Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
1.
Arch Gerontol Geriatr ; 120: 105327, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38237377

RESUMO

BACKGROUND: Hepatic steatosis, a lipid disorder characterized by the accumulation of intrahepatic fat, is more prevalent in the elderly population. This study investigates the role of miR-155-5p in the autophagy dysregulation of aging hepatic steatosis. METHODS: We established an aging mouse model in vivo and a hepatocellular senescence model induced by low serum and palmitic acid in vitro. The fluctuations of microRNAs were derived from RNA-seq data and confirmed by qPCR in 4- and 18-month-old mouse liver tissues. Hematoxylin-eosin (H&E) staining observed pathological changes. Markers of senescence, autophagy, and lipolysis genes were analyzed using Western blot and qPCR. Bioinformatics analysis predicted miR-155-5p's target gene PICALM, confirmed by dual luciferase reporter assay and transfection of miR-155-5p mimic/inhibitor into senescent hepatocytes. RESULTS: Senescent markers (p21, p16, and p-P53) and miR-155-5p were up-regulated in aging liver tissues and senescent hepatocytes. Bioinformatics analysis identified PICALM as a target gene of miR-155-5p, a finding further supported by dual luciferase reporter assays. Inhibition of miR-155-5p reduced expression of senescent marker genes (p16, p21, p-P53), improved autophagy (evidenced by increased LC3B-II and ATG5, and decreased P62), and enhanced lipolysis (indicated by increased ATGL and p-HSL) in senescent hepatocytes. Oil red O staining confirmed that miR-155-5p inhibition significantly reduced lipid accumulation in these cells. CONCLUSIONS: This study suggests a potential new therapeutic approach for age-related hepatic steatosis through the inhibition of miR-155-5p to enhance autophagy.


Assuntos
MicroRNAs , Proteínas Monoméricas de Montagem de Clatrina , Idoso , Camundongos , Animais , Humanos , Proteína Supressora de Tumor p53/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , MicroRNAs/genética , Envelhecimento , Autofagia , Luciferases/metabolismo , Lipídeos , Proteínas Monoméricas de Montagem de Clatrina/metabolismo
2.
Br J Haematol ; 204(2): 576-584, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37743097

RESUMO

The prognostic impact of PICALM::MLLT10 status in childhood leukaemia is not well described. Ten International Berlin Frankfurt Münster-affiliated study groups and the Children's Oncology Group collaborated in this multicentre retrospective study. The presence of the PICALM::MLLT10 fusion gene was confirmed by fluorescence in situ hybridization and/or RNA sequencing at participating sites. Ninety-eight children met the study criteria. T-cell acute lymphoblastic leukaemia (T-ALL) and acute myeloid leukaemia (AML) predominated 55 (56%) and 39 (40%) patients, respectively. Most patients received a chemotherapy regimen per their disease phenotype: 58% received an ALL regimen, 40% an AML regimen and 1% a hybrid regimen. Outcomes for children with PICALM::MLLT10 ALL were reasonable: 5-year event-free survival (EFS) 67% and 5-year overall survival (OS) 76%, but children with PICALM::MLLT10 AML had poor outcomes: 5-year EFS 22% and 5-year OS 26%. Haematopoietic stem cell transplant (HSCT) did not result in a significant improvement in outcomes for PICALM::MLLT10 AML: 5-year EFS 20% for those who received HSCT versus 23% for those who did not (p = 0.6) and 5-year OS 37% versus 36% (p = 0.7). In summary, this study confirms that PICALM::MLLT10 AML is associated with a dismal prognosis and patients cannot be salvaged with HSCT; exploration of novel therapeutic options is warranted.


