Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(32): e2204779119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914128

RESUMO

Earlier work has shown that siRNA-mediated reduction of the SUPT4H or SUPT5H proteins, which interact to form the DSIF complex and facilitate transcript elongation by RNA polymerase II (RNAPII), can decrease expression of mutant gene alleles containing nucleotide repeat expansions differentially. Using luminescence and fluorescence assays, we identified chemical compounds that interfere with the SUPT4H-SUPT5H interaction and then investigated their effects on synthesis of mRNA and protein encoded by mutant alleles containing repeat expansions in the huntingtin gene (HTT), which causes the inherited neurodegenerative disorder, Huntington's Disease (HD). Here we report that such chemical interference can differentially affect expression of HTT mutant alleles, and that a prototypical chemical, 6-azauridine (6-AZA), that targets the SUPT4H-SUPT5H interaction can modify the biological response to mutant HTT gene expression. Selective and dose-dependent effects of 6-AZA on expression of HTT alleles containing nucleotide repeat expansions were seen in multiple types of cells cultured in vitro, and in a Drosophila melanogaster animal model for HD. Lowering of mutant HD protein and mitigation of the Drosophila "rough eye" phenotype associated with degeneration of photoreceptor neurons in vivo were observed. Our findings indicate that chemical interference with DSIF complex formation can decrease biochemical and phenotypic effects of nucleotide repeat expansions.


Assuntos
Azauridina , Proteína Huntingtina , Doença de Huntington , Proteínas Mutantes , Mutação , Proteínas Nucleares , Fenótipo , Proteínas Repressoras , Fatores de Elongação da Transcrição , Alelos , Animais , Azauridina/farmacologia , Células Cultivadas , Expansão das Repetições de DNA , Modelos Animais de Doenças , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Proteína Huntingtina/biossíntese , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Medições Luminescentes , Proteínas Mutantes/biossíntese , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Nucleares/metabolismo , Células Fotorreceptoras de Invertebrados/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Fatores de Elongação da Transcrição/metabolismo
2.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182541

RESUMO

X-chromosomal retinitis pigmentosa (RP) frequently is caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. We evaluated the potential of PTC124 (Ataluren, TranslamaTM) treatment to promote ribosomal read-through of premature termination codons (PTC) in RPGR. Expression constructs in HEK293T cells showed that the efficacy of read-through reagents is higher for UGA than UAA PTCs. We identified the novel hemizygous nonsense mutation c.1154T > A, p.Leu385* (NM_000328.3) causing a UAA PTC in RPGR and generated patient-derived fibroblasts. Immunocytochemistry of serum-starved control fibroblasts showed the RPGR protein in a dot-like expression pattern along the primary cilium. In contrast, RPGR was no longer detectable at the primary cilium in patient-derived cells. Applying PTC124 restored RPGR at the cilium in approximately 8% of patient-derived cells. RT-PCR and Western blot assays verified the pathogenic mechanisms underlying the nonsense variant. Immunofluorescence stainings confirmed the successful PTC124 treatment. Our results showed for the first time that PTC124 induces read-through of PTCs in RPGR and restores the localization of the RPGR protein at the primary cilium in patient-derived cells. These results may provide a promising new treatment option for patients suffering from nonsense mutations in RPGR or other genetic diseases.


Assuntos
Códon sem Sentido/efeitos dos fármacos , Proteínas do Olho/genética , Doenças Genéticas Ligadas ao Cromossomo X/tratamento farmacológico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Proteínas Mutantes/genética , Oxidiazóis/uso terapêutico , Retinose Pigmentar/tratamento farmacológico , Retinose Pigmentar/genética , Estudos de Casos e Controles , Células Cultivadas , Cílios/metabolismo , Proteínas do Olho/biossíntese , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Células HEK293 , Hemizigoto , Humanos , Proteínas Mutantes/biossíntese , Estudo de Prova de Conceito , Biossíntese de Proteínas/efeitos dos fármacos , Estabilidade de RNA , Retinose Pigmentar/metabolismo
3.
Elife ; 82019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30747709

RESUMO

Mutations in coding and non-coding regions of FUS cause amyotrophic lateral sclerosis (ALS). The latter mutations may exert toxicity by increasing FUS accumulation. We show here that broad expression within the nervous system of wild-type or either of two ALS-linked mutants of human FUS in mice produces progressive motor phenotypes accompanied by characteristic ALS-like pathology. FUS levels are autoregulated by a mechanism in which human FUS downregulates endogenous FUS at mRNA and protein levels. Increasing wild-type human FUS expression achieved by saturating this autoregulatory mechanism produces a rapidly progressive phenotype and dose-dependent lethality. Transcriptome analysis reveals mis-regulation of genes that are largely not observed upon FUS reduction. Likely mechanisms for FUS neurotoxicity include autophagy inhibition and defective RNA metabolism. Thus, our results reveal that overriding FUS autoregulation will trigger gain-of-function toxicity via altered autophagy-lysosome pathway and RNA metabolism function, highlighting a role for protein and RNA dyshomeostasis in FUS-mediated toxicity.


Assuntos
Autofagia , Homeostase , Lisossomos/metabolismo , Proteína FUS de Ligação a RNA/biossíntese , Proteína FUS de Ligação a RNA/toxicidade , RNA/metabolismo , Animais , Perfilação da Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL , Proteínas Mutantes/biossíntese , Proteínas Mutantes/genética , Proteínas Mutantes/toxicidade , Proteína FUS de Ligação a RNA/genética
4.
Mol Biol Cell ; 30(1): 4-16, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30403549

RESUMO

A pathway for cystic fibrosis transmembrane conductance regulator (CFTR) degradation is initiated by Hsp27, which cooperates with Ubc9 and binds to the common F508del mutant to modify it with SUMO-2/3. These SUMO paralogues form polychains, which are recognized by the ubiquitin ligase, RNF4, for proteosomal degradation. Here, protein array analysis identified the SUMO E3, protein inhibitor of activated STAT 4 (PIAS4), which increased wild-type (WT) and F508del CFTR biogenesis in CFBE airway cells. PIAS4 increased immature CFTR threefold and doubled expression of mature CFTR, detected by biochemical and functional assays. In cycloheximide chase assays, PIAS4 slowed immature F508del degradation threefold and stabilized mature WT CFTR at the plasma membrance. PIAS4 knockdown reduced WT and F508del CFTR expression by 40-50%, suggesting a physiological role in CFTR biogenesis. PIAS4 modified F508del CFTR with SUMO-1 in vivo and reduced its conjugation to SUMO-2/3. These SUMO paralogue-specific effects of PIAS4 were reproduced in vitro using purified F508del nucleotide-binding domain 1 and SUMOylation reaction components. PIAS4 reduced endogenous ubiquitin conjugation to F508del CFTR by ∼50% and blocked the impact of RNF4 on mutant CFTR disposal. These findings indicate that different SUMO paralogues determine the fates of WT and mutant CFTRs, and they suggest that a paralogue switch during biogenesis can direct these proteins to different outcomes: biogenesis versus degradation.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas Mutantes/biossíntese , Proteínas Mutantes/metabolismo , Proteólise , Homologia de Sequência de Aminoácidos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Brônquios/patologia , Linhagem Celular , Membrana Celular/metabolismo , Fibrose Cística/patologia , Retículo Endoplasmático/metabolismo , Células Epiteliais/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Estabilidade Proteica , Sumoilação , Fatores de Transcrição/metabolismo , Ubiquitinação
5.
Biochem Biophys Res Commun ; 502(3): 422-428, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29857001

RESUMO

The ACTN3 gene encodes α-actinin-3 protein, which stabilizes the contractile apparatus at the Z-line in skeletal muscle cell fast fibers. A nonsense mutation of the arginine (R) at the codon for amino acid 577 of the ACTN3 gene generates a premature termination codon (PTC) and produces the R577X polymorphism in humans (X specifies translational termination). The ACTN3 577X genotype abolishes α-actinin-3 protein production due to targeted degradation of the mutant transcript by the cellular nonsense-mediated mRNA decay (NMD) system, which requires mRNA splicing. In humans, α-actinin-3 deficiency can decrease sprinting and power performance as well as skeletal muscle mass and strength. Here we investigated whether suppression of the in-frame PTC induced by treatment with the aminoglycosides gentamicin and G418 that promote termination codon readthrough could allow production of full-length α-actinin-3 protein from ACTN3 577X. We constructed expression plasmids encoding mature mRNA that lacks introns or pre-mRNA, which carries introns for the ACTN3 577X gene (X and Xpre, respectively) and transfected the constructs into HEK293 cells. Similar constructs for the ACTN3 577R gene were used as controls. HEK293 cells carrying the X gene, but not the Xpre gene, expressed exogenous truncated α-actinin-3 protein, indicating NMD-mediated suppression of exogenous Xpre expression. Cells treated with aminoglycosides produced exogenous full-length α-actinin-3 protein in X-transfected cells, but not in Xpre-transfected cells. The NMD inhibitor caffeine prevented suppression of Xpre expression and thereby induced production of full-length α-actinin-3 protein in the presence of aminoglycoside. Together these results indicate that the ACTN3 R577X polymorphism could be a novel target for readthrough therapy, which may affect athletic and muscle performance in humans.


Assuntos
Actinina/biossíntese , Actinina/genética , Códon sem Sentido , Proteínas Mutantes/biossíntese , Proteínas Mutantes/genética , Cafeína/farmacologia , Códon sem Sentido/efeitos dos fármacos , Gentamicinas/farmacologia , Células HEK293 , Humanos , Músculo Esquelético/metabolismo , Terminação Traducional da Cadeia Peptídica/efeitos dos fármacos , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transfecção
7.
Int J Biol Macromol ; 107(Pt A): 28-34, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28860063

RESUMO

1,3-1,4-ß-glucanase was an important biotechnological aid in the brewing industry. In a previous research, a Bacillus BglTO mutant (BglTO) with high tolerance towards high temperature and low-pH conditions was constructed and expressed in Escherichia coli. However, E. coli was not a suitable host for enzyme production in food industry. Therefore, the present work aimed to achieve the high-level expression of BglTO in Bacillus subtilis WB600 and to test its effect in Congress mashing. The ß-glucanase mutant was successfully expressed in B. subtilis WB600 and favorable plasmid segregation and structural stability were observed. The maximal extracellular activity of ß-glucanase in recombinant B. subtilis WB600 reached 4840.4UmL-1 after cultivation condition optimization, which was 1.94-fold higher than that before optimization. The fermentation capacity of recombinant B. subtilis reached 242.02UmL-1h-1, which was the highest among all reported ß-glucanases. The addition of BglTO in Congress mashing significantly reduced the filtration time and viscosity of mash by 29.7% and 12.3%, respectively, which was superior to two commercial enzymes. These favorable properties indicated that B. subtilis WB600 was a suitable host for production of BglTO, which was promising for application in the brewing industry.


Assuntos
Bacillus subtilis/enzimologia , Biotecnologia , Glicosídeo Hidrolases/química , Proteínas Mutantes/química , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Fermentação , Indústria Alimentícia , Regulação Enzimológica da Expressão Gênica , Glicosídeo Hidrolases/biossíntese , Glicosídeo Hidrolases/genética , Temperatura Alta , Proteínas Mutantes/biossíntese , Proteínas Mutantes/genética
8.
Ann Neurol ; 82(6): 981-994, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29171910

RESUMO

OBJECTIVE: The aim of the study was to assess the distribution, frequency, and specific location of mutant huntingtin protein (mHTT) aggregates-the pathological hallmark of Huntington disease (HD)-within the various compartments of the spinal cord and their potential impact on the local vasculature and blood-spinal cord barrier (BSCB). METHODS: We performed a series of postmortem immunohistochemical and immunofluorescent stainings, as well as Western blot analyses, on cervical and lumbar sections of the spinal cord in patients diagnosed with HD (n = 11 of all grades of disease severity) along with sex- and age-matched healthy controls (n = 9). RESULTS: We observed that mHTT was preferably expressed within the anterior horn of the gray matter, in both cervical and lumbar sections. At the cellular level, mHTT aggregates were more often encountered in the extracellular matrix but could also be observed within cell bodies and neurites as well as within the endothelium of blood vessels with an increase in the density of small blood vessels in cervical sections of HD cases. These vasculature changes were accompanied with features of BSCB leakage, as assessed by the presence of increased levels of fibrinogen in the surrounding parenchyma and enhanced leukocyte infiltration. INTERPRETATION: This alteration in BSCB integrity may be explained, in part, by the dysregulation we found in some of the main proteins associated with it such as junctional adhesion molecule-1 and vascular endothelial cadherin. These observations have important implications for our understanding of HD pathology and may also have significant therapeutic implications. Ann Neurol 2017;82:981-994.


Assuntos
Barreira Hematoencefálica/patologia , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/patologia , Proteínas Mutantes/genética , Medula Espinal/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Barreira Hematoencefálica/metabolismo , Feminino , Expressão Gênica , Humanos , Proteína Huntingtina/biossíntese , Doença de Huntington/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Mutantes/biossíntese , Medula Espinal/metabolismo
9.
PLoS Genet ; 13(7): e1006780, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28704371

RESUMO

Several recent studies in a number of model systems including zebrafish, Arabidopsis, and mouse have revealed phenotypic differences between knockouts (i.e., mutants) and knockdowns (e.g., antisense-treated animals). These differences have been attributed to a number of reasons including off-target effects of the antisense reagents. An alternative explanation was recently proposed based on a zebrafish study reporting that genetic compensation was observed in egfl7 mutant but not knockdown animals. Dosage compensation was first reported in Drosophila in 1932, and genetic compensation in response to a gene knockout was first reported in yeast in 1969. Since then, genetic compensation has been documented many times in a number of model organisms; however, our understanding of the underlying molecular mechanisms remains limited. In this review, we revisit studies reporting genetic compensation in higher eukaryotes and outline possible molecular mechanisms, which may include both transcriptional and posttranscriptional processes.


Assuntos
Mecanismo Genético de Compensação de Dose , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Transcrição Gênica , Animais , Arabidopsis/genética , Drosophila/genética , Camundongos , Modelos Animais , Proteínas Mutantes/biossíntese , Proteínas Mutantes/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
10.
Elife ; 62017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28513434

RESUMO

The majority of multi-spanning membrane proteins are co-translationally inserted into the bilayer by the Sec pathway. An important subset of membrane proteins have globular, cofactor-containing extracytoplasmic domains requiring the dual action of the co-translational Sec and post-translational Tat pathways for integration. Here, we identify further unexplored families of membrane proteins that are dual Sec-Tat-targeted. We establish that a predicted heme-molybdenum cofactor-containing protein, and a complex polyferredoxin, each require the concerted action of two translocases for their assembly. We determine that the mechanism of handover from Sec to Tat pathway requires the relatively low hydrophobicity of the Tat-dependent transmembrane domain. This, coupled with the presence of C-terminal positive charges, results in abortive insertion of this transmembrane domain by the Sec pathway and its subsequent release at the cytoplasmic side of the membrane. Together, our data points to a simple unifying mechanism governing the assembly of dual targeted membrane proteins.


Assuntos
Proteínas de Membrana/biossíntese , Proteínas de Membrana/metabolismo , Canais de Translocação SEC/metabolismo , Sistema de Translocação de Argininas Geminadas/metabolismo , Biologia Computacional , Análise Mutacional de DNA , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana/genética , Modelos Biológicos , Proteínas Mutantes/biossíntese , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptomyces coelicolor/genética
11.
PLoS Genet ; 13(2): e1006626, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28231279

RESUMO

Eukaryotic cells form stress granules under a variety of stresses, however the signaling pathways regulating their formation remain largely unknown. We have determined that the Saccharomyces cerevisiae lysine acetyltransferase complex NuA4 is required for stress granule formation upon glucose deprivation but not heat stress. Further, the Tip60 complex, the human homolog of the NuA4 complex, is required for stress granule formation in cancer cell lines. Surprisingly, the impact of NuA4 on glucose-deprived stress granule formation is partially mediated through regulation of acetyl-CoA levels, which are elevated in NuA4 mutants. While elevated acetyl-CoA levels suppress the formation of glucose-deprived stress granules, decreased acetyl-CoA levels enhance stress granule formation upon glucose deprivation. Further our work suggests that NuA4 regulates acetyl-CoA levels through the Acetyl-CoA carboxylase Acc1. Altogether this work establishes both NuA4 and the metabolite acetyl-CoA as critical signaling pathways regulating the formation of glucose-deprived stress granules.


Assuntos
Acetilcoenzima A/genética , Acetiltransferases/genética , Glucose/metabolismo , Histona Acetiltransferases/genética , Proteínas de Saccharomyces cerevisiae/genética , Histona Acetiltransferases/biossíntese , Histona Acetiltransferases/metabolismo , Humanos , Lisina Acetiltransferase 5 , Proteínas Mutantes/biossíntese , Proteínas Mutantes/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Estresse Fisiológico/genética
12.
Sci Rep ; 7: 40587, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28071737

RESUMO

The efficient production of antimicrobial peptides (AMPs) for clinical applications has attracted the attention of the scientific community. To develop a novel microbial cell factory for the efficient biosynthesis of a cecropin A-melittin mutant (CAM-W), a recombinant Bacillus subtilis WB700 expression system was genetically modified with a novel vector, including a fusion gene encoding CAM-W, the autoprotease EDDIE and the signal peptide SacB under the control of the maltose-inducible promoter Pglv. A total of 159 mg of CAM-W was obtained from 1 L of fermentation supernatant. The purified CAM-W showed a consistent size with the expected molecular weight of 3.2 kDa. Our findings suggest that this novel expression system can be used as a powerful tool for the efficient production of CAM-W.


Assuntos
Peptídeos Catiônicos Antimicrobianos/biossíntese , Bacillus subtilis/metabolismo , Meliteno/biossíntese , Proteínas Mutantes/biossíntese , Proteínas Recombinantes/biossíntese , Bacillus subtilis/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Plasmídeos/metabolismo , Recombinação Genética/genética
13.
Int J Oncol ; 50(1): 290-296, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27959407

RESUMO

Low-dose irradiation (LDIR) has been proven to have differential biological effects on normal mammalian somatic cells and cancer cells. Our previous study showed that p53 gene status is a critical factor regulating the effect of LDIR on cancer cells. We investigated the effect of LDIR on the breast cancer cell line MDA-MB-231 that harbors a mutant p53 gene, and the normal breast fibroblast cell line Hs 578Bst. In the present study, we showed that 150 mGy LDIR pormoted growth of MDA-MB-231 cells but not Hs 578Bst cells. Through cell cycle analyses, we found that LDIR accelerated cell cycle into S phase in MDA-MB-231 cells, but did not affect the cell cycle of Hs 578Bst cells. Using western blotting, we demonstrated that the expression of CDK4, CDK6 and cyclin D1 was upregulated in MDA-MB-231 cells after LDIR. Although LDIR increased ataxia-telangiectasia mutated (ATM) level in both MDA-MB-231 cells and Hs 578Bst cells and activated ATM/p53/p21 pathway, only the mutant type of p53 (mtp53) protein in MDA-MB-231 cells was shown to be accumulated after LDIR. Using ATM inhibitor or lentivirus-mediated small interfering RNA (siRNA) to block the ATM/p53/p21 pathway in MDA-MB-231 cells, the LDIR-induced cell proliferation was abolished. When we introduced wild-type p53 (wtp53) protein into MDA-MB-231 cells, the LDIR-induced cell proliferation was also abolished. These findings suggest that normal p53 function is crucial in ATM/p53/p21 pathway activated by LDIR. The p53 status is the most probable reason leading to differential LDIR biological activities between breast tumor cells and normal breast cells.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/biossíntese , Neoplasias da Mama/radioterapia , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Proteína Supressora de Tumor p53/genética , Apoptose/efeitos da radiação , Proteínas Mutadas de Ataxia Telangiectasia/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Inibidor de Quinase Dependente de Ciclina p21/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Proteínas Mutantes/biossíntese , Proteínas Mutantes/genética , Radiação , Doses de Radiação , Proteína Supressora de Tumor p53/biossíntese
14.
PLoS Genet ; 12(12): e1006510, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28027321

RESUMO

Ellis-van Creveld (EvC) syndrome is a skeletal dysplasia, characterized by short limbs, postaxial polydactyly, and dental abnormalities. EvC syndrome is also categorized as a ciliopathy because of ciliary localization of proteins encoded by the two causative genes, EVC and EVC2 (aka LIMBIN). While recent studies demonstrated important roles for EVC/EVC2 in Hedgehog signaling, there is still little known about the pathophysiological mechanisms underlying the skeletal dysplasia features of EvC patients, and in particular why limb development is affected, but not other aspects of organogenesis that also require Hedgehog signaling. In this report, we comprehensively analyze limb skeletogenesis in Evc2 mutant mice and in cell and tissue cultures derived from these mice. Both in vivo and in vitro data demonstrate elevated Fibroblast Growth Factor (FGF) signaling in Evc2 mutant growth plates, in addition to compromised but not abrogated Hedgehog-PTHrP feedback loop. Elevation of FGF signaling, mainly due to increased Fgf18 expression upon inactivation of Evc2 in the perichondrium, critically contributes to the pathogenesis of limb dwarfism. The limb dwarfism phenotype is partially rescued by inactivation of one allele of Fgf18 in the Evc2 mutant mice. Taken together, our data uncover a novel pathogenic mechanism to understand limb dwarfism in patients with Ellis-van Creveld syndrome.


Assuntos
Nanismo/genética , Síndrome de Ellis-Van Creveld/genética , Fatores de Crescimento de Fibroblastos/genética , Proteínas de Membrana/genética , Animais , Modelos Animais de Doenças , Nanismo/patologia , Síndrome de Ellis-Van Creveld/patologia , Fatores de Crescimento de Fibroblastos/biossíntese , Lâmina de Crescimento/crescimento & desenvolvimento , Lâmina de Crescimento/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Membrana/biossíntese , Camundongos , Proteínas Mutantes/biossíntese , Proteínas Mutantes/genética , Polidactilia/genética , Polidactilia/patologia , Transdução de Sinais , Anormalidades Dentárias/genética , Anormalidades Dentárias/patologia
15.
Genet Mol Res ; 15(3)2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27706742

RESUMO

The dwarf and narrow-leaf rice (Oryza sativa L.) mutant dnl3 was isolated from the Japonica cultivar Zhonghua 11 (wild-type). dnl3 exhibited pleiotropic developmental defects. The narrow-leaf phenotype resulted from a marked reduction in the number of vascular bundles, while the dwarf stature was caused by the formation of foreshortened internodes and a reduced number of parenchyma cells. The suggestion that cell division is impaired in the mutant was consistent with the transcriptional behavior of various genes associated with cell division. The mutant was less responsive to exogenously supplied gibberellic acid than the wild-type, and profiling the transcription of genes involved in gibberellin synthesis and response revealed that a lesion in the mutant affected gibberellin signal transduction. The dnl3 phenotype was inherited as a single-dominant gene, mapping within a 19.1-kb region of chromosome 12, which was found to harbor three open reading frames. Resequencing the open reading frames revealed that the mutant carried an allele at one of the three genes that differed from the wild-type sequence by 2-bp deletions; this gene encoded a cellulose synthase-like D4 (CSLD4) protein. Therefore, OsCSLD4 is a candidate gene for DNL3. DNL3 was expressed in all of the rice organs tested at the heading stage, particularly in the leaves, roots, and culms. These results suggest that DNL3 plays important roles in rice leaf morphogenesis and vegetative development.


Assuntos
Oryza/genética , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos/genética , Divisão Celular/genética , Mapeamento Cromossômico , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Genótipo , Proteínas Mutantes/biossíntese , Proteínas Mutantes/genética , Oryza/crescimento & desenvolvimento , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/biossíntese
16.
Hum Mol Genet ; 25(19): 4256-4265, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27493029

RESUMO

COQ2 (p-hydroxybenzoate polyprenyl transferase) encodes the enzyme required for the second step of the final reaction sequence of Coenzyme Q10 (CoQ) biosynthesis. Its mutations represent a frequent cause of primary CoQ deficiency and have been associated with the widest clinical spectrum, ranging from fatal neonatal multisystemic disease to late-onset encephalopathy. However, the reasons of this variability are still unknown.We have characterized the structure of human COQ2, defined its subcellular localization and developed a yeast model to validate all the mutant alleles reported so far.Our findings show that the main functional transcript of COQ2 is shorter than what was previously reported and that its protein product localizes to mitochondria with the C-terminus facing the intermembrane space. Complementation experiments in yeast showed that the residual activity of the mutant proteins correlates with the clinical phenotypes observed in patients.We defined the structure of COQ2 with relevant implications for mutation screening in patients and demonstrated that, contrary to other COQ gene defects such as ADCK3, there is a correlation between COQ2 genotype and patient's phenotype.


Assuntos
Alquil e Aril Transferases/genética , Ataxia/genética , Doenças Mitocondriais/genética , Debilidade Muscular/genética , Proteínas Mutantes/genética , Ubiquinona/deficiência , Alquil e Aril Transferases/biossíntese , Ataxia/patologia , Regulação da Expressão Gênica , Genótipo , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , Debilidade Muscular/patologia , Proteínas Mutantes/biossíntese , Mutação , Saccharomyces cerevisiae/genética , Índice de Gravidade de Doença , Ubiquinona/genética
17.
PLoS Genet ; 12(7): e1006228, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27472382

RESUMO

Pollen-stigma interactions are essential for pollen germination. The highly regulated process of pollen germination includes pollen adhesion, hydration, and germination on the stigma. However, the internal signaling of pollen that regulates pollen-stigma interactions is poorly understood. KINßγ is a plant-specific subunit of the SNF1-related protein kinase 1 complex which plays important roles in the regulation of plant development. Here, we showed that KINßγ was a cytoplasm- and nucleus-localized protein in the vegetative cells of pollen grains in Arabidopsis. The pollen of the Arabidopsis kinßγ mutant could not germinate on stigma, although it germinated normally in vitro. Further analysis revealed the hydration of kinßγ mutant pollen on the stigma was compromised. However, adding water to the stigma promoted the germination of the mutant pollen in vivo, suggesting that the compromised hydration of the mutant pollen led to its defective germination. In kinßγ mutant pollen, the structure of the mitochondria and peroxisomes was destroyed, and their numbers were significantly reduced compared with those in the wild type. Furthermore, we found that the kinßγ mutant exhibited reduced levels of reactive oxygen species (ROS) in pollen. The addition of H2O2 in vitro partially compensated for the reduced water absorption of the mutant pollen, and reducing ROS levels in pollen by overexpressing Arabidopsis CATALASE 3 resulted in compromised hydration of pollen on the stigma. These results indicate that Arabidopsis KINßγ is critical for the regulation of ROS levels by mediating the biogenesis of mitochondria and peroxisomes in pollen, which is required for pollen-stigma interactions during pollination.


Assuntos
Proteínas de Arabidopsis/genética , Germinação/genética , Mitocôndrias/genética , Pólen/genética , Polinização/genética , Proteínas Serina-Treonina Quinases/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/biossíntese , Catalase/biossíntese , Catalase/genética , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Proteínas Mutantes/biossíntese , Proteínas Mutantes/genética , Peroxissomos/genética , Pólen/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Água/metabolismo
18.
Biosci Biotechnol Biochem ; 80(9): 1853-63, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27442340

RESUMO

Under liquid culture conditions, the hyphae of filamentous fungi aggregate to form pellets, which reduces cell density and fermentation productivity. Previously, we found that loss of α-1,3-glucan in the cell wall of the fungus Aspergillus nidulans increased hyphal dispersion. Therefore, here we constructed a mutant of the industrial fungus A. oryzae in which the three genes encoding α-1,3-glucan synthase were disrupted (tripleΔ). Although the hyphae of the tripleΔ mutant were not fully dispersed, the mutant strain did form smaller pellets than the wild-type strain. We next examined enzyme productivity under liquid culture conditions by transforming the cutinase-encoding gene cutL1 into A. oryzae wild-type and the tripleΔ mutant (i.e. wild-type-cutL1, tripleΔ-cutL1). A. oryzae tripleΔ-cutL1 formed smaller hyphal pellets and showed both greater biomass and increased CutL1 productivity compared with wild-type-cutL1, which might be attributable to a decrease in the number of tripleΔ-cutL1 cells under anaerobic conditions.


