Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.662
Filtrar
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731813

RESUMO

Increased expression and nuclear translocation of ß-CATENIN is frequently observed in breast cancer, and it correlates with poor prognosis. Current treatment strategies targeting ß-CATENIN are not as efficient as desired. Therefore, detailed understanding of ß-CATENIN regulation is crucial. Bone morphogenetic proteins (BMP) and Wingless/Integrated (WNT) pathway crosstalk is well-studied for many cancer types including colorectal cancer, whereas it is still poorly understood for breast cancer. Analysis of breast cancer patient data revealed that BMP2 and BMP6 were significantly downregulated in tumors. Since mutation frequency in genes enhancing ß-CATENIN protein stability is relatively low in breast cancer, we aimed to investigate whether decreased BMP ligand expression could contribute to a high protein level of ß-CATENIN in breast cancer cells. We demonstrated that downstream of BMP stimulation, SMAD4 is required to reduce ß-CATENIN protein stability through the phosphorylation in MCF7 and T47D cells. Consequently, BMP stimulation reduces ß-CATENIN levels and prevents its nuclear translocation and target gene expression in MCF7 cells. Conversely, BMP stimulation has no effect on ß-CATENIN phosphorylation or stability in MDA-MB-231 and MDA-MB-468 cells. Likewise, SMAD4 modulation does not alter the response of those cells, indicating that SMAD4 alone is insufficient for BMP-induced ß-CATENIN phosphorylation. While our data suggest that considering BMP activity may serve as a prognostic marker for understanding ß-CATENIN accumulation risk, further investigation is needed to elucidate the differential responsiveness of breast cancer cell lines.


Assuntos
Neoplasias da Mama , Estabilidade Proteica , beta Catenina , Humanos , beta Catenina/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Fosforilação , Feminino , Linhagem Celular Tumoral , Proteína Smad4/metabolismo , Proteína Smad4/genética , Regulação Neoplásica da Expressão Gênica , Células MCF-7 , Proteínas Morfogenéticas Ósseas/metabolismo , Proteína Morfogenética Óssea 2/metabolismo
3.
Front Endocrinol (Lausanne) ; 15: 1392675, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711986

RESUMO

Obesity and Type 2 Diabetes Mellitus (T2DM) are intricate metabolic disorders with a multifactorial etiology, often leading to a spectrum of complications. Recent research has highlighted the impact of these conditions on bone health, with a particular focus on the role of sclerostin (SOST), a protein molecule integral to bone metabolism. Elevated circulating levels of SOST have been observed in patients with T2DM compared to healthy individuals. This study aims to examine the circulating levels of SOST in a multiethnic population living in Kuwait and to elucidate the relationship between SOST levels, obesity, T2DM, and ethnic background. The study is a cross-sectional analysis of a large cohort of 2083 individuals living in Kuwait. The plasma level of SOST was measured using a bone panel multiplex assay. The study found a significant increase in SOST levels in individuals with T2DM (1008.3 pg/mL, IQR-648) compared to non-diabetic individuals (710.6 pg/mL, IQR-479). There was a significant gender difference in median SOST levels, with males exhibiting higher levels than females across various covariates (diabetes, IR, age, weight, and ethnicity). Notably, SOST levels varied significantly with ethnicity: Arabs (677.4 pg/mL, IQR-481.7), South Asians (914.6 pg/mL, IQR-515), and Southeast Asians (695.2 pg/mL, IQR-436.8). Furthermore, SOST levels showed a significant positive correlation with gender, age, waist circumference, systolic and diastolic blood pressure, fasting blood glucose, HbA1c, insulin, total cholesterol, triglycerides, HDL, LDL, ALT, and AST (p-Value ≥0.05). South Asian participants, who exhibited the highest SOST levels, demonstrated the most pronounced associations, even after adjusting for age, gender, BMI, and diabetes status (p-Value ≥0.05). The observed correlations of SOST with various clinical parameters suggest its significant role in the diabetic milieu, particularly pronounced in the South Asian population compared to other ethnic groups.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Diabetes Mellitus Tipo 2 , Obesidade , Humanos , Masculino , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etnologia , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Kuweit/epidemiologia , Pessoa de Meia-Idade , Estudos Transversais , Obesidade/sangue , Obesidade/etnologia , Obesidade/epidemiologia , Proteínas Adaptadoras de Transdução de Sinal/sangue , Marcadores Genéticos , Adulto , Idoso , Etnicidade , Biomarcadores/sangue , Proteínas Morfogenéticas Ósseas/sangue
4.
Elife ; 122024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690987

RESUMO

Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.