Assuntos
Leucemia Mieloide Aguda , Proteínas Monoméricas de Montagem de Clatrina , Criança , Humanos , Hibridização in Situ Fluorescente , Estudos Retrospectivos , Proteínas de Fusão Oncogênica/genética , Resultado do Tratamento , Leucemia Mieloide Aguda/genética , Fatores de Transcrição/genética , Doença Aguda , Prognóstico , Proteínas Monoméricas de Montagem de Clatrina/genética
3.
J Alzheimers Dis ; 96(4): 1651-1661, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38007652

RESUMO

BACKGROUND: APOE ɛ4 and PICALM are established genes associated with risk of late-onset Alzheimer's disease (AD). Previous study indicated interaction of PICALM with APOE ɛ4 in AD patients. OBJECTIVE: To explore whether PICALM variation could moderate the influences of APOE ɛ4 on AD pathology biomarkers and cognition in pre-dementia stage. METHODS: A total of 1,034 non-demented participants (mean age 74 years, 56% females, 40% APOE ɛ4 carriers) were genotyped for PICALM rs3851179 and APOE ɛ4 at baseline and were followed for influences on changes of cognition and cerebrospinal fluid (CSF) AD markers in six years. The interaction effects were examined via regression models adjusting for age, gender, education, and cognitive diagnosis. RESULTS: The interaction term of rs3851179×APOE ɛ4 accounted for a significant amount of variance in baseline general cognition (p = 0.039) and memory function (p = 0.002). The relationships of APOE ɛ4 with trajectory of CSF Aß42 (p = 0.007), CSF P-tau181 (p = 0.003), CSF T-tau (p = 0.001), and memory function (p = 0.017) were also moderated by rs3851179 variation. CONCLUSIONS: APOE ɛ4 carriers experienced slower clinical and pathological progression when they had more protective A alleles of PICALM rs3851179. These findings firstly revealed the gene-gene interactive effects of PICALM with APOE ɛ4 in pre-dementia stage.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Proteínas Monoméricas de Montagem de Clatrina , Feminino , Humanos , Idoso , Masculino , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Apolipoproteína E4/genética , Proteínas tau/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Apolipoproteínas E/genética , Disfunção Cognitiva/genética , Proteínas Monoméricas de Montagem de Clatrina/genética
4.
Cell Mol Life Sci ; 80(10): 295, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37726569

RESUMO

Recently, the localization of amyloid precursor protein (APP) into reversible nanoscale supramolecular assembly or "nanodomains" has been highlighted as crucial towards understanding the onset of the molecular pathology of Alzheimer's disease (AD). Surface expression of APP is regulated by proteins interacting with it, controlling its retention and lateral trafficking on the synaptic membrane. Here, we evaluated the involvement of a key risk factor for AD, PICALM, as a critical regulator of nanoscale dynamics of APP. Although it was enriched in the postsynaptic density, PICALM was also localized to the presynaptic active zone and the endocytic zone. PICALM colocalized with APP and formed nanodomains with distinct morphological properties in different subsynaptic regions. Next, we evaluated if this localization to subsynaptic compartments was regulated by the C-terminal sequences of APP, namely, the "Y682ENPTY687" domain. Towards this, we found that deletion of C-terminal regions of APP with partial or complete deletion of Y682ENPTY687, namely, APP-Δ9 and APP-Δ14, affected the lateral diffusion and nanoscale segregation of APP. Lateral diffusion of APP mutant APP-Δ14 sequence mimicked that of a detrimental Swedish mutant of APP, namely, APP-SWE, while APP-Δ9 diffused similar to wild-type APP. Interestingly, elevated expression of PICALM differentially altered the lateral diffusion of the APP C-terminal deletion mutants. These observations confirm that the C-terminal sequence of APP regulates its lateral diffusion and the formation of reversible nanoscale domains. Thus, when combined with autosomal dominant mutations, it generates distinct molecular patterns leading to onset of Alzheimer's disease (AD).


Assuntos
Doença de Alzheimer , Artrogripose , Proteínas Monoméricas de Montagem de Clatrina , Humanos , Precursor de Proteína beta-Amiloide/genética , Doença de Alzheimer/genética , Mutação , Fatores de Risco , Proteínas Monoméricas de Montagem de Clatrina/genética
5.
J Biol Chem ; 299(9): 105091, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37516240

RESUMO

α-Synuclein and family members ß- and γ-synuclein are presynaptic proteins that sense and generate membrane curvature, properties important for synaptic vesicle (SV) cycling. αßγ-synuclein triple knockout neurons exhibit SV endocytosis deficits. Here, we investigated if α-synuclein affects clathrin assembly in vitro. Visualizing clathrin assembly on membranes using a lipid monolayer system revealed that α-synuclein increases clathrin lattices size and curvature. On cell membranes, we observe that α-synuclein is colocalized with clathrin and its adapter AP180 in a concentric ring pattern. Clathrin puncta that contain both α-synuclein and AP180 were significantly larger than clathrin puncta containing either protein alone. We determined that this effect occurs in part through colocalization of α-synuclein with the phospholipid PI(4,5)P2 in the membrane. Immuno-electron microscopy (EM) of synaptosomes uncovered that α-synuclein relocalizes from SVs to the presynaptic membrane upon stimulation, positioning α-synuclein to function on presynaptic membranes during or after stimulation. Additionally, we show that deletion of synucleins impacts brain-derived clathrin-coated vesicle size. Thus, α-synuclein affects the size and curvature of clathrin structures on membranes and functions as an endocytic accessory protein.


Assuntos
Clatrina , Proteínas Monoméricas de Montagem de Clatrina , alfa-Sinucleína , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Membrana Celular/metabolismo , Clatrina/química , Clatrina/metabolismo , Endocitose , Microscopia Imunoeletrônica , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinaptossomos/metabolismo , Transporte Proteico , Técnicas In Vitro , Fosfatidilinositol 4,5-Difosfato/metabolismo , Encéfalo/citologia , Vesículas Revestidas por Clatrina/metabolismo
6.
Acta Neurobiol Exp (Wars) ; 83(2): 127-139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37493530

RESUMO

APOE­Îµ4 genotype (apolipoprotein E, epsilon 4) is the strongest genetic risk factor for Alzheimer's disease (AD). Despite years of research, it is still not known how it contributes to dementia development. APOE has been implicated in many AD pathology mechanisms, like Aß clearance, brain metabolism, changes within microglia and other glial functions and inflammatory processes. In fact, immunological/inflammatory processes are recently discussed as an important factor in Alzheimer's development and granulocyte profiles changes are reported in patients. However, the exact link between the immune system and risk­genes is unknown. In particular, it is not known whether and how they interact throughout the lifetime, before the disease onset. The aim of the study was to investigate the relationship between granulocyte count and the APOE/PICALM genes in healthy individuals with an increased genetic risk of AD. An exploratory analysis regarding other blood cells was also conducted. Blood samples were collected from 77 healthy middle­aged (50-63 years old) participants, who were also asked to complete a health and life­style questionnaires. Groups with different AD risk­genes were compared. Differences in granulocyte profiles were found in healthy carriers of AD risk­genes who had slightly elevated eosinophil levels as compared to non-risk carriers. An exploratory analysis showed some alteration in mean corpuscular hemoglobin content and concentration (MCH/MCHC) levels between risk­carriers subgroups and non-risk carriers. No other differences in blood count or lipoprotein profile were found between healthy APOE/PICALM risk­carriers and non-risk carriers. Longitudinal studies will reveal if and how those changes contribute to the development of AD pathology.


Assuntos
Doença de Alzheimer , Proteínas Monoméricas de Montagem de Clatrina , Pessoa de Meia-Idade , Humanos , Doença de Alzheimer/metabolismo , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Genótipo , Eritrócitos/metabolismo , Eritrócitos/patologia , Granulócitos/metabolismo , Granulócitos/patologia , Proteínas Monoméricas de Montagem de Clatrina/genética
8.
Pediatr Hematol Oncol ; 40(8): 778-785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37171905

RESUMO

Mixed phenotype leukemia (MPAL) is a rare type of acute leukemia with blasts that co-express antigens of more than one lineage on the same cell or that have separate populations of blasts of different lineages. Here, we report a five-year-old male with inguinal lymphadenopathy diagnosed with MPAL-T/Myeloid MPAL-T/M. The clone demonstrated lineage and immunophenotypically distinct blast populations in the bone marrow and lymph nodes. Bone marrow cytogenetic studies confirmed a rare PICALM::MLLT10 gene fusion. Patients with this fusion gene have been found to have high risk features and poor survival rates in several small case series. Our case report highlights an unusual presentation in medullary and extramedullary sites, within a pediatric patient. At the time of submission of this case report, the patient has shown good response to chemotherapy and continues to be in remission.


Assuntos
Leucemia Mieloide Aguda , Proteínas Monoméricas de Montagem de Clatrina , Masculino , Humanos , Criança , Pré-Escolar , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Doença Aguda , Medula Óssea/patologia , Fatores de Transcrição/genética , Rearranjo Gênico , Proteínas Monoméricas de Montagem de Clatrina/genética
9.
Mol Neurodegener ; 18(1): 7, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707892

RESUMO

BACKGROUND: PICALM is one of the most significant susceptibility factors for Alzheimer's disease (AD). In humans and mice, PICALM is highly expressed in brain endothelium. PICALM endothelial levels are reduced in AD brains. PICALM controls several steps in Aß transcytosis across the blood-brain barrier (BBB). Its loss from brain endothelium in mice diminishes Aß clearance at the BBB, which worsens Aß pathology, but is reversible by endothelial PICALM re-expression. Thus, increasing PICALM at the BBB holds potential to slow down development of Aß pathology. METHODS: To identify a drug that could increase PICALM expression, we screened a library of 2007 FDA-approved drugs in HEK293t cells expressing luciferase driven by a human PICALM promoter, followed by a secondary mRNA screen in human Eahy926 endothelial cell line. In vivo studies with the lead hit were carried out in Picalm-deficient (Picalm+/-) mice, Picalm+/-; 5XFAD mice and Picalmlox/lox; Cdh5-Cre; 5XFAD mice with endothelial-specific Picalm knockout. We studied PICALM expression at the BBB, Aß pathology and clearance from brain to blood, cerebral blood flow (CBF) responses, BBB integrity and behavior. RESULTS: Our screen identified anti-malaria drug artesunate as the lead hit. Artesunate elevated PICALM mRNA and protein levels in Eahy926 endothelial cells and in vivo in brain capillaries of Picalm+/- mice by 2-3-fold. Artesunate treatment (32 mg/kg/day for 2 months) of 3-month old Picalm+/-; 5XFAD mice compared to vehicle increased brain capillary PICALM levels by 2-fold, and reduced Aß42 and Aß40 levels and Aß and thioflavin S-load in the cortex and hippocampus, and vascular Aß load by 34-51%. Artesunate also increased circulating Aß42 and Aß40 levels by 2-fold confirming accelerated Aß clearance from brain to blood. Consistent with reduced Aß pathology, treatment of Picalm+/-; 5XFAD mice with artesunate improved CBF responses, BBB integrity and behavior on novel object location and recognition, burrowing and nesting. Endothelial-specific knockout of PICALM abolished all beneficial effects of artesunate in 5XFAD mice indicating that endothelial PICALM is required for its therapeutic effects. CONCLUSIONS: Artesunate increases PICALM levels and Aß clearance at the BBB which prevents development of Aß pathology and functional deficits in mice and holds potential for translation to human AD.


Assuntos
Doença de Alzheimer , Antimaláricos , Proteínas Monoméricas de Montagem de Clatrina , Animais , Camundongos , Humanos , Lactente , Barreira Hematoencefálica/metabolismo , Artesunato/farmacologia , Artesunato/metabolismo , Artesunato/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/metabolismo , Antimaláricos/uso terapêutico , Células Endoteliais/metabolismo , Células HEK293 , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Proteínas Monoméricas de Montagem de Clatrina/farmacologia
11.
Cells ; 11(24)2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36552756

RESUMO

Genome-wide association studies (GWAS) have identified the PICALM (Phosphatidylinositol binding clathrin-assembly protein) gene as the most significant genetic susceptibility locus after APOE and BIN1. PICALM is a clathrin-adaptor protein that plays a critical role in clathrin-mediated endocytosis and autophagy. Since the effects of genetic variants of PICALM as AD-susceptibility loci have been confirmed by independent genetic studies in several distinct cohorts, there has been a number of in vitro and in vivo studies attempting to elucidate the underlying mechanism by which PICALM modulates AD risk. While differential modulation of APP processing and Aß transcytosis by PICALM has been reported, significant effects of PICALM modulation of tau pathology progression have also been evidenced in Alzheimer's disease models. In this review, we summarize the current knowledge about PICALM, its physiological functions, genetic variants, post-translational modifications and relevance to AD pathogenesis.


Assuntos
Doença de Alzheimer , Proteínas Monoméricas de Montagem de Clatrina , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Clatrina/metabolismo , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Proteínas Monoméricas de Montagem de Clatrina/genética , Proteínas Monoméricas de Montagem de Clatrina/metabolismo
12.
J Integr Neurosci ; 21(4): 99, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35864751

RESUMO

BACKGROUND: Cognitive interventions (CIs) in the elderly are activities that seek to improve cognitive performance and delay its deterioration. Our objectives were to study potential genetic predictors of how a CI program may influence immediate and delayed episodic verbal memory (EVM). METHODS: 162 participants were elderly individuals without dementia who were randomized into parallel control and experimental groups. Participants underwent genetic testing to analyze the PICALM, ACT, NRG1, BDNF and APOE genes. We performed a broad neuropsychological assessment before and 6 months after the CI. The CI involved multifactorial training (30 sessions). The control group undertook the centre's standard activities. The main outcome measures were the genotype studied as a predictor of post-intervention changes in EVM. RESULTS: We found the CI was associated with improvements in several cognitive functions, including immediate and delayed EVM. While no individual gene was associated with any such change, the interaction between PICALM/ACT (p = 0.008; Eta2 = 0.23) and PICALM/NRG1 (p = 0.029; Eta2 = 0.19) was associated with improved immediate EVM, and the NRG1/BDNF interaction was associated with improved delayed EVM (p = 0.009; Eta2 = 0.21). The APOEε4 genotype was not associated with any change in EVM. CONCLUSIONS: Our study shows that the participants' genotype can have an impact on the results of CIs. Cognitive stress may stimulate the interaction of various genes and as such, different types of CI should be established for distinct groups of people taking into account the individual's characteristics, like genotype, to improve the results of this type of health prevention and promotion activity.


Assuntos
Memória Episódica , Proteínas Monoméricas de Montagem de Clatrina , Idoso , Apolipoproteínas E/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Cognição , Humanos , Proteínas Monoméricas de Montagem de Clatrina/genética , Neuregulina-1/genética , Testes Neuropsicológicos
13.
Biochem Biophys Res Commun ; 587: 69-77, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34864549

RESUMO

The clathrin coat assembly protein AP180 drives endocytosis, which is crucial for numerous physiological events, such as the internalization and recycling of receptors, uptake of neurotransmitters and entry of viruses, including SARS-CoV-2, by interacting with clathrin. Moreover, dysfunction of AP180 underlies the pathogenesis of Alzheimer's disease. Therefore, it is important to understand the mechanisms of assembly and, especially, disassembly of AP180/clathrin-containing cages. Here, we identified AP180 as a novel phosphatidic acid (PA)-binding protein from the mouse brain. Intriguingly, liposome binding assays using various phospholipids and PA species revealed that AP180 most strongly bound to 1-stearoyl-2-docosahexaenoyl-PA (18:0/22:6-PA) to a comparable extent as phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), which is known to associate with AP180. An AP180 N-terminal homology domain (1-289 aa) interacted with 18:0/22:6-PA, and a lysine-rich motif (K38-K39-K40) was essential for binding. The 18:0/22:6-PA in liposomes in 100 nm diameter showed strong AP180-binding activity at neutral pH. Notably, 18:0/22:6-PA significantly attenuated the interaction of AP180 with clathrin. However, PI(4,5)P2 did not show such an effect. Taken together, these results indicate the novel mechanism by which 18:0/22:6-PA selectively regulates the disassembly of AP180/clathrin-containing cages.


Assuntos
Clatrina/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Ácidos Fosfatídicos/metabolismo , Animais , Sítios de Ligação , Encéfalo/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Linhagem Celular , Clatrina/química , Ácidos Docosa-Hexaenoicos/química , Endocitose/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Camundongos , Proteínas Monoméricas de Montagem de Clatrina/química , Proteínas Monoméricas de Montagem de Clatrina/genética , Ácidos Fosfatídicos/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/fisiologia , Internalização do Vírus
14.
Neurologia (Engl Ed) ; 36(9): 681-691, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34752346

RESUMO

INTRODUCTION: Alzheimer disease risk polymorphisms have been studied in patients with dementia, but have not yet been explored in mild cognitive impairment (MCI) in our population; nor have they been addressed in relation to cognitive variables, which can be predictive biomarkers of disease. OBJECTIVE: To evaluate cognitive performance and presence of polymorphisms of the genes SORL1(rs11218304), PVRL2(rs6859), CR1(rs6656401), TOMM40(rs2075650), APOE (isoforms ε2, ε3, ε4), PICALM(rs3851179), GWAS_14q(rs11622883), BIN1(rs744373), and CLU(rs227959 and rs11136000) in patients with MCI and healthy individuals. METHODOLOGY: We performed a cross-sectional, exploratory, descriptive study of a prospective cohort of participants selected by non-probabilistic sampling, evaluated with neurological, neuropsychological, and genetic testing, and classified as cognitively healthy individuals and patients with MCI. Cognition was evaluated with the Neuronorma battery and analysed in relation to the polymorphic variants by means of measures of central tendency, confidence intervals, and nonparametric statistics. RESULTS: We found differences in performance in language and memory tasks between carriers and non-carriers of BIN1, CLU, and CR1 variants and a trend towards poor cognitive performance for PICALM, GWAS_14q, SORL1, and PVRL2 variants; the APOE and TOMM40 variants were not associated with poor cognitive performance. DISCUSSION: Differences in cognitive performance associated with these polymorphic variants may suggest that the mechanisms regulating these genes could have an effect on cognition in the absence of dementia; however, this study was exploratory and hypotheses based on these results must be explored in larger samples.


Assuntos
Disfunção Cognitiva , Proteínas Monoméricas de Montagem de Clatrina , Proteínas Adaptadoras de Transdução de Sinal , Apolipoproteínas E/genética , Clusterina/genética , Cognição , Disfunção Cognitiva/genética , Estudos Transversais , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Proteínas Relacionadas a Receptor de LDL , Proteínas de Membrana Transportadoras/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Monoméricas de Montagem de Clatrina/genética , Proteínas Nucleares , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Receptores de Complemento 3b/genética , Proteínas Supressoras de Tumor
15.
Sci Rep ; 11(1): 20465, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650147

RESUMO

PICALM and CLU genes have been linked to alterations in brain biochemical processes that may have an impact on Alzheimer's disease (AD) development and neurophysiological dynamics. The aim of this study is to analyze the relationship between the electroencephalographic (EEG) activity and the PICALM and CLU alleles described as conferring risk or protective effects on AD patients and healthy controls. For this purpose, EEG activity was acquired from: 18 AD patients and 12 controls carrying risk alleles of both PICALM and CLU genes, and 35 AD patients and 12 controls carrying both protective alleles. Relative power (RP) in the conventional EEG frequency bands (delta, theta, alpha, beta, and gamma) was computed to quantify the brain activity at source level. In addition, spatial entropy (SE) was calculated in each band to characterize the regional distribution of the RP values throughout the brain. Statistically significant differences in global RP and SE at beta band (p-values < 0.05, Mann-Whitney U-test) were found between genotypes in the AD group. Furthermore, RP showed statistically significant differences in 58 cortical regions out of the 68 analyzed in AD. No statistically significant differences were found in the control group at any frequency band. Our results suggest that PICALM and CLU AD-inducing genotypes are involved in physiological processes related to disruption in beta power, which may be associated with physiological disturbances such as alterations in beta-amyloid and neurotransmitter metabolism.


Assuntos
Doença de Alzheimer/genética , Clusterina/genética , Eletroencefalografia , Proteínas Monoméricas de Montagem de Clatrina/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/fisiopatologia , Encéfalo , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Masculino
16.
Nat Commun ; 12(1): 4130, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226546

RESUMO

Chromosomal translocations of the AF10 (or MLLT10) gene are frequently found in acute leukemias. Here, we show that the PZP domain of AF10 (AF10PZP), which is consistently impaired or deleted in leukemogenic AF10 translocations, plays a critical role in blocking malignant transformation. Incorporation of functional AF10PZP into the leukemogenic CALM-AF10 fusion prevents the transforming activity of the fusion in bone marrow-derived hematopoietic stem and progenitor cells in vitro and in vivo and abrogates CALM-AF10-mediated leukemogenesis in vivo. Crystallographic, biochemical and mutagenesis studies reveal that AF10PZP binds to the nucleosome core particle through multivalent contacts with the histone H3 tail and DNA and associates with chromatin in cells, colocalizing with active methylation marks and discriminating against the repressive H3K27me3 mark. AF10PZP promotes nuclear localization of CALM-AF10 and is required for association with chromatin. Our data indicate that the disruption of AF10PZP function in the CALM-AF10 fusion directly leads to transformation, whereas the inclusion of AF10PZP downregulates Hoxa genes and reverses cellular transformation. Our findings highlight the molecular mechanism by which AF10 targets chromatin and suggest a model for the AF10PZP-dependent CALM-AF10-mediated leukemogenesis.


Assuntos
Doença Aguda , Leucemia Mieloide Aguda/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Translocação Genética/genética , Animais , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Cromatina , Células HEK293 , Histonas/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Metilação , Camundongos , Modelos Moleculares , Proteínas Monoméricas de Montagem de Clatrina/genética , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Nucleossomos , Conformação Proteica
17.
Biochem Biophys Res Commun ; 570: 103-109, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34311200

RESUMO

Degradation and clearance of cellular waste in the autophagic and endo-lysosomal systems is important for normal physiology and prevention of common late-onset diseases such as Alzheimer's disease (AD). Phosphatidylinostol-binding clathrin assembly protein (PICALM) is a robust AD risk factor gene and encodes an endosomal protein clathrin-binding cytosolic protein, reduction of which is known to exacerbate tauopathy. Although PICALM is known to regulate initiation of autophagy, its role in maturation of lysosomal enzymes required for proteolysis has not been studied. We sought to determine the importance of PICALM for cellular degradative function by disrupting exon 1 of PICALM using CRISPR/Cas9 in HeLa cells. PICALM disruption increased numbers of early endosomes. Proteomic analysis of endosome-enriched samples showed that disrupting exon 1 of PICALM increased the abundance of lysosomal enzymes in these organelles, and western blotting revealed disruption to processing and maturation of the lysosomal protease, cathepsin D, and a deficit in autophagy. This study shows PICALM is important for the correct maturation of lysosomal enzymes and efficient proteolytic function in the lysosome.


Assuntos
Catepsina D/metabolismo , Lisossomos/metabolismo , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Processamento de Proteína Pós-Traducional , Endossomos/metabolismo , Éxons/genética , Células HeLa , Humanos , Proteínas Monoméricas de Montagem de Clatrina/genética , Isoformas de Proteínas/metabolismo , Especificidade por Substrato
18.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34155137

RESUMO

The most represented components of clathrin-coated vesicles (CCVs) are clathrin triskelia and the adaptors clathrin assembly lymphoid myeloid leukemia protein (CALM) and the heterotetrameric complex AP2. Investigation of the dynamics of AP180-amino-terminal-homology (ANTH) recruitment during CCV formation has been hampered by CALM toxicity upon overexpression. We used knock-in gene editing to express a C-terminal-attached fluorescent version of CALM, while preserving its endogenous expression levels, and cutting-edge live-cell microscopy approaches to study CALM recruitment at forming CCVs. Our results demonstrate that CALM promotes vesicle completion upon membrane tension increase as a function of the amount of this adaptor present. Since the expression of adaptors, including CALM, differs among cells, our data support a model in which the efficiency of clathrin-mediated endocytosis is tissue specific and explain why CALM is essential during embryogenesis and red blood cell development.


Assuntos
Membrana Celular/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Edição de Genes , Proteínas de Fluorescência Verde/metabolismo , Humanos
19.
J Alzheimers Dis ; 79(3): 1055-1062, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33386803

RESUMO

BACKGROUND: Phosphatidylinositol-binding clathrin assembly protein (PICALM) is a validated genetic risk factor for late-onset Alzheimer's disease (AD) and is associated with other neurodegenerative diseases. However, PICALM expression in the blood of neurodegenerative diseases remains elusive. OBJECTIVE: This study aimed to assess the usefulness of PICALM expression levels in the blood of patients with AD, Parkinson's disease (PD), dementia with Lewy bodies (DLB), and geriatric major depressive disorder (MDD) as a diagnostic biomarker. METHODS: In total, 45, 20, 21, and 19 patients with AD, PD, DLB, and geriatric MDD, respectively, and 54 healthy controls (HCs) were enrolled in the study. Expression data from Gene Expression Omnibus database (GSE97760), (GSE133347) and (GSE98793), (GSE48350), and (GSE144459) were used to validate the ability of biomarkers in the blood of patients with AD, PD, geriatric MDD, and a postmortem human AD brain and animal model of AD (3xTg-AD mouse), respectively. RESULTS: PICALM mRNA expression in human blood was significantly increased in patients with AD compared with that in HCs. PICALM mRNA expression and age were negatively correlated only in patients with AD. PICALM mRNA expression in human blood was significantly lower in patients with PD than in HCs. No changes in PICALM mRNA expression were found in patients with DLB and geriatric MDD. CONCLUSION: PICALM mRNA expression in blood was higher in patients with AD, but lower in patients with PD, which suggests that PICALM mRNA expression in human blood may be a useful biomarker for differentiating neurodegenerative diseases and geriatric MDD.


Assuntos
Depressão/sangue , Proteínas Monoméricas de Montagem de Clatrina/sangue , Doenças Neurodegenerativas/sangue , Idoso , Doença de Alzheimer/sangue , Estudos de Casos e Controles , Transtorno Depressivo Maior/sangue , Feminino , Humanos , Doença por Corpos de Lewy/sangue , Masculino , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Doença de Parkinson/sangue , RNA Mensageiro/sangue , RNA Mensageiro/metabolismo
20.
Mol Cancer ; 20(1): 6, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397371

RESUMO

De novo and acquired resistance, which are mainly mediated by genetic alterations, are barriers to effective routine chemotherapy. However, the mechanisms underlying gastric cancer (GC) resistance to chemotherapy are still unclear. We showed that the long noncoding RNA CRNDE was related to the chemosensitivity of GC in clinical samples and a PDX model. CRNDE was decreased and inhibited autophagy flux in chemoresistant GC cells. CRNDE directly bound to splicing protein SRSF6 to reduce its protein stability and thus regulate alternative splicing (AS) events. We determined that SRSF6 regulated the PICALM exon 14 skip splice variant and triggered a significant S-to-L isoform switch, which contributed to the expression of the long isoform of PICALM (encoding PICALML). Collectively, our findings reveal the key role of CRNDE in autophagy regulation, highlighting the significance of CRNDE as a potential prognostic marker and therapeutic target against chemoresistance in GC.


Assuntos
Processamento Alternativo/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Monoméricas de Montagem de Clatrina/genética , Fosfoproteínas/metabolismo , RNA Longo não Codificante/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Neoplasias Gástricas/genética , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular Tumoral , Fluoruracila/farmacologia , Humanos , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Oxaliplatina/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , RNA Longo não Codificante/genética , Neoplasias Gástricas/patologia , Ubiquitinação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...