Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 358
Filtrar
2.
Proc Natl Acad Sci U S A ; 120(34): e2304611120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590418

RESUMO

Selective orthosteric inhibition of kinases has been challenging due to the conserved active site architecture of kinases and emergence of resistance mutants. Simultaneous inhibition of distant orthosteric and allosteric sites, which we refer to as "double-drugging", has recently been shown to be effective in overcoming drug resistance. However, detailed biophysical characterization of the cooperative nature between orthosteric and allosteric modulators has not been undertaken. Here, we provide a quantitative framework for double-drugging of kinases employing isothermal titration calorimetry, Förster resonance energy transfer, coupled-enzyme assays, and X-ray crystallography. We discern positive and negative cooperativity for Aurora A kinase (AurA) and Abelson kinase (Abl) with different combinations of orthosteric and allosteric modulators. We find that a conformational equilibrium shift is the main principle governing cooperativity. Notably, for both kinases, we find a synergistic decrease of the required orthosteric and allosteric drug dosages when used in combination to inhibit kinase activities to clinically relevant inhibition levels. X-ray crystal structures of the double-drugged kinase complexes reveal the molecular principles underlying the cooperative nature of double-drugging AurA and Abl with orthosteric and allosteric inhibitors. Finally, we observe a fully closed conformation of Abl when bound to a pair of positively cooperative orthosteric and allosteric modulators, shedding light on the puzzling abnormality of previously solved closed Abl structures. Collectively, our data provide mechanistic and structural insights into rational design and evaluation of double-drugging strategies.


Assuntos
Aurora Quinase A , Mesilato de Imatinib , Niacinamida , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-abl , Humanos , Cristalografia por Raios X , Mesilato de Imatinib/química , Mesilato de Imatinib/farmacologia , Niacinamida/química , Niacinamida/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/química , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
3.
Angew Chem Int Ed Engl ; 61(46): e202209518, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36283971

RESUMO

Manley and co-workers provide data demonstrating that, at super-pharmacological concentrations (300 µM), a ternary complex between Abl, asciminib, and ATP-competitive inhibitors is possible. The work in our manuscript concerns the interplay of asciminib (and GNF-2) with ATP-competitive inhibitors at pharmacologically relevant concentrations (Cmax =1.6-3.7 µM for asciminib). Manley and co-workers do not question any of the studies that we reported, nor do they provide explanations for how our work fits into their preferred model. Herein, we consider the data presented by Manley and co-workers. In addition, we provide new data supporting the findings in our Communication. Asciminib and ATP-competitive inhibitors do not simultaneously bind Abl at pharmacologically relevant concentrations unless the conformation selectivity for both ligands is matched.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteínas Proto-Oncogênicas c-abl , Humanos , Trifosfato de Adenosina/metabolismo , Conformação Molecular , Mutação , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores
4.
Transl Res ; 249: 74-87, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35697276

RESUMO

Chronic oxidative stress, which is caused by aberrant non-receptor tyrosine kinase (c-Abl) signaling, plays a key role in the progression of ß-cell loss in diabetes mellitus. Recent studies, however, have linked ferroptotic-like death to the ß-cell loss in diabetes mellitus. Here, we report that oxidative stress-driven reduced/oxidized glutathione (GSH/GSSG) loss and proteasomal degradation of glutathione peroxidase 4 (GPX4) promote ferroptotic-like cell damage through increased lipid peroxidation. Mechanistically, treatment with GNF2, a non-ATP competitive c-Abl kinase inhibitor, selectively preserves ß-cell function by inducing the orphan nuclear receptor estrogen-related receptor gamma (ERRγ). ERRγ-driven glutaminase 1 (GLS1) expression promotes the elevation of the GSH/GSSG ratio, and this increase leads to the inhibition of lipid peroxidation by GPX4. Strikingly, pharmacological inhibition of ERRγ represses the expression of GLS1 and reverses the GSH/GSSG ratio linked to mitochondrial dysfunction and increased lipid peroxidation mediated by GPX4 degradation. Inhibition of GLS1 suppresses the ERRγ agonist DY131-induced GSH/GSSG ratio linked to ferroptotic-like death owing to the loss of GPX4. Furthermore, immunohistochemical analysis showed enhanced ERRγ and GPX4 expression in the pancreatic islets of GNF2-treated mice compared to that in streptozotocin-treated mice. Altogether, our results provide the first evidence that the orphan nuclear receptor ERRγ-induced GLS1 expression augments the glutathione antioxidant system, and its downstream signaling leads to improved ß-cell function and survival under oxidative stress conditions.


Assuntos
Antioxidantes , Glutaminase , Animais , Camundongos , Antioxidantes/farmacologia , Estrogênios , Glutaminase/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Peroxidação de Lipídeos , Receptores Nucleares Órfãos/metabolismo , Estresse Oxidativo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Proteínas Tirosina Quinases/metabolismo , Estreptozocina , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores
5.
Lab Invest ; 102(3): 263-271, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732849

RESUMO

Sepsis is associated with exaggerated neutrophil responses although mechanisms remain elusive. The aim of this study was to investigate the role of c-Abelson (c-Abl) kinase in neutrophil extracellular trap (NET) formation and inflammation in septic lung injury. Abdominal sepsis was induced by cecal ligation and puncture (CLP). NETs were detected by electron microscopy in the lung and by confocal microscopy in vitro. Plasma levels of DNA-histone complexes, interleukin-6 (IL-6) and CXC chemokines were quantified. CLP-induced enhanced phosphorylation of c-Abl kinase in circulating neutrophils. Administration of the c-Abl kinase inhibitor GZD824 not only abolished activation of c-Abl kinase in neutrophils but also reduced NET formation in the lung and plasma levels of DNA-histone complexes in CLP mice. Moreover, inhibition of c-Abl kinase decreased CLP-induced lung edema and injury. Administration of GDZ824 reduced CLP-induced increases in the number of alveolar neutrophils. Inhibition of c-Abl kinase also markedly attenuated levels of CXC chemokines in the lung and plasma as well as IL-6 levels in the plasma of septic animals. Taken together, this study demonstrates that c-Abl kinase is a potent regulator of NET formation and we conclude that c-Abl kinase might be a useful target to ameliorate lung damage in abdominal sepsis.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Armadilhas Extracelulares/metabolismo , Inflamação/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Sepse/metabolismo , Animais , Benzamidas/farmacologia , Western Blotting , Ceco/lesões , Armadilhas Extracelulares/efeitos dos fármacos , Ligadura/métodos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Peritônio/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Pirazóis/farmacologia , Sepse/tratamento farmacológico
7.
J Med Chem ; 64(20): 15091-15110, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34583507

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects movement. The nonreceptor tyrosine kinase c-Abl has shown a potential role in the progression of PD. As such, c-Abl inhibition is a promising candidate for neuroprotection in PD and α-synucleinopathies. Compound 5 is a newly synthesized blood-brain barrier penetrant c-Abl inhibitor with higher efficacy than existing inhibitors. The objective of the current study was to demonstrate the neuroprotective effects of compound 5 on the α-synuclein preformed fibril (α-syn PFF) mouse model of PD. Compound 5 significantly reduced neurotoxicity, activation of c-Abl, and Lewy body pathology caused by α-syn PFF in cortical neurons. Additionally, compound 5 markedly ameliorated the loss of dopaminergic neurons, c-Abl activation, Lewy body pathology, neuroinflammatory responses, and behavioral deficits induced by α-syn PFF injection in vivo. Taken together, these results suggest that compound 5 could be a pharmaceutical agent to prevent the progression of PD and α-synucleinopathies.