Assuntos
Condrócitos , Microtia Congênita , Proteínas Quinases Dependentes de AMP Cíclico , Transdução de Sinais , Animais , Condrócitos/metabolismo , Microtia Congênita/genética , Microtia Congênita/metabolismo , Camundongos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Humanos , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Condrogênese/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética
5.
Cell Syst ; 15(5): 445-461.e4, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38692274

RESUMO

BMP signaling is essential for mammalian gastrulation, as it initiates a cascade of signals that control self-organized patterning. As development is highly dynamic, it is crucial to understand how time-dependent combinatorial signaling affects cellular differentiation. Here, we show that BMP signaling duration is a crucial control parameter that determines cell fates upon the exit from pluripotency through its interplay with the induced secondary signal WNT. BMP signaling directly converts cells from pluripotent to extraembryonic fates while simultaneously upregulating Wnt signaling, which promotes primitive streak and mesodermal specification. Using live-cell imaging of signaling and cell fate reporters together with a simple mathematical model, we show that this circuit produces a temporal morphogen effect where, once BMP signal duration is above a threshold for differentiation, intermediate and long pulses of BMP signaling produce specification of mesoderm and extraembryonic fates, respectively. Our results provide a systems-level picture of how these signaling pathways control the landscape of early human development.


Assuntos
Proteínas Morfogenéticas Ósseas , Diferenciação Celular , Linha Primitiva , Transdução de Sinais , Linha Primitiva/metabolismo , Linha Primitiva/embriologia , Proteínas Morfogenéticas Ósseas/metabolismo , Humanos , Transdução de Sinais/fisiologia , Animais , Mesoderma/metabolismo , Mesoderma/embriologia , Via de Sinalização Wnt/fisiologia , Proteínas Wnt/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Gastrulação/fisiologia
6.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38748250

RESUMO

Dynamic presynaptic actin remodeling drives structural and functional plasticity at synapses, but the underlying mechanisms remain largely unknown. Previous work has shown that actin regulation via Rac1 guanine exchange factor (GEF) Vav signaling restrains synaptic growth via bone morphogenetic protein (BMP)-induced receptor macropinocytosis and mediates synaptic potentiation via mobilization of reserve pool vesicles in presynaptic boutons. Here, we find that Gef26/PDZ-GEF and small GTPase Rap1 signaling couples the BMP-induced activation of Abelson kinase to this Vav-mediated macropinocytosis. Moreover, we find that adenylate cyclase Rutabaga (Rut) signaling via exchange protein activated by cAMP (Epac) drives the mobilization of reserve pool vesicles during post-tetanic potentiation (PTP). We discover that Rap1 couples activation of Rut-cAMP-Epac signaling to Vav-mediated synaptic potentiation. These findings indicate that Rap1 acts as an essential, convergent node for Abelson kinase and cAMP signaling to mediate BMP-induced structural plasticity and activity-induced functional plasticity via Vav-dependent regulation of the presynaptic actin cytoskeleton.


Assuntos
Plasticidade Neuronal , Transdução de Sinais , Proteínas rap1 de Ligação ao GTP , Animais , Plasticidade Neuronal/fisiologia , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/genética , Terminações Pré-Sinápticas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Proteínas Proto-Oncogênicas c-vav/genética , Camundongos , AMP Cíclico/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Complexo Shelterina/metabolismo
7.
J Cell Mol Med ; 28(10): e18324, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760897

RESUMO

Early research suggested that bone morphogenetic protein 10 (BMP10) is primarily involved in cardiac development and congenital heart disease processes. BMP10 is a newly identified cardiac-specific protein. In recent years, reports have emphasized the effects of BMP10 on myocardial apoptosis, fibrosis and immune response, as well as its synergistic effects with BMP9 in vascular endothelium and role in endothelial dysfunction. We believe that concentrating on this aspect of the study will enhance our knowledge of the pathogenesis of diabetes and the cardiovascular field. However, there have been no reports of any reviews discussing the role of BMP10 in diabetes and cardiovascular disease. In addition, the exact pathogenesis of diabetic cardiomyopathy is not fully understood, including myocardial energy metabolism disorders, microvascular changes, abnormal apoptosis of cardiomyocytes, collagen structural changes and myocardial fibrosis, all of which cause cardiac function impairment directly or indirectly and interact with one another. This review summarizes the research results of BMP10 in cardiac development, endothelial function and cardiovascular disease in an effort to generate new ideas for future research into diabetic cardiomyopathy.


Assuntos
Proteínas Morfogenéticas Ósseas , Doenças Cardiovasculares , Diabetes Mellitus , Cardiomiopatias Diabéticas , Humanos , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Apoptose
8.
Cardiovasc Diabetol ; 23(1): 160, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715043

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) is a crucial complication of long-term chronic diabetes that can lead to myocardial hypertrophy, myocardial fibrosis, and heart failure. There is increasing evidence that DCM is associated with pyroptosis, a form of inflammation-related programmed cell death. Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor ß superfamily, which regulates oxidative stress, inflammation, and cell survival to mitigate myocardial hypertrophy, myocardial infarction, and vascular injury. However, the role of GDF11 in regulating pyroptosis in DCM remains to be elucidated. This research aims to investigate the role of GDF11 in regulating pyroptosis in DCM and the related mechanism. METHODS AND RESULTS: Mice were injected with streptozotocin (STZ) to induce a diabetes model. H9c2 cardiomyocytes were cultured in high glucose (50 mM) to establish an in vitro model of diabetes. C57BL/6J mice were preinjected with adeno-associated virus 9 (AAV9) intravenously via the tail vein to specifically overexpress myocardial GDF11. GDF11 attenuated pyroptosis in H9c2 cardiomyocytes after high-glucose treatment. In diabetic mice, GDF11 alleviated cardiomyocyte pyroptosis, reduced myocardial fibrosis, and improved cardiac function. Mechanistically, GDF11 inhibited pyroptosis by preventing inflammasome activation. GDF11 achieved this by specifically binding to apoptosis-associated speck-like protein containing a CARD (ASC) and preventing the assembly and activation of the inflammasome. Additionally, the expression of GDF11 during pyroptosis was regulated by peroxisome proliferator-activated receptor α (PPARα). CONCLUSION: These findings demonstrate that GDF11 can treat diabetic cardiomyopathy by alleviating pyroptosis and reveal the role of the PPARα-GDF11-ASC pathway in DCM, providing ideas for new strategies for cardioprotection.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Fibrose , Fatores de Diferenciação de Crescimento , Inflamassomos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Piroptose , Transdução de Sinais , Animais , Piroptose/efeitos dos fármacos , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/prevenção & controle , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Linhagem Celular , Inflamassomos/metabolismo , Masculino , Fatores de Diferenciação de Crescimento/metabolismo , Ratos , Glicemia/metabolismo , Camundongos , Glucose/metabolismo , Glucose/toxicidade , Proteínas Morfogenéticas Ósseas , PPAR alfa
9.
Arch Oral Biol ; 162: 105962, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569446

RESUMO

OBJECTIVE: This study assessed the impact of an anti-sclerostin monoclonal antibody (Scl-Ab)-based osteoporosis drug on the post-extraction alveolar repair of ovariectomized rats. DESIGN: Fifteen female rats were randomly distributed into three groups: CTR (healthy animals), OST (osteoporosis induced by ovariectomy), and OST+Scl-Ab (osteoporosis induction followed by Scl-Ab treatment). Ovariectomy or sham surgery was performed 30 days before baseline, and Scl-Ab or a vehicle was administered accordingly in the groups. After seven days, all rats underwent the first lower molar extraction and were euthanized 15 days later. Computed microtomography, histological analysis, and collagen content measurement were performed on post-extraction sockets and intact mandibular and maxillary bone areas. RESULTS: Microtomographic analyses of the sockets and mandibles did not reveal significant differences between groups on bone morphometric parameters (p > 0.05), while maxillary bone analyses resulted in better maintenance of bone architecture in OST+Scl-Ab, compared to OST (p < 0.05). Descriptive histological analysis and polarization microscopy indicated better post-extraction socket repair characteristics and collagen content in OST+Scl-Ab compared to OST (p < 0.05). CONCLUSIONS: Scl-Ab-based medication did not accelerate alveolar bone formation but exhibited better post-extraction repair characteristics, and collagen content compared to ovariectomized animals only.


