
10.
Biochem Biophys Res Commun ; 696: 149489, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38244313

RESUMO

Lung cancer has a high incidence rate and requires more effective treatment strategies and drug options for clinical patients. EGFR is a common genetic alteration event in lung cancer that affects patient survival and drug strategy. Our study discovered aberrant aldolase A (ALDOA) expression and dysfunction in lung cancer patients with EGFR mutations. In addition to investigating relevant metabolic processes like glucose uptake, lactate production, and ATPase activity, we examined multi-omics profiles (transcriptomics, proteomics, and pull-down assays). It was observed that phosphodiesterase 3A (PDE3A) enzyme and ALDOA exhibit correlation, and furthermore, they impact M2 macrophage polarization through ß-catenin and downstream ID3. In addition to demonstrating the aforementioned mechanism of action, our experiments discovered that the PDE3 inhibitor trequinsin has a substantial impact on lung cancer cell lines with EGFR mutants. The trequinsin medication was found to decrease the M2 macrophage polarization status and several cancer phenotypes, in addition to transduction. These findings have potential prognostic and therapeutic applications for clinical patients with EGFR mutation and lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Frutose-Bifosfato Aldolase/genética , beta Catenina/genética , beta Catenina/metabolismo , Transdução de Sinais/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Linhagem Celular Tumoral , Mutação , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Inibidoras de Diferenciação/genética
11.
Oncol Res ; 32(1): 127-138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188675

RESUMO

Purpose: Cancer cell metastasis is a multistep process, and the mechanism underlying extravasation remains unclear. ELK3 is a transcription factor that plays a crucial role in regulating various cellular processes, including cancer metastasis. Based on the finding that ELK3 promotes the metastasis of triple-negative breast cancer (TNBC), we investigated whether ELK3 regulates the extravasation of TNBC by forming the ELK3-ID4 axis. ID4 functions as a transcriptional regulator that interacts with other transcription factors, inhibiting their activity and subsequently influencing various biological processes associated with cell differentiation, survival, growth, and metastasis. Methods: We assessed the correlation between the expression of ELK3 and that of ID4 in TNBCs using bioinformatics analyses, QRT-PCR, western blot analysis, luciferase reporter assays, and chromatin immunoprecipitation. Migration, adhesion, invasion, and lung metastasis assays were employed to determine whether the ELK3-ID4 axis regulates the metastatic features of TNBC. Results: We found that ELK3 binds directly to a binding motif close to the ID4 promoter to repress promoter activity. The expression of E-cadherin in TNBC was regulated by the ELK3-ID4 axis. In vitro and in vivo analyses showed that inhibiting ID4 expression in ELK3-knockdown MDA-MB-231 (ELK3KD) cells restored the ability to extravasate and metastasize. Conclusion: The results indicate that the ELK3 regulates ID4 promoter activity, and that the ELK3-ID4 axis regulates the metastatic characteristics of TNBC cells. Additionally, the data suggest that the ELK3-ID4 axis regulates metastasis of TNBCs by modulating expression of E-cadherin.


Assuntos
Proteínas Inibidoras de Diferenciação , Proteínas Proto-Oncogênicas c-ets , Neoplasias de Mama Triplo Negativas , Humanos , Caderinas/genética , Diferenciação Celular , Biologia Computacional , Proteínas Inibidoras de Diferenciação/genética , Neoplasias Pulmonares/secundário , Neoplasias de Mama Triplo Negativas/genética , Proteínas Proto-Oncogênicas c-ets/genética
12.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-134340

RESUMO

To gain insight into the differential mechanism of gene promoter hypermethylation in acute and chronic leukemia, we identified the methylation status on one part of 5'CpG rich region of 8 genes, DAB2IP, DLC-1, H-cadherin, ID4, Integrin alpha4, RUNX3, SFRP1, and SHP1 in bone marrows from acute myeloid leukemia (AML) and chronic myeloid leukemia (CML) patients. Also, we compared the methylation status of genes in AML and CML using methylation-specific PCR (MSP). The frequencies of DNA methylation of ID4, SFRP1, and SHP1 were higher in AML patients compared to those in CML patients. In contrast, no statistical difference between AML and CML was detected for other genes such as DLC-1, DAB2IP, H-cadherin, Integrin alpha4, and RUNX3. Taken together, these results suggest that these methylation-controlled genes may have different roles in AML and CML, and thus, may act as a biological marker of AML.


Assuntos
Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ilhas de CpG , Metilação de DNA , Proteínas Inibidoras de Diferenciação/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mieloide Aguda/genética , Proteínas de Membrana/genética , Regiões Promotoras Genéticas , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética
13.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-134341

RESUMO

To gain insight into the differential mechanism of gene promoter hypermethylation in acute and chronic leukemia, we identified the methylation status on one part of 5'CpG rich region of 8 genes, DAB2IP, DLC-1, H-cadherin, ID4, Integrin alpha4, RUNX3, SFRP1, and SHP1 in bone marrows from acute myeloid leukemia (AML) and chronic myeloid leukemia (CML) patients. Also, we compared the methylation status of genes in AML and CML using methylation-specific PCR (MSP). The frequencies of DNA methylation of ID4, SFRP1, and SHP1 were higher in AML patients compared to those in CML patients. In contrast, no statistical difference between AML and CML was detected for other genes such as DLC-1, DAB2IP, H-cadherin, Integrin alpha4, and RUNX3. Taken together, these results suggest that these methylation-controlled genes may have different roles in AML and CML, and thus, may act as a biological marker of AML.


Assuntos
Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ilhas de CpG , Metilação de DNA , Proteínas Inibidoras de Diferenciação/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mieloide Aguda/genética , Proteínas de Membrana/genética , Regiões Promotoras Genéticas , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA