Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuromolecular Med ; 19(2-3): 406-412, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28755038

RESUMO

In the current study, we present an innovative concept based on the knowledge that enhancing naturally occurring biological mechanisms is effective in preventing neuronal damage and maintaining low disease activity in about 15% of multiple sclerosis (MS) patients presenting the benign type of MS. Recently, we have demonstrated that low disease activity in benign MS is associated with suppression of RNA polymerase 1 (POL1) pathway; therefore, targeting POL1 transcription machinery as a strategy for suppressing active forms of MS is suggested. To further establish our approach, we aimed to suppress POL1 pathway by silencing of the POL1-related RRN3, POLR1D and LRPPRC genes in specific MOG35-55-activated lymphocytes and assess their capacity to induce experimental autoimmune encephalomyelitis (EAE) by passive transfer. We have demonstrated that silencing of specific POL1 pathway-related genes significantly decreased viability and increased the proportion of CD4+/AnnexinV+/PI+ apoptotic cells in MOG35-55-primed lymphocytes. POL1-gene silencing significantly decreased the proportion of CD4+IL17+ and increased proportion of CD4+IL10+ and CD4+TNFa+ lymphocytes that occurred simultaneously with over-presentation of Treg CD4+CD25+FoxP3+ cells. Passive transfer of MOG35-55-primed lymphocytes after POL1-gene silencing suppressed EAE development in mice as demonstrated by delayed onset and peak of disease accompanied by significantly lower maximal and cumulative EAE scores. Our study supports a basis for direct targeting of POL1 transcription pathway as a strategy for selective induction of apoptosis and suppression of inflammation in EAE and consequently paves the way for innovative and targeted MS therapeutic strategy that is based on naturally existing biological mechanism.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Encefalomielite Autoimune Experimental/terapia , Imunoterapia Adotiva , Linfócitos/imunologia , Terapia de Alvo Molecular , Glicoproteína Mielina-Oligodendrócito/imunologia , Proteínas de Neoplasias/fisiologia , Proteínas Pol1 do Complexo de Iniciação de Transcrição/fisiologia , Interferência de RNA , RNA Polimerase I/fisiologia , Terapias em Estudo/métodos , Animais , Apoptose/genética , Células Cultivadas , Citocinas/metabolismo , Linfonodos/patologia , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Fragmentos de Peptídeos/imunologia , Proteínas Pol1 do Complexo de Iniciação de Transcrição/antagonistas & inibidores , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , RNA Interferente Pequeno/genética , Organismos Livres de Patógenos Específicos , Linfócitos T Reguladores/imunologia , Transcrição Gênica , Transfecção
2.
Biochim Biophys Acta ; 1866(2): 189-196, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27641688

RESUMO

Cancer cells devote the majority of their energy consumption to ribosome biogenesis, and pre-ribosomal RNA transcription accounts for 30-50% of all transcriptional activity. This aberrantly elevated biological activity is an attractive target for cancer therapeutic intervention if approaches can be developed to circumvent the development of side effects in normal cells. TIF-IA is a transcription factor that connects RNA polymerase I with the UBF/SL-1 complex to initiate the transcription of pre-ribosomal RNA. Its function is conserved in eukaryotes from yeast to mammals, and its activity is promoted by the phosphorylation of various oncogenic kinases in cancer cells. The depletion of TIF-IA induces cell death in lung cancer cells and mouse embryonic fibroblasts but not in several other normal tissue types evaluated in knock-out studies. Furthermore, the nuclear accumulation of TIF-IA under UTP down-regulated conditions requires the activity of LKB1 kinase, and LKB1-inactivated cancer cells are susceptible to cell death under such stress conditions. Therefore, TIF-IA may be a unique target to suppress ribosome biogenesis without significantly impacting the survival of normal tissues.