Assuntos
Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Fármacos Neuroprotetores/química , Doença de Parkinson/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Relação Estrutura-Atividade
8.
Acta Biochim Biophys Sin (Shanghai) ; 53(10): 1321-1332, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34508625

RESUMO

The fusion gene of ABL1 is closely related to tumor proliferation, invasion, and migration. It has been reported recently that ABL1 itself is required for T-cell acute lymphoblastic leukemia (T-ALL) cell migration induced by CXCL12. Further experiments revealed that ABL1 inhibitor Nilotinib inhibited leukemia cell migration induced by CXCL12, indicating the possible application of Nilotinib in T-ALL leukemia treatment. However, the interacting proteins of ABL1 and the specific mechanisms of their involvement in this process need further investigation. In the present study, ABL1 interacting proteins were characterized and their roles in the process of leukemia cell migration induced by CXCL12 were investigated. Co-immunoprecipitation in combination with mass spectrometry analysis identified 333 proteins that interact with ABL1, including Cofilin1. Gene ontology analysis revealed that many of them were enriched in the intracellular organelle or cytoplasm, including nucleic acid binding components, transfectors, or co-transfectors. Kyoto Encyclopedia of Genes and Genomes analysis showed that the top three enriched pathways were translation, glycan biosynthesis, and metabolism, together with human diseases. ABL1 and Cofilin1 were in the same complex. Cofilin1 binds the SH3 domain of ABL1 directly; however, ABL1 is not required for the phosphorylation of Cofilin1. Molecular docking analysis shows that ABL1 interacts with Cofilin1 mainly through hydrogen bonds and ionic interaction between amino acid residues. The mobility of leukemic cells was significantly decreased by Cofilin1 siRNA. These results demonstrate that Cofilin1 is a novel ABL1 binding partner. Furthermore, Cofilin1 participates in the migration of leukemia cells induced by CXCL12. These data indicate that ABL1 and Cofilin1 are possible targets for T-ALL treatment.


Assuntos
Movimento Celular/imunologia , Cofilina 1/imunologia , Cofilina 1/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Proto-Oncogênicas c-abl/imunologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Cofilina 1/genética , Biologia Computacional , Citoesqueleto/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Simulação de Acoplamento Molecular , Domínios Proteicos , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/genética , Pirimidinas/farmacologia , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/metabolismo
9.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361750

RESUMO

The purpose of this work is to investigate the protein kinase inhibitory activity of constituents from Acacia auriculiformis stem bark. Column chromatography and NMR spectroscopy were used to purify and characterize betulin from an ethyl acetate soluble fraction of acacia bark. Betulin, a known inducer of apoptosis, was screened against a panel of 16 disease-related protein kinases. Betulin was shown to inhibit Abelson murine leukemia viral oncogene homolog 1 (ABL1) kinase, casein kinase 1ε (CK1ε), glycogen synthase kinase 3α/ß (GSK-3 α/ß), Janus kinase 3 (JAK3), NIMA Related Kinase 6 (NEK6), and vascular endothelial growth factor receptor 2 kinase (VEGFR2) with activities in the micromolar range for each. The effect of betulin on the cell viability of doxorubicin-resistant K562R chronic myelogenous leukemia cells was then verified to investigate its putative use as an anti-cancer compound. Betulin was shown to modulate the mitogen-activated protein (MAP) kinase pathway, with activity similar to that of imatinib mesylate, a known ABL1 kinase inhibitor. The interaction of betulin and ABL1 was studied by molecular docking, revealing an interaction of the inhibitor with the ABL1 ATP binding pocket. Together, these data demonstrate that betulin is a multi-target inhibitor of protein kinases, an activity that can contribute to the anticancer properties of the natural compound and to potential treatments for leukemia.


Assuntos
Acacia/química , Antineoplásicos Fitogênicos/farmacologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Triterpenos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Apoptose/genética , Sítios de Ligação , Caseína Quinase 1 épsilon/antagonistas & inibidores , Caseína Quinase 1 épsilon/genética , Caseína Quinase 1 épsilon/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/genética , Janus Quinase 3/metabolismo , Células K562 , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Quinases Relacionadas a NIMA/antagonistas & inibidores , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Casca de Planta/química , Extratos Vegetais/química , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/isolamento & purificação , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Transdução de Sinais , Triterpenos/química , Triterpenos/isolamento & purificação , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Cancer Res ; 81(21): 5438-5450, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34417202

