Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.531
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731813

RESUMO

Increased expression and nuclear translocation of ß-CATENIN is frequently observed in breast cancer, and it correlates with poor prognosis. Current treatment strategies targeting ß-CATENIN are not as efficient as desired. Therefore, detailed understanding of ß-CATENIN regulation is crucial. Bone morphogenetic proteins (BMP) and Wingless/Integrated (WNT) pathway crosstalk is well-studied for many cancer types including colorectal cancer, whereas it is still poorly understood for breast cancer. Analysis of breast cancer patient data revealed that BMP2 and BMP6 were significantly downregulated in tumors. Since mutation frequency in genes enhancing ß-CATENIN protein stability is relatively low in breast cancer, we aimed to investigate whether decreased BMP ligand expression could contribute to a high protein level of ß-CATENIN in breast cancer cells. We demonstrated that downstream of BMP stimulation, SMAD4 is required to reduce ß-CATENIN protein stability through the phosphorylation in MCF7 and T47D cells. Consequently, BMP stimulation reduces ß-CATENIN levels and prevents its nuclear translocation and target gene expression in MCF7 cells. Conversely, BMP stimulation has no effect on ß-CATENIN phosphorylation or stability in MDA-MB-231 and MDA-MB-468 cells. Likewise, SMAD4 modulation does not alter the response of those cells, indicating that SMAD4 alone is insufficient for BMP-induced ß-CATENIN phosphorylation. While our data suggest that considering BMP activity may serve as a prognostic marker for understanding ß-CATENIN accumulation risk, further investigation is needed to elucidate the differential responsiveness of breast cancer cell lines.


Assuntos
Neoplasias da Mama , Estabilidade Proteica , beta Catenina , Humanos , beta Catenina/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Fosforilação , Feminino , Linhagem Celular Tumoral , Proteína Smad4/metabolismo , Proteína Smad4/genética , Regulação Neoplásica da Expressão Gênica , Células MCF-7 , Proteínas Morfogenéticas Ósseas/metabolismo , Proteína Morfogenética Óssea 2/metabolismo
2.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38748250

RESUMO

Dynamic presynaptic actin remodeling drives structural and functional plasticity at synapses, but the underlying mechanisms remain largely unknown. Previous work has shown that actin regulation via Rac1 guanine exchange factor (GEF) Vav signaling restrains synaptic growth via bone morphogenetic protein (BMP)-induced receptor macropinocytosis and mediates synaptic potentiation via mobilization of reserve pool vesicles in presynaptic boutons. Here, we find that Gef26/PDZ-GEF and small GTPase Rap1 signaling couples the BMP-induced activation of Abelson kinase to this Vav-mediated macropinocytosis. Moreover, we find that adenylate cyclase Rutabaga (Rut) signaling via exchange protein activated by cAMP (Epac) drives the mobilization of reserve pool vesicles during post-tetanic potentiation (PTP). We discover that Rap1 couples activation of Rut-cAMP-Epac signaling to Vav-mediated synaptic potentiation. These findings indicate that Rap1 acts as an essential, convergent node for Abelson kinase and cAMP signaling to mediate BMP-induced structural plasticity and activity-induced functional plasticity via Vav-dependent regulation of the presynaptic actin cytoskeleton.


Assuntos
Plasticidade Neuronal , Transdução de Sinais , Proteínas rap1 de Ligação ao GTP , Animais , Plasticidade Neuronal/fisiologia , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/genética , Terminações Pré-Sinápticas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Proteínas Proto-Oncogênicas c-vav/genética , Camundongos , AMP Cíclico/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Complexo Shelterina/metabolismo
3.
Elife ; 122024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690987

RESUMO

Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.


Assuntos
Condrócitos , Microtia Congênita , Proteínas Quinases Dependentes de AMP Cíclico , Transdução de Sinais , Animais , Condrócitos/metabolismo , Microtia Congênita/genética , Microtia Congênita/metabolismo , Camundongos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Humanos , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Condrogênese/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética
4.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673844