Assuntos
Neoplasias/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/fisiologia , Precursores de RNA/biossíntese , Animais , Humanos , Camundongos , Neoplasias/terapia , Fosforilação , Proteínas Pol1 do Complexo de Iniciação de Transcrição/química , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética
3.
FASEB J ; 30(8): 2860-73, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27127100

RESUMO

Actin and nuclear myosin 1 (NM1) are regulators of transcription and chromatin organization. Using a genome-wide approach, we report here that ß-actin binds intergenic and genic regions across the mammalian genome, associated with both protein-coding and rRNA genes. Within the rDNA, the distribution of ß-actin correlated with NM1 and the other subunits of the B-WICH complex, WSTF and SNF2h. In ß-actin(-/-) mouse embryonic fibroblasts (MEFs), we found that rRNA synthesis levels decreased concomitantly with drops in RNA polymerase I (Pol I) and NM1 occupancies across the rRNA gene. Reintroduction of wild-type ß-actin, in contrast to mutated forms with polymerization defects, efficiently rescued rRNA synthesis underscoring the direct role for a polymerization-competent form of ß-actin in Pol I transcription. The rRNA synthesis defects in the ß-actin(-/-) MEFs are a consequence of epigenetic reprogramming with up-regulation of the repressive mark H3K4me1 (monomethylation of lys4 on histone H3) and enhanced chromatin compaction at promoter-proximal enhancer (T0 sequence), which disturb binding of the transcription factor TTF1. We propose a novel genome-wide mechanism where the polymerase-associated ß-actin synergizes with NM1 to coordinate permissive chromatin with Pol I transcription, cell growth, and proliferation.-Almuzzaini, B., Sarshad, A. A. , Rahmanto, A. S., Hansson, M. L., Von Euler, A., Sangfelt, O., Visa, N., Farrants, A.-K. Ö., Percipalle, P. In ß-actin knockouts, epigenetic reprogramming and rDNA transcription inactivation lead to growth and proliferation defects.


Assuntos
Actinas/metabolismo , Reprogramação Celular/fisiologia , DNA Ribossômico/metabolismo , Epigênese Genética/fisiologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Actinas/genética , Animais , Células Cultivadas , Cromatina , DNA Ribossômico/genética , Camundongos , Miosina Tipo I/genética , Miosina Tipo I/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/fisiologia , Transcrição Gênica/fisiologia
4.
FASEB J ; 28(8): 3290-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24790035

RESUMO

Long known as the center of ribosome synthesis, the nucleolus is connected to cell cycle regulation in more subtle ways. One is a surveillance system that reacts promptly when rRNA synthesis or processing is impaired, halting cell cycle progression. Conversely, the nucleolus also acts as a first-responder to growth-related stress signals. Here we review emerging concepts on how these "infraribosomal" links between the nucleolus and cell cycle progression operate in both forward and reverse gears. We offer perspectives on how new cancer therapeutic designs that target this infraribosomal mode of cell growth control may shape future clinical progress.


Assuntos
Ciclo Celular/fisiologia , Nucléolo Celular/fisiologia , Modelos Biológicos , Ribossomos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Reparo do DNA , Previsões , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/fisiologia , Proteínas Pol1 do Complexo de Iniciação de Transcrição/fisiologia , RNA Ribossômico/biossíntese , Proteínas Ribossômicas/deficiência , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/fisiologia , Transdução de Sinais/fisiologia
5.
Annu Rev Pharmacol Toxicol ; 50: 131-56, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20055700

RESUMO

The RNA polymerase I (Pol I) transcription machinery in the nucleolus is the key convergence point that collects and integrates a vast array of information from cellular signaling cascades to regulate ribosome production that in turn guides cell growth and proliferation. Cancer cells commonly harbor mutations that inactivate tumor suppressors, hyperactivate oncogenes, and upregulate protein kinases, all of which promote Pol I transcription and drive cell proliferation. The intimate balance between Pol I transcription and growth-factor signaling is perturbed in cancer cells, indicating that upregulation of rRNA synthesis is mandatory for all tumors. Though the emerging picture of transcriptional regulation reveals an unexpected level of complexity, we are beginning to understand the multiple links between rRNA biogenesis and cancer. In this review, we discuss experimental data and potential strategies to downregulate rRNA synthesis and induce an antiproliferative response in cancer cells.