Assuntos
Aspergillus oryzae/enzimologia , Parede Celular/metabolismo , Glucosiltransferases/genética , Proteínas Mutantes/genética , Aspergillus oryzae/genética , Biomassa , Parede Celular/genética , Glucanos/metabolismo , Glucosiltransferases/biossíntese , Hifas/genética , Hifas/crescimento & desenvolvimento , Proteínas Mutantes/biossíntese , Mutação
19.
FEBS Lett ; 590(16): 2639-49, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27350215

RESUMO

R-spondin3 (Rspo3) is a secreted protein, which acts as an agonist of canonical Wnt/ß-catenin signaling that plays an important role in embryonic development and homeostasis. In this study, we focused on C-mannosylation, a unique type of glycosylation, of human Rspo3. Rspo3 has two putative C-mannosylation sites at Trp(153) and Trp(156) ; however, it had been unclear whether these sites are C-mannosylated or not. We demonstrated that Rspo3 was C-mannosylated at both Trp(153) and Trp(156) by mass spectrometry. Using C-mannosylation-defective Rspo3 mutant-overexpressing cell lines, we found that C-mannosylation of Rspo3 promotes its secretion and activates Wnt/ß-catenin signaling.


Assuntos
Desenvolvimento Embrionário/genética , Proteínas Mutantes/biossíntese , Trombospondinas/biossíntese , Via de Sinalização Wnt/genética , Regulação da Expressão Gênica no Desenvolvimento , Glicosilação , Homeostase/genética , Humanos , Manose/metabolismo , Proteínas Mutantes/genética , Trombospondinas/genética , Trombospondinas/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
20.
Genetics ; 203(4): 1709-20, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27317682

RESUMO

Coilin is a marker protein for subnuclear organelles known as Cajal bodies, which are sites of various RNA metabolic processes including the biogenesis of spliceosomal small nuclear ribonucleoprotein particles. Through self-associations and interactions with other proteins and RNA, coilin provides a structural scaffold for Cajal body formation. However, despite a conspicuous presence in Cajal bodies, most coilin is dispersed in the nucleoplasm and expressed in cell types that lack these organelles. The molecular function of coilin, particularly of the substantial nucleoplasmic fraction, remains uncertain. We identified coilin loss-of-function mutations in a genetic screen for mutants showing either reduced or enhanced expression of an alternatively spliced GFP reporter gene in Arabidopsis thaliana The coilin mutants feature enhanced GFP fluorescence and diminished Cajal bodies compared with wild-type plants. The amount of GFP protein is several-fold higher in the coilin mutants owing to elevated GFP transcript levels and more efficient splicing to produce a translatable GFP mRNA. Genome-wide RNA-sequencing data from two distinct coilin mutants revealed a small, shared subset of differentially expressed genes, many encoding stress-related proteins, and, unexpectedly, a trend toward increased splicing efficiency. These results suggest that coilin attenuates splicing and modulates transcription of a select group of genes. The transcriptional and splicing changes observed in coilin mutants are not accompanied by gross phenotypic abnormalities or dramatically altered stress responses, supporting a role for coilin in fine tuning gene expression. Our GFP reporter gene provides a sensitive monitor of coilin activity that will facilitate further investigations into the functions of this enigmatic protein.


Assuntos
Processamento Alternativo/genética , Proteínas de Arabidopsis/genética , Proteínas Mutantes/genética , Proteínas de Ligação a RNA/genética , RNA/genética , Arabidopsis/genética , Proteínas de Arabidopsis/biossíntese , Corpos Enovelados/genética , Regulação da Expressão Gênica de Plantas , Genes Reporter , Genoma de Planta , Proteínas de Fluorescência Verde/genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas Mutantes/biossíntese , Proteínas de Ligação a RNA/biossíntese , Spliceossomos/genética , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...