RESUMO

This study aimed to examine minimodeling-based bone formation between the epiphyses and metaphyses of the long bones of eldecalcitol (ELD)-administered ovariectomized rats. Sixteen-week-old female rats were divided into four groups: sham-operated rats receiving vehicle (Sham group), ovariectomized (OVX) rats receiving vehicle (Vehicle group), or ELDs (30 or 90 ng/kg BW, respectively; ELD30 and ELD90 groups). ELD administration increased bone volume and trabecular thickness, reducing the number of osteoclasts in both the epiphyses and metaphyses of OVX rats. The Sham and Vehicle groups exhibited mainly remodeling-based bone formation in both regions. The epiphyses of the ELD groups showed a significantly higher frequency of minimodeling-based bone formation than remodeling-based bone formation. In contrast, the metaphyses exhibited significantly more minimodeling-based bone formation in the ELD90 group compared with the ELD30 group. However, there was no significant difference between minimodeling-based bone formation and remodeling-based bone formation in the ELD90 group. While the minimodeling-induced new bone contained few sclerostin-immunoreactive osteocytes, the underlying pre-existing bone harbored many. The percentage of sclerostin-positive osteocytes was significantly reduced in the minimodeling-induced bone in the epiphyses but not in the metaphyses of the ELD groups. Thus, it seems likely that ELD could induce minimodeling-based bone formation in the epiphyses rather than in the metaphyses, and that ELD-driven minimodeling may be associated with the inhibition of sclerostin synthesis.


Assuntos
Marcadores Genéticos , Osteogênese , Vitamina D , Vitamina D/análogos & derivados , Animais , Feminino , Ratos , Osteogênese/efeitos dos fármacos , Vitamina D/farmacologia , Ovariectomia , Epífises/efeitos dos fármacos , Epífises/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Remodelação Óssea/efeitos dos fármacos , Ratos Sprague-Dawley , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacos
5.
Eur J Pharmacol ; 973: 176574, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642670

RESUMO

Osteoporosis is a multifaceted skeletal disorder characterized by reduced bone mass and structural deterioration, posing a significant public health challenge, particularly in the elderly population. Treatment strategies for osteoporosis primarily focus on inhibiting bone resorption and promoting bone formation. However, the effectiveness and limitations of current therapeutic approaches underscore the need for innovative methods. This review explores emerging molecular targets within crucial signaling pathways, including wingless/integrated (WNT), bone morphogenetic protein (BMP), hedgehog (HH), and Notch signaling pathway, to understand their roles in osteogenesis regulation. The identification of crosstalk targets between these pathways further enhances our comprehension of the intricate bone metabolism cycle. In summary, unraveling the molecular complexity of osteoporosis provides insights into potential therapeutic targets beyond conventional methods, offering a promising avenue for the development of new anabolic drugs.


Assuntos
Osteogênese , Osteoporose , Transdução de Sinais , Humanos , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Animais , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Hedgehog/metabolismo , Terapia de Alvo Molecular , Receptores Notch/metabolismo
6.
Methods Mol Biol ; 2803: 13-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38676882

RESUMO

The adept and systematic differentiation of embryonic stem cells (ESCs) and human-induced pluripotent stem cells (hiPSCs) to diverse lineage-prone cell types involves crucial step-by-step process that mimics the vital strategic commitment phase that is usually observed during the process of embryo development. The development of precise tissue-specific cell types from these stem cells indeed plays an important role in the advancement of imminent stem cell-based therapeutic strategies. Therefore, the usage of hiPSC-derived cell types for subsequent cardiovascular disease modeling, drug screening, and therapeutic drug development undeniably entails an in-depth understanding of each and every step to proficiently stimulate these stem cells into desired cardiomyogenic lineage. Thus, to accomplish this definitive and decisive fate, it is essential to efficiently induce the mesoderm or pre-cardiac mesoderm, succeeded by the division of cells into cardiovascular and ultimately ensuing with the cardiomyogenic lineage outcome. This usually commences from the earliest phases of pluripotent cell induction. In this chapter, we discuss our robust and reproducible step-wise protocol that will describe the subtype controlled, precise lineage targeted standardization of activin/nodal, and BMP signaling molecules/cytokines, for the efficient differentiation of ventricular cardiomyocytes from hiPSCs via the embryoid body method. In addition, we also describe techniques to dissociate hiPSCs, hiPSC-derived early cardiomyocytes for mesoderm and pre-cardiac mesoderm assessment, and hiPSC-derived cardiomyocytes for early and mature markers assessment.