Assuntos
Neoplasias/tratamento farmacológico , RNA Polimerase I/antagonistas & inibidores , RNA Ribossômico/biossíntese , Transcrição Gênica/efeitos dos fármacos , Animais , Apoptose , Nucléolo Celular/fisiologia , Nucléolo Celular/ultraestrutura , DNA Ribossômico/genética , Epigênese Genética , Genes Supressores de Tumor , Humanos , Oncogenes , Proteínas Pol1 do Complexo de Iniciação de Transcrição/fisiologia , Processamento de Proteína Pós-Traducional , RNA Polimerase I/fisiologia
6.
Epigenetics ; 4(6): 374-82, 2009 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-19717978

RESUMO

Somatic cells have approximately 200 hundred copies of ribosomal RNA (rRNA) genes (rDNA) per haploid genome of which only a fraction are transcribed by RNA polymerase I (Pol I) at any given time. Thus regulation of rDNA transcription involves controlling both the number of active genes as well as the rate of transcription per gene. How and why a majority of rDNA are silenced is unclear but recent studies indicate that in addition to controlling rRNA synthesis, rDNA silencing plays an essential role in maintaining the genetic stability of rDNA repeats and influences cellular events such as aging and senescence. In this review we discuss the role of the cytoarchitectural transcription factor UBF in determining and maintaining the active (euchromatic) state of rDNA in mammals. In particular we discuss evidence to suggest that UBF dynamically regulates the active rRNA gene pool during differentiation and malignancy.


Assuntos
Cromatina/metabolismo , DNA Ribossômico/genética , Epigênese Genética , Modelos Genéticos , Proteínas Pol1 do Complexo de Iniciação de Transcrição/fisiologia , Transcrição Gênica/fisiologia , Animais , Diferenciação Celular/genética , Cromatina/ultraestrutura , Montagem e Desmontagem da Cromatina , Metilação de DNA , Inativação Gênica , Histonas/metabolismo , Camundongos , Células NIH 3T3
7.
J Neurosci ; 28(48): 12759-64, 2008 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-19036968

RESUMO

Transcription of rRNA genes is essential for maintaining nucleolar integrity, a hallmark for the healthy state and proliferation rate of a cell. Inhibition of rRNA synthesis leads to disintegration of the nucleolus, elevated levels of p53, and induction of cell suicide, identifying the nucleolus as a critical stress sensor. Whether deregulation of rRNA synthesis is causally involved in neurodegeneration by promoting cell death and/or by inhibiting cellular growth has however not been addressed. The transcription factor TIF-IA plays a central role in mammalian rRNA synthesis, regulating the transcriptional activity of RNA polymerase I. To investigate the consequences of nucleolar perturbation in the nervous system, we have chosen to specifically ablate the gene encoding the transcription factor TIF-IA in two different contexts: neural progenitors and hippocampal neurons. Here, we show that ablation of TIF-IA leads to impaired nucleolar activity and results in increased levels of the proapoptotic transcription factor p53 in both neural progenitors and hippocampal neurons but induces rapid apoptosis only in neural progenitors. Nondividing cells of the adult hippocampus are more refractory to loss of rRNA transcription and face a protracted degeneration. Our study provides an unexploited strategy to initiate neurodegeneration based on perturbation of nucleolar function and underscores a novel perspective to study the cellular and molecular changes involved in the neurodegenerative processes.


Assuntos
Apoptose/genética , Hipocampo/metabolismo , Degeneração Neural/genética , Neurônios/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/fisiologia , RNA Ribossômico/biossíntese , Animais , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/patologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Neurogênese/genética , Plasticidade Neuronal/genética , Neurônios/patologia , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , RNA Ribossômico/genética , Células-Tronco/metabolismo , Células-Tronco/patologia , Transcrição Gênica/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Nucleic Acids Res ; 36(15): 5093-101, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18676449