RESUMO

Despite the approval of several multikinase inhibitors that target SRC and the overwhelming evidence of the role of SRC in the progression and resistance mechanisms of many solid malignancies, inhibition of its kinase activity has thus far failed to improve patient outcomes. Here we report the small molecule eCF506 locks SRC in its native inactive conformation, thereby inhibiting both enzymatic and scaffolding functions that prevent phosphorylation and complex formation with its partner FAK. This mechanism of action resulted in highly potent and selective pathway inhibition in culture and in vivo. Treatment with eCF506 resulted in increased antitumor efficacy and tolerability in syngeneic murine cancer models, demonstrating significant therapeutic advantages over existing SRC/ABL inhibitors. Therefore, this mode of inhibiting SRC could lead to improved treatment of SRC-associated disorders. SIGNIFICANCE: Small molecule-mediated inhibition of SRC impairing both catalytic and scaffolding functions confers increased anticancer properties and tolerability compared with other SRC/ABL inhibitors.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Quinase 1 de Adesão Focal/antagonistas & inibidores , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Quinases da Família src/antagonistas & inibidores , Animais , Apoptose , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Conformação Proteica , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/química , Quinases da Família src/metabolismo
11.
Bioorg Chem ; 114: 105160, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34328861

RESUMO

Literature conclusively shows that one of the quinolinequinone analogs (6-anilino-5,8-quinolinequinone), referred to as LY83583 hereafter, an inhibitor of guanylyl cyclase, was used as the inhibitor of the cell proliferation in cancer cells. In the present work, a series of analogs of the LY83583 containing alkoxy group(s) in aminophenyl ring (AQQ1-15) were designed and synthesized via a two-step route and evaluated for their in vitro cytotoxic activity against four different cancer cell lines (K562, Jurkat, MT-2, and HeLa) and human peripheral blood mononuclear cells (PBMCs) by MTT assay. The analog (AQQ13) was identified to possess the most potent cytotoxic activity against K562 human chronic myelogenous (CML) cell line (IC50 = 0.59 ± 0.07 µM) with significant selectivity (SI = 4.51) compared to imatinib (IC50 = 5.46 ± 0.85 µM; SI = 4.60). Based on its superior cytotoxic activity, the analog AQQ13 was selected for further mechanistic studies including determination of its apoptotic effects on K562 cell line via annexin V/ethidium homodimer III staining potency, ABL1 kinase inhibitory activity, and DNA cleaving capacity. Results ascertained that the analog AQQ13 induced apoptosis in K562 cell line with notable DNA-cleaving activity. However, AQQ13 demonstrated weak ABL1 inhibition indicating the correlation between anti-K562 and anti-ABL1 activities. In continuance, respectively conducted in silico molecular docking and Absorption, Distribution, Metabolism, and Excretion (ADME) studies drew attention to enhanced binding interactions of AQQ13 towards DNA and its high compatibility with the potential limits of specified pharmacokinetic parameters making it as a potential anti-leukemic drug candidate. Our findings may provide a new insight for further development of novel quinolinequinone-based anticancer analogs against CML.


Assuntos
Aminoquinolinas/farmacologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Aminoquinolinas/síntese química , Aminoquinolinas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Clivagem do DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-abl/metabolismo , Relação Estrutura-Atividade
12.
FASEB J ; 35(7): e21674, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34115899