Assuntos
Ativinas , Proteínas Morfogenéticas Ósseas , Diferenciação Celular , Linhagem da Célula , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Transdução de Sinais , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Ativinas/farmacologia , Ativinas/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Proteína Nodal/metabolismo , Técnicas de Cultura de Células/métodos
7.
J Agric Food Chem ; 72(17): 9691-9702, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639219

RESUMO

Marine biodiversity offers a wide array of active ingredient resources. Gadus morhua peptides (GMPs) showed excellent osteoprotective effects in ovariectomized mice. However, the potential osteogenesis mechanisms of key osteogenic peptides in GMP were seldom reported. In this study, a novel osteogenic peptide (GETNPADSKPGSIR, P-GM-2) was screened from GMP. P-GM-2 has a high stability coefficient and a strong interaction with epidermal growth factor receptor. Cell culture experiments showed that P-GM-2 stimulated the expression of osteogenic differentiation markers to promote osteoblast proliferation, differentiation, and mineralization. Additionally, P-GM-2 phosphorylates GSK-3ß, leading to the stabilization of ß-catenin and its translocation to the nucleus, thus initiating the activation of the Wnt/ß-catenin signaling pathway. Meanwhile, P-GM-2 could also regulate the osteogenic differentiation of preosteoblasts by triggering the BMP/Smad and mitogen-activated protein kinase signaling pathways. Further validation with specific inhibitors (ICG001 and Noggin) demonstrated that the osteogenic activity of P-GM-2 was revealed by the activation of the BMP and Wnt/ß-catenin pathways. In summary, these results provide theoretical and practical insights into P-GM-2 as an effective antiosteoporosis active ingredient.


Assuntos
Diferenciação Celular , Osteoblastos , Osteogênese , Peptídeos , Via de Sinalização Wnt , beta Catenina , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Camundongos , Osteogênese/efeitos dos fármacos , beta Catenina/metabolismo , beta Catenina/genética , Via de Sinalização Wnt/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/química , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Transdução de Sinais/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
8.
Dev Cell ; 59(9): 1132-1145.e6, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38531357

RESUMO

Neurons must be made in the correct proportions to communicate with the appropriate synaptic partners and form functional circuits. In the Drosophila visual system, multiple subtypes of distal medulla (Dm) inhibitory interneurons are made in distinct, reproducible numbers-from 5 to 800 per optic lobe. These neurons are born from a crescent-shaped neuroepithelium called the outer proliferation center (OPC), which can be subdivided into specific domains based on transcription factor and growth factor expression. We fate mapped Dm neurons and found that more abundant neural types are born from larger neuroepithelial subdomains, while less abundant subtypes are born from smaller ones. Additionally, morphogenetic Dpp/BMP signaling provides a second layer of patterning that subdivides the neuroepithelium into smaller domains to provide more granular control of cell proportions. Apoptosis appears to play a minor role in regulating Dm neuron abundance. This work describes an underappreciated mechanism for the regulation of neuronal stoichiometry.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Neurônios , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Neurônios/metabolismo , Neurônios/citologia , Drosophila melanogaster/metabolismo , Lobo Óptico de Animais não Mamíferos/metabolismo , Lobo Óptico de Animais não Mamíferos/citologia , Transdução de Sinais , Vias Visuais/metabolismo , Apoptose , Proteínas Morfogenéticas Ósseas/metabolismo , Padronização Corporal , Interneurônios/metabolismo , Interneurônios/citologia , Regulação da Expressão Gênica no Desenvolvimento , Contagem de Células , Proliferação de Células , Neurogênese/fisiologia
9.
J Neurooncol ; 167(3): 455-465, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38446374

RESUMO

PURPOSE: Meningiomas are the most common type of brain tumors and are generally benign, but malignant atypical meningiomas and anaplastic meningiomas frequently recur with poor prognosis. The metabolism of meningiomas is little known, so few effective treatment options other than surgery and radiation are available, and the targets for treatment of recurrence are not well defined. The Aim of this paper is to find the therapeutic target. METHODS: The effects of bone morphogenetic protein (BMP) signal inhibitor (K02288) and upstream regulator Gremlin2 (GREM2) on meningioma's growth and senescence were examined. In brief, we examined as follows: 1) Proliferation assay by inhibiting BMP signaling. 2) Comprehensive analysis of forced expression GREM2.3) Correlation between GREM2 mRNA expression and proliferation marker in 87 of our clinical samples. 4) Enrichment analysis between GREM2 high/low expressed groups using RNA-seq data (42 cases) from the public database GREIN. 5) Changes in metabolites and senescence markers associated with BMP signal suppression. RESULTS: Inhibitors of BMP receptor (BMPR1A) and forced expression of GREM2 shifted tryptophan metabolism from kynurenine/quinolinic acid production to serotonin production in malignant meningiomas, reduced NAD + /NADH production, decreased gene cluster expression involved in oxidative phosphorylation, and caused decrease in ATP. Finally, malignant meningiomas underwent cellular senescence, decreased proliferation, and eventually formed psammoma bodies. Reanalyzed RNA-seq data of clinical samples obtained from GREIN showed that increased expression of GREM2 decreased the expression of genes involved in oxidative phosphorylation, similar to our experimental results. CONCLUSIONS: The GREM2-BMPR1A-tryptophan metabolic pathway in meningiomas is a potential new therapeutic target.


Assuntos
Proteínas Morfogenéticas Ósseas , Calcinose , Neoplasias Meníngeas , Meningioma , Transdução de Sinais , Humanos , Meningioma/metabolismo , Meningioma/patologia , Meningioma/genética , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Calcinose/patologia , Calcinose/metabolismo , Calcinose/genética , Proliferação de Células , Senescência Celular , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética
10.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474297

RESUMO

Diabetic retinopathy (DR), a prevalent complication of diabetes mellitus affecting a significant portion of the global population, has long been viewed primarily as a microvascular disorder. However, emerging evidence suggests that it should be redefined as a neurovascular disease with multifaceted pathogenesis rooted in oxidative stress and advanced glycation end products. The transforming growth factor-ß (TGF-ß) signaling family has emerged as a major contributor to DR pathogenesis due to its pivotal role in retinal vascular homeostasis, endothelial cell barrier function, and pericyte differentiation. However, the precise roles of TGF-ß signaling in DR remain incompletely understood, with conflicting reports on its impact in different stages of the disease. Additionally, the BMP subfamily within the TGF-ß superfamily introduces further complexity, with BMPs exhibiting both pro- and anti-angiogenic properties. Furthermore, TGF-ß signaling extends beyond the vascular realm, encompassing immune regulation, neuronal survival, and maintenance. The intricate interactions between TGF-ß and reactive oxygen species (ROS), non-coding RNAs, and inflammatory mediators have been implicated in the pathogenesis of DR. This review delves into the complex web of signaling pathways orchestrated by the TGF-ß superfamily and their involvement in DR. A comprehensive understanding of these pathways may hold the key to developing targeted therapies to halt or mitigate the progression of DR and its devastating consequences.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Transdução de Sinais/fisiologia , Retina/metabolismo , Diabetes Mellitus/metabolismo
11.
Sci Rep ; 14(1): 6724, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509118

RESUMO

The balance between Noggin and bone morphogenetic proteins (BMPs) is important during early development and skeletal regenerative therapies. Noggin binds BMPs in the extracellular space, thereby preventing BMP signaling. However, Noggin may affect cell response not necessarily through the modulation of BMP signaling, raising the possibility of direct Noggin signaling through yet unspecified receptors. Here we show that in osteogenic cultures of adipose-derived stem cells (ASCs), Noggin activates fibroblast growth factor receptors (FGFRs), Src/Akt and ERK kinases, and it stabilizes TAZ proteins in the presence of dexamethasone. Overall, this leads ASCs to increased expression of osteogenic markers and robust mineral deposition. Our results also indicate that Noggin can induce osteogenic genes expression in normal human bone marrow stem cells and alkaline phosphatase activity in normal human dental pulp stem cells. Besides, Noggin can specifically activate FGFR2 in osteosarcoma cells. We believe our findings open new research avenues to further explore the involvement of Noggin in cell fate modulation by FGFR2/Src/Akt/ERK signaling and potential applications of Noggin in bone regenerative therapies.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Proteína Morfogenética Óssea 2/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Células Cultivadas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Proteínas de Transporte/metabolismo
12.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542334

RESUMO

The BMP pathway is one of the major signaling pathways in embryonic development, ontogeny and homeostasis, identified many years ago by pioneers in developmental biology. Evidence of the deregulation of its activity has also emerged in many cancers, with complex and sometimes opposing effects. Recently, its role has been suspected in Diffuse Midline Gliomas (DMG), among which Diffuse Intrinsic Pontine Gliomas (DIPG) are one of the most complex challenges in pediatric oncology. Genomic sequencing has led to understanding part of their molecular etiology, with the identification of histone H3 mutations in a large proportion of patients. The epigenetic remodeling associated with these genetic alterations has also been precisely described, creating a permissive context for oncogenic transcriptional program activation. This review aims to describe the new findings about the involvement of BMP pathway activation in these tumors, placing their appearance in a developmental context. Targeting the oncogenic synergy resulting from this pathway activation in an H3K27M context could offer new therapeutic perspectives based on targeting treatment-resistant cell states.


Assuntos
Glioma Pontino Intrínseco Difuso , Glioma , Humanos , Criança , Glioma/metabolismo , Histonas/metabolismo , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/metabolismo , Glioma Pontino Intrínseco Difuso/patologia , Mutação , Transdução de Sinais , Proteínas Morfogenéticas Ósseas/metabolismo
13.
J Cell Mol Med ; 28(7): e18140, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494851

RESUMO

Growth differentiation factor 11 (GDF11), also known as bone morphogenetic protein 11 (BMP11), has been identified as a key player in various biological processes, including embryonic development, aging, metabolic disorders and cancers. GDF11 has also emerged as a critical component in liver development, injury and fibrosis. However, the effects of GDF11 on liver physiology and pathology have been a subject of debate among researchers due to conflicting reported outcomes. While some studies suggest that GDF11 has anti-aging properties, others have documented its senescence-inducing effects. Similarly, while GDF11 has been implicated in exacerbating liver injury, it has also been shown to have the potential to reduce liver fibrosis. In this narrative review, we present a comprehensive report of recent evidence elucidating the diverse roles of GDF11 in liver development, hepatic injury, regeneration and associated diseases such as non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), liver fibrosis and hepatocellular carcinoma. We also explore the therapeutic potential of GDF11 in managing various liver pathologies.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fibrose , Cirrose Hepática/patologia , Fatores de Diferenciação de Crescimento/genética , Fatores de Diferenciação de Crescimento/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Neoplasias Hepáticas/patologia
14.
Stem Cell Res Ther ; 15(1): 83, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500216

RESUMO

BACKGROUND: Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease caused by a gain-of-function mutation in ACVR1, which is a bone morphogenetic protein (BMP) type I receptor. Moreover, it causes progressive heterotopic ossification (HO) in connective tissues. Using FOP patient-derived induced pluripotent stem cells (FOP-iPSCs) and mouse models, we elucidated the underlying mechanisms of FOP pathogenesis and identified a candidate drug for FOP. METHODS: In the current study, healthy mesenchymal stem/stromal cells derived from iPSCs (iMSCs) expressing ACVR2B-Fc (iMSCACVR2B-Fc), which is a neutralizing receptobody, were constructed. Furthermore, patient-derived iMSCs and FOP mouse model (ACVR1R206H, female) were used to confirm the inhibitory function of ACVR2B-Fc fusion protein secreted by iMSCACVR2B-Fc on BMP signaling pathways and HO development, respectively. RESULTS: We found that secreted ACVR2B-Fc attenuated BMP signaling initiated by Activin-A and BMP-9 in both iMSCs and FOP-iMSCs in vitro. Transplantation of ACVR2B-Fc-expressing iMSCs reduced primary HO in a transgenic mouse model of FOP. Notably, a local injection of ACVR2B-Fc-expressing iMSCs and not an intraperitoneal injection improved the treadmill performance, suggesting compound effects of ACVR2B-Fc and iMSCs. CONCLUSIONS: These results offer a new perspective for treating FOP through stem cell therapy.


Assuntos
Miosite Ossificante , Ossificação Heterotópica , Feminino , Humanos , Camundongos , Animais , Miosite Ossificante/genética , Miosite Ossificante/terapia , Ossificação Heterotópica/terapia , Ossificação Heterotópica/genética , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/farmacologia , Transdução de Sinais , Camundongos Transgênicos , Mutação , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Receptores de Activinas Tipo II/farmacologia
15.
Eur Respir J ; 63(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514094