RESUMO

The mammalian architectural HMGB-Box transcription factor UBF is ubiquitously expressed in two variant forms as the result of a differential splicing event, that in the UBF2 deletes 37 amino acid from the second of six HMGB-boxes. Several attempts to define a function for this shorter UBF2 protein have been less than satisfactory. However, since all mammals appear to display similar levels of the longer and shorter UBF variants, it is unlikely that UBF2 is simply nonfunctional. Previously we showed that phosphorylation of UBF by the MAP-kinase ERK regulates chromatin folding and transcription elongation, explaining the rapid response of the ribosomal RNA genes to growth factors. Here we have investigated the roles the UBF variants play in the response of these genes to ERK activity. We demonstrate that the variant HMGB-box 2 of UBF2 has lost the ability to bind bent DNA and hence to induce chromatin folding. As a result it is significantly less effective than UBF1 at arresting RNAPI elongation but at the same time is more responsive to ERK phosphorylation. Thus, UBF2 functionally simulates a hemi-phosphorylated UBF whose expression may provide a means by which to tune the response of the ribosomal RNA genes to growth factor stimulation.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Proteínas Pol1 do Complexo de Iniciação de Transcrição/fisiologia , RNA Polimerase I/metabolismo , Transcrição Gênica , Animais , DNA/química , DNA/metabolismo , Variação Genética , Domínios HMG-Box , Proteínas HMGB/química , Camundongos , Fosforilação , Proteínas Pol1 do Complexo de Iniciação de Transcrição/química , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , RNA Polimerase I/antagonistas & inibidores , Splicing de RNA , Ratos
9.
ACS Chem Biol ; 1(10): 619-22, 2006 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17168565

RESUMO

In response to extracellular ligands, surface receptor tyrosine kinases and G-protein-coupled receptors activate isoforms of phospholipase C (PLC) and initiate calcium signaling. PLC can activate expression of surface transient receptor potential channels (TRPC) such as TRPC3, which modulate calcium entry through the plasma membrane. A recent paper shows that competitive binding of cytoplasmic TFII-I, a transcription factor, to PLC-gamma results in inhibition of TRPC3-mediated agonist-induced Ca(2+) entry. These results establish a novel cytoplasmic function for TFII-I.


Assuntos
Citoplasma/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/fisiologia , Fatores de Transcrição TFII/fisiologia , Fosfolipases Tipo C/metabolismo , Animais , Cálcio/metabolismo , Membrana Celular/metabolismo , Humanos , Ligantes , Modelos Biológicos , Isoformas de Proteínas , Estrutura Terciária de Proteína , Transdução de Sinais , Transcrição Gênica
10.
Biochem Biophys Res Commun ; 348(3): 839-49, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16904636

RESUMO

The largest family of zinc-finger (ZnF) transcription factors is that containing the Krüppel-associated box, or KRAB domain. The amino-terminal KRAB domain of these proteins functions as a transcriptional repressor with the downstream ZnF motifs providing DNA-binding specificity. Here we report the identification and characterization of a novel murine Krüppel-related factor (KLF), MIF1, which contains a KRAB domain but lacks a ZnF motif. Western blot analysis identified MIF1-like proteins in the murine trigeminal ganglion (TG) and immunostaining localized these proteins primarily to the cytoplasm of TG neuronal cell bodies. In situ hybridization for Mif1 transcripts confirms the selective expression of Mif1 in TG neurons. Consistent with the non-nuclear localization of MIF1 we could detect no transcriptional repressor activity of the MIF1 protein. However MIF1 appears to be capable of interacting with the co-repressor TIF1beta and exhibits transcription repressor activity when fused to yeast GAL4 binding domain protein. Genomic analysis of Mif1 sequence suggests that the Mif1 transcript may result from splicing of a longer KRAB-ZnF containing transcript.


Assuntos
Fatores de Transcrição Kruppel-Like/biossíntese , Fatores de Transcrição Kruppel-Like/química , Gânglio Trigeminal/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Células COS , Chlorocebus aethiops , Proteínas de Ligação a DNA , Feminino , Células HeLa , Humanos , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/fisiologia , Estrutura Terciária de Proteína , Ratos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Gânglio Trigeminal/química , Células Vero , Dedos de Zinco/genética
11.
EMBO J ; 25(14): 3310-22, 2006 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-16858408

RESUMO

Ribosomal RNA gene transcription by RNA polymerase I (Pol I) is the driving force behind ribosome biogenesis, vital to cell growth and proliferation. The key activator of Pol I transcription, UBF, has been proposed to act by facilitating recruitment of Pol I and essential basal factor SL1 to rDNA promoters. However, we found no evidence that UBF could stimulate recruitment or stabilization of the pre-initiation complex (PIC) in reconstituted transcription assays. In this, UBF is fundamentally different from archetypal activators of transcription. Our data imply that UBF exerts its stimulatory effect on RNA synthesis, after PIC formation, promoter opening and first phosphodiester bond formation and before elongation. We provide evidence to suggest that UBF activates transcription in the transition between initiation and elongation, at promoter escape by Pol I. This novel role for UBF in promoter escape would allow control of rRNA synthesis at active rDNA repeats, independent of and complementary to the promoter-specific targeting of SL1 and Pol I during PIC assembly. We posit that stimulation of promoter escape could be a general mechanism of activator function.