Assuntos
Proteínas Morfogenéticas Ósseas , Osteoporose , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Marcadores Genéticos , Anticorpos Monoclonais/farmacologia , Colágeno
10.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612467

RESUMO

Both bone morphogenetic protein 2 (BMP-2) and abaloparatide are used to promote bone formation. However, there is no consensus about their optimal administration. We investigated the optimal administration theory for the pairing of BMP-2 and abaloparatide in a rat spinal fusion model. Group I was only implanted in carriers and saline. Carriers with 3 µg of recombinant human BMP-2 (rhBMP-2) were implanted in other groups. Abaloparatide injections were administered three times a week for group III (for a total amount of 120 µg/kg in a week) and six times a week for group IV (for a total amount of 120 µg/kg in a week) after surgery. They were euthanized 8 weeks after the surgery, and we explanted their spines at that time. We assessed them using manual palpation tests, radiography, high-resolution micro-computed tomography (micro-CT), and histological analysis. We also analyzed serum bone metabolism markers. The fusion rate in Groups III and IV was higher than in Group I, referring to the manual palpation tests. Groups III and IV recorded greater radiographic scores than those in Groups I and II, too. Micro-CT analysis showed that Tbs. Sp in Groups III and IV was significantly lower than in Group I. Tb. N in Group IV was significantly higher than in Group I. Serum marker analysis showed that bone formation markers were higher in Groups III and IV than in Group I. On the other hand, bone resorption markers were lower in Group IV than in Group I. A histological analysis showed enhanced trabecular bone osteogenesis in Group IV. Frequent administration of abaloparatide may be suitable for the thickening of trabecular bone structure and the enhancement of osteogenesis in a rat spinal fusion model using BMP-2 in insufficient doses.


Assuntos
Osteogênese , Proteína Relacionada ao Hormônio Paratireóideo , Fusão Vertebral , Humanos , Animais , Ratos , Microtomografia por Raio-X , Proteínas Morfogenéticas Ósseas
11.
Methods Mol Biol ; 2803: 13-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38676882

RESUMO

The adept and systematic differentiation of embryonic stem cells (ESCs) and human-induced pluripotent stem cells (hiPSCs) to diverse lineage-prone cell types involves crucial step-by-step process that mimics the vital strategic commitment phase that is usually observed during the process of embryo development. The development of precise tissue-specific cell types from these stem cells indeed plays an important role in the advancement of imminent stem cell-based therapeutic strategies. Therefore, the usage of hiPSC-derived cell types for subsequent cardiovascular disease modeling, drug screening, and therapeutic drug development undeniably entails an in-depth understanding of each and every step to proficiently stimulate these stem cells into desired cardiomyogenic lineage. Thus, to accomplish this definitive and decisive fate, it is essential to efficiently induce the mesoderm or pre-cardiac mesoderm, succeeded by the division of cells into cardiovascular and ultimately ensuing with the cardiomyogenic lineage outcome. This usually commences from the earliest phases of pluripotent cell induction. In this chapter, we discuss our robust and reproducible step-wise protocol that will describe the subtype controlled, precise lineage targeted standardization of activin/nodal, and BMP signaling molecules/cytokines, for the efficient differentiation of ventricular cardiomyocytes from hiPSCs via the embryoid body method. In addition, we also describe techniques to dissociate hiPSCs, hiPSC-derived early cardiomyocytes for mesoderm and pre-cardiac mesoderm assessment, and hiPSC-derived cardiomyocytes for early and mature markers assessment.


Assuntos
Ativinas , Proteínas Morfogenéticas Ósseas , Diferenciação Celular , Linhagem da Célula , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Transdução de Sinais , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Ativinas/farmacologia , Ativinas/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Proteína Nodal/metabolismo , Técnicas de Cultura de Células/métodos
12.
J Agric Food Chem ; 72(17): 9691-9702, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639219

RESUMO

Marine biodiversity offers a wide array of active ingredient resources. Gadus morhua peptides (GMPs) showed excellent osteoprotective effects in ovariectomized mice. However, the potential osteogenesis mechanisms of key osteogenic peptides in GMP were seldom reported. In this study, a novel osteogenic peptide (GETNPADSKPGSIR, P-GM-2) was screened from GMP. P-GM-2 has a high stability coefficient and a strong interaction with epidermal growth factor receptor. Cell culture experiments showed that P-GM-2 stimulated the expression of osteogenic differentiation markers to promote osteoblast proliferation, differentiation, and mineralization. Additionally, P-GM-2 phosphorylates GSK-3ß, leading to the stabilization of ß-catenin and its translocation to the nucleus, thus initiating the activation of the Wnt/ß-catenin signaling pathway. Meanwhile, P-GM-2 could also regulate the osteogenic differentiation of preosteoblasts by triggering the BMP/Smad and mitogen-activated protein kinase signaling pathways. Further validation with specific inhibitors (ICG001 and Noggin) demonstrated that the osteogenic activity of P-GM-2 was revealed by the activation of the BMP and Wnt/ß-catenin pathways. In summary, these results provide theoretical and practical insights into P-GM-2 as an effective antiosteoporosis active ingredient.


Assuntos
Diferenciação Celular , Osteoblastos , Osteogênese , Peptídeos , Via de Sinalização Wnt , beta Catenina , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Camundongos , Osteogênese/efeitos dos fármacos , beta Catenina/metabolismo , beta Catenina/genética , Via de Sinalização Wnt/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/química , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Transdução de Sinais/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
13.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673844

RESUMO

This study aimed to examine minimodeling-based bone formation between the epiphyses and metaphyses of the long bones of eldecalcitol (ELD)-administered ovariectomized rats. Sixteen-week-old female rats were divided into four groups: sham-operated rats receiving vehicle (Sham group), ovariectomized (OVX) rats receiving vehicle (Vehicle group), or ELDs (30 or 90 ng/kg BW, respectively; ELD30 and ELD90 groups). ELD administration increased bone volume and trabecular thickness, reducing the number of osteoclasts in both the epiphyses and metaphyses of OVX rats. The Sham and Vehicle groups exhibited mainly remodeling-based bone formation in both regions. The epiphyses of the ELD groups showed a significantly higher frequency of minimodeling-based bone formation than remodeling-based bone formation. In contrast, the metaphyses exhibited significantly more minimodeling-based bone formation in the ELD90 group compared with the ELD30 group. However, there was no significant difference between minimodeling-based bone formation and remodeling-based bone formation in the ELD90 group. While the minimodeling-induced new bone contained few sclerostin-immunoreactive osteocytes, the underlying pre-existing bone harbored many. The percentage of sclerostin-positive osteocytes was significantly reduced in the minimodeling-induced bone in the epiphyses but not in the metaphyses of the ELD groups. Thus, it seems likely that ELD could induce minimodeling-based bone formation in the epiphyses rather than in the metaphyses, and that ELD-driven minimodeling may be associated with the inhibition of sclerostin synthesis.


Assuntos
Marcadores Genéticos , Osteogênese , Vitamina D , Vitamina D/análogos & derivados , Animais , Feminino , Ratos , Osteogênese/efeitos dos fármacos , Vitamina D/farmacologia , Ovariectomia , Epífises/efeitos dos fármacos , Epífises/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Remodelação Óssea/efeitos dos fármacos , Ratos Sprague-Dawley , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacos
14.
J Biosci Bioeng ; 137(6): 480-486, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604883

RESUMO

Functional tissue-engineered artificial skeletal muscle tissue has great potential for pharmacological and academic applications. This study demonstrates an in vitro tissue engineering system to construct functional artificial skeletal muscle tissues using self-organization and signal inhibitors. To induce efficient self-organization, we optimized the substrate stiffness and extracellular matrix (ECM) coatings. We modified the tissue morphology to be ring-shaped under optimized self-organization conditions. A bone morphogenetic protein (BMP) inhibitor was added to improve overall myogenic differentiation. This supplementation enhanced the myogenic differentiation ratio and myotube hypertrophy in two-dimensional cell cultures. Finally, we found that myotube hypertrophy was enhanced by a combination of self-organization with ring-shaped tissue and a BMP inhibitor. BMP inhibitor treatment significantly improved myogenic marker expression and contractile force generation in the self-organized tissue. These observations indicated that this procedure may provide a novel and functional artificial skeletal muscle for pharmacological studies.


Assuntos
Proteínas Morfogenéticas Ósseas , Diferenciação Celular , Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Músculo Esquelético , Transdução de Sinais , Engenharia Tecidual , Diferenciação Celular/efeitos dos fármacos , Animais , Engenharia Tecidual/métodos , Camundongos , Proteínas Morfogenéticas Ósseas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/citologia , Linhagem Celular , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Alicerces Teciduais/química
15.
J Cell Sci ; 137(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38639242

RESUMO

WW domain-containing transcription regulator 1 (WWTR1, referred to here as TAZ) and Yes-associated protein (YAP, also known as YAP1) are transcriptional co-activators traditionally studied together as a part of the Hippo pathway, and are best known for their roles in stem cell proliferation and differentiation. Despite their similarities, TAZ and YAP can exert divergent cellular effects by differentially interacting with other signaling pathways that regulate stem cell maintenance or differentiation. In this study, we show in mouse neural stem and progenitor cells (NPCs) that TAZ regulates astrocytic differentiation and maturation, and that TAZ mediates some, but not all, of the effects of bone morphogenetic protein (BMP) signaling on astrocytic development. By contrast, both TAZ and YAP mediate the effects on NPC fate of ß1-integrin (ITGB1) and integrin-linked kinase signaling, and these effects are dependent on extracellular matrix cues. These findings demonstrate that TAZ and YAP perform divergent functions in the regulation of astrocyte differentiation, where YAP regulates cell cycle states of astrocytic progenitors and TAZ regulates differentiation and maturation from astrocytic progenitors into astrocytes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Astrócitos , Diferenciação Celular , Proliferação de Células , Células-Tronco Neurais , Transdução de Sinais , Transativadores , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP , Animais , Astrócitos/metabolismo , Astrócitos/citologia , Proteínas de Sinalização YAP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Camundongos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Transativadores/metabolismo , Transativadores/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Proteínas Serina-Treonina Quinases
16.
Eur J Pharmacol ; 973: 176574, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642670

RESUMO

Osteoporosis is a multifaceted skeletal disorder characterized by reduced bone mass and structural deterioration, posing a significant public health challenge, particularly in the elderly population. Treatment strategies for osteoporosis primarily focus on inhibiting bone resorption and promoting bone formation. However, the effectiveness and limitations of current therapeutic approaches underscore the need for innovative methods. This review explores emerging molecular targets within crucial signaling pathways, including wingless/integrated (WNT), bone morphogenetic protein (BMP), hedgehog (HH), and Notch signaling pathway, to understand their roles in osteogenesis regulation. The identification of crosstalk targets between these pathways further enhances our comprehension of the intricate bone metabolism cycle. In summary, unraveling the molecular complexity of osteoporosis provides insights into potential therapeutic targets beyond conventional methods, offering a promising avenue for the development of new anabolic drugs.


Assuntos
Osteogênese , Osteoporose , Transdução de Sinais , Humanos , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Animais , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Hedgehog/metabolismo , Terapia de Alvo Molecular , Receptores Notch/metabolismo
17.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474297

RESUMO

Diabetic retinopathy (DR), a prevalent complication of diabetes mellitus affecting a significant portion of the global population, has long been viewed primarily as a microvascular disorder. However, emerging evidence suggests that it should be redefined as a neurovascular disease with multifaceted pathogenesis rooted in oxidative stress and advanced glycation end products. The transforming growth factor-ß (TGF-ß) signaling family has emerged as a major contributor to DR pathogenesis due to its pivotal role in retinal vascular homeostasis, endothelial cell barrier function, and pericyte differentiation. However, the precise roles of TGF-ß signaling in DR remain incompletely understood, with conflicting reports on its impact in different stages of the disease. Additionally, the BMP subfamily within the TGF-ß superfamily introduces further complexity, with BMPs exhibiting both pro- and anti-angiogenic properties. Furthermore, TGF-ß signaling extends beyond the vascular realm, encompassing immune regulation, neuronal survival, and maintenance. The intricate interactions between TGF-ß and reactive oxygen species (ROS), non-coding RNAs, and inflammatory mediators have been implicated in the pathogenesis of DR. This review delves into the complex web of signaling pathways orchestrated by the TGF-ß superfamily and their involvement in DR. A comprehensive understanding of these pathways may hold the key to developing targeted therapies to halt or mitigate the progression of DR and its devastating consequences.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Transdução de Sinais/fisiologia , Retina/metabolismo , Diabetes Mellitus/metabolismo
18.
Eur Respir J ; 63(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514094

RESUMO

BACKGROUND: Bone morphogenetic proteins 9 and 10 (BMP9 and BMP10), encoded by GDF2 and BMP10, respectively, play a pivotal role in pulmonary vascular regulation. GDF2 variants have been reported in pulmonary arterial hypertension (PAH) and hereditary haemorrhagic telangiectasia (HHT). However, the phenotype of GDF2 and BMP10 carriers remains largely unexplored. METHODS: We report the characteristics and outcomes of PAH patients in GDF2 and BMP10 carriers from the French and Dutch pulmonary hypertension registries. A literature review explored the phenotypic spectrum of these patients. RESULTS: 26 PAH patients were identified: 20 harbouring heterozygous GDF2 variants, one homozygous GDF2 variant, four heterozygous BMP10 variants, and one with both GDF2 and BMP10 variants. The prevalence of GDF2 and BMP10 variants was 1.3% and 0.4%, respectively. Median age at PAH diagnosis was 30 years, with a female/male ratio of 1.9. Congenital heart disease (CHD) was present in 15.4% of the patients. At diagnosis, most of the patients (61.5%) were in New York Heart Association Functional Class III or IV with severe haemodynamic compromise (median (range) pulmonary vascular resistance 9.0 (3.3-40.6) WU). Haemoptysis was reported in four patients; none met the HHT criteria. Two patients carrying BMP10 variants underwent lung transplantation, revealing typical PAH histopathology. The literature analysis showed that 7.6% of GDF2 carriers developed isolated HHT, and identified cardiomyopathy and developmental disorders in BMP10 carriers. CONCLUSIONS: GDF2 and BMP10 pathogenic variants are rare among PAH patients, and occasionally associated with CHD. HHT cases among GDF2 carriers are limited according to the literature. BMP10 full phenotypic ramifications warrant further investigation.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Telangiectasia Hemorrágica Hereditária , Humanos , Masculino , Feminino , Adulto , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Hipertensão Pulmonar/diagnóstico , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/complicações , Hipertensão Pulmonar Primária Familiar , Telangiectasia Hemorrágica Hereditária/complicações , Telangiectasia Hemorrágica Hereditária/genética , Fenótipo , Fator 2 de Diferenciação de Crescimento/genética , Estudos Multicêntricos como Assunto
19.
J Am Heart Assoc ; 13(7): e033720, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38529655

RESUMO

BACKGROUND: BMP10 (bone morphogenic protein 10) has emerged as a novel biomarker associated with the risk of ischemic stroke and other outcomes in patients with atrial fibrillation (AF). The study aimed to determine if repeated BMP10 measurements improve prognostication of cardiovascular events in patients with AF. METHODS AND RESULTS: BMP10 was measured using a prototype Elecsys immunoassay in plasma samples collected at randomization and after 2 months in patients with AF randomized to apixaban or warfarin in the ARISTOTLE (Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation) trial (n=2878). Adjusted Cox-regression models were used to evaluate the association between 2-month BMP10 levels and outcomes. BMP10 levels increased by 7.8% (P<0.001) over 2 months. The baseline variables most strongly associated with BMP10 levels at 2 months were baseline BMP10 levels, body mass index, sex, age, creatinine, diabetes, warfarin treatment, and AF-rhythm. During median 1.8 years follow-up, 34 ischemic strokes/systemic embolism, 155 deaths, and 99 heart failure hospitalizations occurred. Comparing the third with the first sample quartile, higher BMP10 levels at 2 months were associated with higher risk of ischemic stroke (hazard ratio [HR], 1.33 [95% CI, 0.67-2.63], P=0.037), heart failure (HR, 1.91 [95% CI, 1.17-3.12], P=0.012) and all-cause death (HR, 1.61 [95% CI, 1.17-2.21], P<0.001). Adding BMP10 levels at 2 months on top of established risk factors and baseline BMP10 levels improved the C-indices for ischemic stroke/systemic embolism (from 0.73 to 0.75), heart failure hospitalization (0.76-0.77), and all-cause mortality (0.70-0.72), all P<0.05. CONCLUSIONS: Elevated levels of BMP10 at 2 months strengthened the associations with the risk of ischemic stroke, hospitalization for heart failure, and all-cause mortality. Repeated measurements of BMP10 may further refine risk stratification in patients with AF.


Assuntos
Fibrilação Atrial , Proteínas Morfogenéticas Ósseas , Insuficiência Cardíaca , Acidente Vascular Cerebral , Humanos , Anticoagulantes/efeitos adversos , Anticoagulantes/uso terapêutico , Fibrilação Atrial/complicações , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/tratamento farmacológico , Biomarcadores , Proteínas Morfogenéticas Ósseas/sangue , Proteínas Morfogenéticas Ósseas/química , Embolia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/complicações , AVC Isquêmico , Medição de Risco/métodos , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/prevenção & controle , Varfarina/efeitos adversos , Varfarina/uso terapêutico
20.
Zhonghua Xin Xue Guan Bing Za Zhi ; 52(3): 286-292, 2024 Mar 24.
Artigo em Chinês | MEDLINE | ID: mdl-38514331

RESUMO

Objective: To investigate the correlation between serum growth differentiation factor 11 (GDF11) level and coronary artery lesions in patients with ST-segment elevation myocardial infarction (STEMI), and the predictive efficacy of nomogram risk prediction model based on GDF11 combined with traditional risk factors on the occurrence of STEMI. Methods: This study was a retrospective cross-sectional study. Patients hospitalized in the Department of Cardiology of the 904th Hospital of Joint Logistic Support Force of People's Liberation Army of China from 2016 to 2018 were selected and divided into control group and STEMI group. The demographic data, blood lipid level, laboratory indicators of blood and GDF11 level were collected. Logistic regression analysis screened out independent correlated factors for the occurrence of STEMI. Spearman correlation analysis clarified the correlation of each indicator with the SYNTAX or Gensini scores. A nomogram risk prediction model for the risk of STEMI occurrence and the receiver operating characteristic curve was used to compare the prediction efficiency of each model. Results: A total of 367 patients were enrolled, divided into control group (n=172) and STEMI group (n=195), age (66.5±11.8), male 222 (60.49%). The serum GDF11 level of STEMI group was significantly lower than that of the control group (36.20 (16.60, 70.75) µg/L vs. 85.00 (53.93, 117.10) µg/L, P<0.001). The results of multivariate logistic regression analysis showed serum GDF11(OR=0.98, 95%CI: 0.97-0.99) and traditional independent risk factors such as smoking, diabetes, C-reactive protein, homocysteine, lipoprotein (a) and apolipoprotein A1/B were independent correlate factors for the occurrence of STEMI (P<0.05). Spearman correlation analysis showed that serum GDF11 was negatively correlated with SYNTAX score and Gensini score (P<0.05). The nomogram model constructed by serum GDF11 combined with traditional independent risk factors (AUC=0.85, 95%CI: 0.81-0.89) had better predictive value for the occurrence of STEMI than the traditional nomogram model constructed by independent risk factors(AUC=0.80, 95%CI:0.75-0.84) or serum GDF11 (AUC=0.76, 95%CI: 0.72-0.81), all P<0.01. Conclusions: Serum GDF11 is an independent correlate factor in the occurrence of STEMI and is negatively correlated with the severity of coronary artery lesions in patients with STEMI. The nomogram model constructed based on GDF11 combined with traditional risk factors can be a good predictor for the occurrence of STEMI.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Masculino , Proteínas Morfogenéticas Ósseas/sangue , Proteínas Morfogenéticas Ósseas/química , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/metabolismo , Estudos Transversais , Fatores de Diferenciação de Crescimento/sangue , Fatores de Diferenciação de Crescimento/química , Infarto do Miocárdio/sangue , Infarto do Miocárdio/metabolismo , Estudos Retrospectivos , Fatores de Risco , Infarto do Miocárdio com Supradesnível do Segmento ST/sangue , Infarto do Miocárdio com Supradesnível do Segmento ST/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...