RESUMO

BACKGROUND: Bone morphogenetic proteins 9 and 10 (BMP9 and BMP10), encoded by GDF2 and BMP10, respectively, play a pivotal role in pulmonary vascular regulation. GDF2 variants have been reported in pulmonary arterial hypertension (PAH) and hereditary haemorrhagic telangiectasia (HHT). However, the phenotype of GDF2 and BMP10 carriers remains largely unexplored. METHODS: We report the characteristics and outcomes of PAH patients in GDF2 and BMP10 carriers from the French and Dutch pulmonary hypertension registries. A literature review explored the phenotypic spectrum of these patients. RESULTS: 26 PAH patients were identified: 20 harbouring heterozygous GDF2 variants, one homozygous GDF2 variant, four heterozygous BMP10 variants, and one with both GDF2 and BMP10 variants. The prevalence of GDF2 and BMP10 variants was 1.3% and 0.4%, respectively. Median age at PAH diagnosis was 30 years, with a female/male ratio of 1.9. Congenital heart disease (CHD) was present in 15.4% of the patients. At diagnosis, most of the patients (61.5%) were in New York Heart Association Functional Class III or IV with severe haemodynamic compromise (median (range) pulmonary vascular resistance 9.0 (3.3-40.6) WU). Haemoptysis was reported in four patients; none met the HHT criteria. Two patients carrying BMP10 variants underwent lung transplantation, revealing typical PAH histopathology. The literature analysis showed that 7.6% of GDF2 carriers developed isolated HHT, and identified cardiomyopathy and developmental disorders in BMP10 carriers. CONCLUSIONS: GDF2 and BMP10 pathogenic variants are rare among PAH patients, and occasionally associated with CHD. HHT cases among GDF2 carriers are limited according to the literature. BMP10 full phenotypic ramifications warrant further investigation.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Telangiectasia Hemorrágica Hereditária , Humanos , Masculino , Feminino , Adulto , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Hipertensão Pulmonar/diagnóstico , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/complicações , Hipertensão Pulmonar Primária Familiar , Telangiectasia Hemorrágica Hereditária/complicações , Telangiectasia Hemorrágica Hereditária/genética , Fenótipo , Fator 2 de Diferenciação de Crescimento/genética , Estudos Multicêntricos como Assunto
16.
Bone ; 182: 117052, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38408588

RESUMO

Postmenopausal osteoporosis is recognized to be one of the major skeleton diseases strongly associated with impaired bone formation. Previous reports have indicated that the importance of bone morphogenetic protein (BMP) signaling of osteoblast lineage in bone development via classical Smad signaling, however, its critical role in osteoporosis is still not well understood. In the current study, we aim to investigate the pathological role of BMPR1A, a key receptor of BMPs, in osteoporosis and its underlying mechanism. We first found that knockdown of BMPR1A by using Col1a1-creER in osteoblasts mitigated early bone loss of osteoporosis in mice, yet along with late bone maturation defects by reducing mineral adherence rate and bone formation rate in vivo. At the cellular level, we then observed that BMPR1A deficiency promoted the proliferation of pre-osteoblasts under osteoporotic conditions but hindered their late-stage mineralization. We finally elucidated that BMPR1A deficiency compensatorily triggered mTOR-autophagy perturbation by a higher level in early osteoporotic pre-osteoblasts thus resulting in the enhancement of transient cell proliferation but impairment of final mineralization. Taken together, this study indicated the significance of BMPR1A-mTOR/autophagy axis, as a double-edged sword, in osteoporotic bone formation and provided new cues for therapeutic strategies in osteoporosis.


Assuntos
Osteoporose , Transdução de Sinais , Camundongos , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Osteoporose/tratamento farmacológico , Osteoblastos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia
17.
Commun Biol ; 7(1): 227, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402336

RESUMO

Endometriosis is linked to increased infertility and pregnancy complications due to defective endometrial decidualization. We hypothesized that identification of altered signaling pathways during decidualization could identify the underlying cause of infertility and pregnancy complications. Our study reveals that transforming growth factor ß (TGFß) pathways are impaired in the endometrium of individuals with endometriosis, leading to defective decidualization. Through detailed transcriptomic analyses, we discovered abnormalities in TGFß signaling pathways and key regulators, such as SMAD4, in the endometrium of affected individuals. We also observed compromised activity of bone morphogenetic proteins (BMP), a subset of the TGFß family, that control endometrial receptivity. Using 3-dimensional models of endometrial stromal and epithelial assembloids, we showed that exogenous BMP2 improved decidual marker expression in individuals with endometriosis. Our findings reveal dysfunction of BMP/SMAD signaling in the endometrium of individuals with endometriosis, explaining decidualization defects and subsequent pregnancy complications in these individuals.