Assuntos
DNA Ribossômico/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/fisiologia , Regiões Promotoras Genéticas , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , Ativação Transcricional/fisiologia , Sequência de Bases , Humanos , Dados de Sequência Molecular , Elongação Traducional da Cadeia Peptídica/genética , Iniciação Traducional da Cadeia Peptídica/genética
12.
Mol Cell ; 21(5): 629-39, 2006 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16507361

RESUMO

Synthesis of the 45S rRNA by RNA polymerase I limits cell growth. Knowledge of the mechanism of its regulation is therefore key to understanding growth control. rRNA transcription is believed to be regulated solely at initiation/promoter release. However, we found that stimulation of endogenous 45S rRNA synthesis by epidermal growth factor (EGF) and serum failed to induce an increase in RNA polymerase I engagement on the rRNA genes, despite robust enhancement of 45S rRNA synthesis. Further, endogenous transcription elongation rates were measured and found to be directly proportional to 45S rRNA synthesis. Thus, elongation is a rate-limiting step for rRNA synthesis in vivo. ERK phosphorylation of the HMG boxes of UBF, an RNA polymerase I factor essential for transcription enhancement, was shown to directly regulate elongation by inducing the remodeling of ribosomal gene chromatin. The data suggest a mechanism for coordinating the cotranscriptional assembly of preribosomal particles.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Substâncias de Crescimento/fisiologia , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Polimerase I/genética , Transdução de Sinais/fisiologia , Transcrição Gênica/fisiologia , Animais , DNA Ribossômico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Camundongos , Células NIH 3T3 , Fosforilação , Proteínas Pol1 do Complexo de Iniciação de Transcrição/fisiologia , RNA Polimerase I/biossíntese , RNA Ribossômico/biossíntese
13.
Mol Cell Biol ; 25(16): 6899-911, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16055704

RESUMO

PTEN is a tumor suppressor whose function is frequently lost in human cancer. It possesses a lipid phosphatase activity that represses the activation of PI3 kinase/Akt signaling, leading to decreased cell growth, proliferation, and survival. The potential for PTEN to regulate transcription of the large rRNAs by RNA polymerase I (RNA Pol I) was investigated. As increased synthesis of rRNAs is a hallmark of neoplastic transformation, the ability of PTEN to control the transcription of rRNAs might be crucial for its tumor suppressor function. The expression of PTEN in PTEN-deficient cells represses RNA Pol I transcription, while decreasing PTEN expression enhances transcription. PTEN-mediated repression requires its lipid phosphatase activity and is independent of the p53 status of the cell. This event can be uncoupled from PTEN's ability to regulate the cell cycle. RNA Pol I is regulated through PI3 kinase/Akt/mammalian target of rapamycin/S6 kinase, and the expression of constitutively activated S6 kinase is able to abrogate transcription repression by PTEN. No change in the expression of the RNA Pol I transcription components, upstream binding factor or SL1, was observed upon PTEN expression. However, chromatin immunoprecipitation assays demonstrate that PTEN differentially reduces the occupancy of the SL1 subunits on the rRNA gene promoter. Furthermore, PTEN induces dissociation of the SL1 subunits. Together, these results demonstrate that PTEN represses RNA Pol I transcription through a novel mechanism that involves disruption of the SL1 complex.


Assuntos
Monoéster Fosfórico Hidrolases/fisiologia , Proteínas Pol1 do Complexo de Iniciação de Transcrição/fisiologia , RNA Polimerase I/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor/fisiologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Ciclina D1/metabolismo , DNA/química , Relação Dose-Resposta a Droga , Humanos , Immunoblotting , Imunoprecipitação , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Regiões Promotoras Genéticas , RNA Ribossômico/química , RNA Interferente Pequeno/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais , Endonucleases Específicas para DNA e RNA de Cadeia Simples/metabolismo , Fatores de Tempo , Transfecção , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo
14.
J Biol Chem ; 280(33): 29551-8, 2005 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-15970593

RESUMO

Knowledge of the role of components of the RNA polymerase I transcription machinery is paramount to understanding regulation of rDNA expression. We describe key findings for the roles of essential transcription factor SL1 and activator upstream binding factor (UBF). We demonstrate that human SL1 can direct accurate Pol I transcription in the absence of UBF and can interact with the rDNA promoter independently and stably, consistent with studies of rodent SL1 but contrary to previous reports of human SL1. UBF itself does not bind stably to rDNA but rapidly associates and dissociates. We show that SL1 significantly reduces the rate of dissociation of UBF from the rDNA promoter. Our findings challenge the idea that UBF activates transcription through recruitment of SL1 at the rDNA promoter and suggest that the rate of pre-initiation complex (PIC) formation is primarily determined by the rate of association of SL1, rather than UBF, with the promoter. Therefore, we propose that SL1 directs PIC formation, functioning in core promoter binding, RNA polymerase I recruitment, and UBF stabilization and that SL1-promoter complex formation is a necessary prerequisite to the assembly of functional and stable PICs that include the UBF activator in mammalian cells.


Assuntos
DNA Ribossômico/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/fisiologia , Regiões Promotoras Genéticas , RNA Polimerase I/fisiologia , Sequência de Bases , Humanos , Dados de Sequência Molecular , Transcrição Gênica
15.
Genes Dev ; 19(1): 50-64, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15598984

RESUMO

Human ribosomal genes (rDNA) are located in nucleolar organizer regions (NORs) on the short arms of acrocentric chromosomes. Metaphase NORs that were transcriptionally active in the previous cell cycle appear as prominent chromosomal features termed secondary constrictions that are achromatic in chromosome banding and positive in silver staining. The architectural RNA polymerase I (pol I) transcription factor UBF binds extensively across rDNA throughout the cell cycle. To determine if UBF binding underpins NOR structure, we integrated large arrays of heterologous UBF-binding sequences at ectopic sites on human chromosomes. These arrays efficiently recruit UBF even to sites outside the nucleolus and, during metaphase, form novel silver stainable secondary constrictions, termed pseudo-NORs, morphologically similar to NORs. We demonstrate for the first time that in addition to UBF the other components of the pol I machinery are found associated with sequences across the entire human rDNA repeat. Remarkably, a significant fraction of these same pol I factors are sequestered by pseudo-NORs independent of both transcription and nucleoli. Because of the heterologous nature of the sequence employed, we infer that sequestration is mediated primarily by protein-protein interactions with UBF. These results suggest that extensive binding of UBF is responsible for formation and maintenance of the secondary constriction at active NORs. Furthermore, we propose that UBF mediates recruitment of the pol I machinery to nucleoli independently of promoter elements.


Assuntos
Região Organizadora do Nucléolo/ultraestrutura , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Polimerase I/metabolismo , Transcrição Gênica , Animais , Sítios de Ligação/genética , Linhagem Celular , Nucléolo Celular/metabolismo , Cromossomos , DNA Ribossômico/metabolismo , Engenharia Genética , Humanos , Substâncias Macromoleculares , Metáfase , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/fisiologia , Ligação Proteica , Transporte Proteico , Sequências Repetitivas de Ácido Nucleico , Xenopus
16.
Mol Cell Biol ; 24(12): 5421-33, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15169904

RESUMO

Pescadillo (PES1) and the upstream binding factor (UBF1) play a role in ribosome biogenesis, which regulates cell size, an important component of cell proliferation. We have investigated the effects of PES1 and UBF1 on the growth and differentiation of cell lines derived from 32D cells, an interleukin-3 (IL-3)-dependent murine myeloid cell line. Parental 32D cells and 32D IGF-IR cells (expressing increased levels of the type 1 insulin-like growth factor I [IGF-I] receptor [IGF-IR]) do not express insulin receptor substrate 1 (IRS-1) or IRS-2. 32D IGF-IR cells differentiate when the cells are shifted from IL-3 to IGF-I. Ectopic expression of IRS-1 inhibits differentiation and transforms 32D IGF-IR cells into a tumor-forming cell line. We found that PES1 and UBF1 increased cell size and/or altered the cell cycle distribution of 32D-derived cells but failed to make them IL-3 independent. PES1 and UBF1 also failed to inhibit the differentiation program initiated by the activation of the IGF-IR, which is blocked by IRS-1. 32D IGF-IR cells expressing PES1 or UBF1 differentiate into granulocytes like their parental cells. In contrast, PES1 and UBF1 can transform mouse embryo fibroblasts that have high levels of endogenous IRS-1 and are not prone to differentiation. Our results provide a model for one of the theories of myeloid leukemia, in which both a stimulus of proliferation and a block of differentiation are required for leukemia development.