Assuntos
Endometriose , Infertilidade , Complicações na Gravidez , Gravidez , Feminino , Humanos , Endometriose/genética , Endometriose/metabolismo , Decídua/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais , Infertilidade/metabolismo , Complicações na Gravidez/metabolismo
18.
Vitam Horm ; 124: 429-447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408807

RESUMO

The bone morphogenetic protein (BMP) system in the adrenal cortex plays modulatory roles in the control of adrenocortical steroidogenesis. BMP-6 enhances aldosterone production by modulating angiotensin (Ang) II-mitogen-activated protein kinase (MAPK) signaling, whereas activin regulates the adrenocorticotropin (ACTH)-cAMP cascade in adrenocortical cells. A peripheral clock system in the adrenal cortex was discovered and it has been shown to have functional roles in the adjustment of adrenocortical steroidogenesis by interacting with the BMP system. It was found that follistatin, a binding protein of activin, increased Clock mRNA levels, indicating an endogenous function of activin in the regulation of Clock mRNA expression. Elucidation of the interrelationships among the circadian clock system, the BMP system and adrenocortical steroidogenesis regulated by the hypothalamic-pituitary-adrenal (HPA) axis would lead to an understanding of the pathophysiology of adrenal disorders and metabolic disorders and the establishment of better medical treatment from the viewpoint of pharmacokinetics.


Assuntos
Córtex Suprarrenal , Humanos , Córtex Suprarrenal/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Aldosterona/metabolismo , Ativinas/genética , Ativinas/metabolismo , RNA Mensageiro/metabolismo
19.
Development ; 151(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300806

RESUMO

Defective tissue fusion during mammalian embryogenesis results in congenital anomalies, such as exencephaly, spina bifida and cleft lip and/or palate. The highly conserved transcription factor grainyhead-like 2 (Grhl2) is a crucial regulator of tissue fusion, with mouse models lacking GRHL2 function presenting with a fully penetrant open cranial neural tube, facial and abdominal clefting (abdominoschisis), and an open posterior neuropore. Here, we show that GRHL2 interacts with the soluble morphogen protein and bone morphogenetic protein (BMP) inhibitor noggin (NOG) to impact tissue fusion during development. The maxillary prominence epithelium in embryos lacking Grhl2 shows substantial morphological abnormalities and significant upregulation of NOG expression, together with aberrantly distributed pSMAD5-positive cells within the neural crest cell-derived maxillary prominence mesenchyme, indicative of disrupted BMP signalling. Reducing this elevated NOG expression (by generating Grhl2-/-;Nog+/- embryos) results in delayed embryonic lethality, partial tissue fusion rescue, and restoration of tissue form within the craniofacial epithelia. These data suggest that aberrant epithelial maintenance, partially regulated by noggin-mediated regulation of BMP-SMAD pathways, may underpin tissue fusion defects in Grhl2-/- mice.


Assuntos
Fenda Labial , Fissura Palatina , Defeitos do Tubo Neural , Animais , Camundongos , Proteínas Morfogenéticas Ósseas/metabolismo , Mamíferos/metabolismo , Tubo Neural/metabolismo , Receptores Nogo/metabolismo
20.
Nat Commun ; 15(1): 1463, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368410

RESUMO

Many amniote vertebrate species including humans can form identical twins from a single embryo, but this only occurs rarely. It has been suggested that the primitive-streak-forming embryonic region emits signals that inhibit streak formation elsewhere but the signals involved, how they are transmitted and how they act has not been elucidated. Here we show that short tracks of calcium firing activity propagate through extraembryonic tissue via gap junctions and prevent ectopic primitive streak formation in chick embryos. Cross-regulation of calcium activity and an inhibitor of primitive streak formation (Bone Morphogenetic Protein, BMP) via NF-κB and NFAT establishes a long-range BMP gradient spanning the embryo. This mechanism explains how embryos of widely different sizes can maintain positional information that determines embryo polarity. We provide evidence for similar mechanisms in two different human embryo models and in Drosophila, suggesting an ancient evolutionary origin.


Assuntos
Proteínas Morfogenéticas Ósseas , Cálcio , Animais , Embrião de Galinha , Humanos , Cálcio/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Gastrulação/fisiologia , Linha Primitiva , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...