Assuntos
Células Mieloides/citologia , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/fisiologia , Proteínas/genética , Proteínas/fisiologia , Animais , Sequência de Bases , Ciclo Celular , Proteínas de Ciclo Celular , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Divisão Celular/genética , Divisão Celular/fisiologia , Linhagem Celular , DNA Complementar/genética , Proteínas Substratos do Receptor de Insulina , Fator de Crescimento Insulin-Like I/farmacologia , Leucemia Mieloide/etiologia , Camundongos , Modelos Biológicos , Células Mieloides/efeitos dos fármacos , Células Mieloides/fisiologia , Fosfoproteínas/genética , Fosfoproteínas/fisiologia , Proteínas de Ligação a RNA , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/fisiologia , Transdução Genética
17.
FEBS Lett ; 548(1-3): 79-84, 2003 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-12885411

RESUMO

The ribosomal DNA transcription-specific factor, UBF, is a key target for the regulation of ribosomal RNA synthesis and hypertrophic growth of isolated neonatal cardiomyocytes. In this study, we have examined whether UBF expression is also an important determinant of cardiac growth rates in vivo. We show that rDNA transcription, rRNA synthesis and UBF expression in left ventricular myocytes isolated from mice 1-6 weeks following transverse aortic constriction were significantly increased (2.5-3.5-fold) compared to the levels in myocytes from the left ventricle of sham-operated mice.


Assuntos
Cardiomegalia/patologia , Proteínas Pol1 do Complexo de Iniciação de Transcrição/biossíntese , Animais , Fator Natriurético Atrial/genética , Cardiomegalia/etiologia , Ventrículos do Coração/patologia , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/patologia , Camundongos , Células Musculares/patologia , Proteínas Pol1 do Complexo de Iniciação de Transcrição/fisiologia , RNA Mensageiro/análise , RNA Ribossômico/biossíntese , Transcrição Gênica , Regulação para Cima
19.
Biol Chem ; 383(11): 1683-90, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12530533

RESUMO

DNA-dependent protein kinase represses RNA polymerase I (Pol I) transcription in vitro. To investigate the mechanism underlying transcriptional repression, we compared Pol I transcription in extracts from cells that either contain or lack the catalytic subunit of DNA-PK (DNA-PKcs). ATP-dependent repression of Pol I transcription was observed in extracts from DNA-PKcs-containing but not -deficient cells, required templates with free DNA ends, and was overcome by exogenous SL1, the factor that nucleates initiation complex formation. Order-of-addition experiments demonstrate that DNA-PKcs does not inactivate component(s) of the Poll transcription machinery. Instead, phosphorylated Ku protein competes with SL1 for binding to the rDNA promoter and, as a consequence, prevents initiation complex formation. The results reveal a novel mechanism of transcriptional regulation by DNA-PK. Once targeted to DNA, autophosphorylated Ku may displace positive- or negative-acting factors from their target sites, thereby repressing or activating transcription in a gene-specific manner.


Assuntos
DNA Helicases , DNA/fisiologia , Proteínas Quinases/farmacologia , RNA Polimerase I/antagonistas & inibidores , RNA Polimerase I/biossíntese , Transcrição Gênica/efeitos dos fármacos , Antígenos Nucleares/metabolismo , Western Blotting , DNA Ribossômico/biossíntese , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Inibidores Enzimáticos/farmacologia , Humanos , Autoantígeno Ku , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Fosforilação , Proteínas Pol1 do Complexo de Iniciação de Transcrição/fisiologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...