RESUMO

Current therapeutic approaches to avoid or reverse bronchoconstriction rely primarily on ß2 adrenoceptor agonists (ß-agonists) that regulate pharmacomechanical coupling/cross bridge cycling in airway smooth muscle (ASM). Targeting actin cytoskeleton polymerization in ASM represents an alternative means to regulate ASM contraction. Herein we report the cooperative effects of targeting these distinct pathways with ß-agonists and inhibitors of the mammalian Abelson tyrosine kinase (Abl1 or c-Abl). The cooperative effect of ß-agonists (isoproterenol) and c-Abl inhibitors (GNF-5, or imatinib) on contractile agonist (methacholine, or histamine) -induced ASM contraction was assessed in cultured human ASM cells (using Fourier Transfer Traction Microscopy), in murine precision cut lung slices, and in vivo (flexiVent in mice). Regulation of intracellular signaling that regulates contraction (pMLC20, pMYPT1, pHSP20), and actin polymerization state (F:G actin ratio) were assessed in cultured primary human ASM cells. In each (cell, tissue, in vivo) model, c-Abl inhibitors and ß-agonist exhibited additive effects in either preventing or reversing ASM contraction. Treatment of contracted ASM cells with c-Abl inhibitors and ß-agonist cooperatively increased actin disassembly as evidenced by a significant reduction in the F:G actin ratio. Mechanistic studies indicated that the inhibition of pharmacomechanical coupling by ß-agonists is near optimal and is not increased by c-Abl inhibitors, and the cooperative effect on ASM relaxation resides in further relaxation of ASM tension development caused by actin cytoskeleton depolymerization, which is regulated by both ß-agonists and c-Abl inhibitors. Thus, targeting actin cytoskeleton polymerization represents an untapped therapeutic reserve for managing airway resistance.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Sinergismo Farmacológico , Contração Muscular , Relaxamento Muscular , Músculo Liso/fisiologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Traqueia/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Humanos , Mesilato de Imatinib/farmacologia , Isoproterenol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso/citologia , Músculo Liso/efeitos dos fármacos , Pirimidinas/farmacologia , Transdução de Sinais , Traqueia/citologia , Traqueia/efeitos dos fármacos
13.
Cell Chem Biol ; 28(10): 1433-1445.e3, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34077750

RESUMO

Most small molecules interact with several target proteins but this polypharmacology is seldom comprehensively investigated or explicitly exploited during drug discovery. Here, we use computational and experimental methods to identify and systematically characterize the kinase cross-pharmacology of representative HSP90 inhibitors. We demonstrate that the resorcinol clinical candidates ganetespib and, to a lesser extent, luminespib, display unique off-target kinase pharmacology as compared with other HSP90 inhibitors. We also demonstrate that polypharmacology evolved during the optimization to discover luminespib and that the hit, leads, and clinical candidate all have different polypharmacological profiles. We therefore recommend the computational and experimental characterization of polypharmacology earlier in drug discovery projects to unlock new multi-target drug design opportunities.


Assuntos
Descoberta de Drogas , Evolução Molecular , Proteínas de Choque Térmico HSP90/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Sítios de Ligação , Receptor com Domínio Discoidina 1/antagonistas & inibidores , Receptor com Domínio Discoidina 1/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Isoxazóis/química , Isoxazóis/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/metabolismo , Resorcinóis/química , Resorcinóis/metabolismo , Triazóis/química , Triazóis/metabolismo
14.
Ann Hematol ; 100(8): 2023-2029, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34110462

RESUMO

Resistance remains the major clinical challenge for the therapy of Philadelphia chromosome-positive (Ph+) leukemia. With the exception of ponatinib, all approved tyrosine kinase inhibitors (TKIs) are unable to inhibit the common "gatekeeper" mutation T315I. Here we investigated the therapeutic potential of crizotinib, a TKI approved for targeting ALK and ROS1 in non-small cell lung cancer patients, which inhibited also the ABL1 kinase in cell-free systems, for the treatment of advanced and therapy-resistant Ph+ leukemia. By inhibiting the BCR-ABL1 kinase, crizotinib efficiently suppressed growth of Ph+ cells without affecting growth of Ph- cells. It was also active in Ph+ patient-derived long-term cultures (PD-LTCs) independently of the responsiveness/resistance to other TKIs. The efficacy of crizotinib was confirmed in vivo in syngeneic mouse models of BCR-ABL1- or BCR-ABL1T315I-driven chronic myeloid leukemia-like disease and in BCR-ABL1-driven acute lymphoblastic leukemia (ALL). Although crizotinib binds to the ATP-binding site, it also allosterically affected the myristol binding pocket, the binding site of GNF2 and asciminib (former ABL001). Therefore, crizotinib has a seemingly unique double mechanism of action, on the ATP-binding site and on the myristoylation binding pocket. These findings strongly suggest the clinical evaluation of crizotinib for the treatment of advanced and therapy-resistant Ph+ leukemia.


Assuntos
Antineoplásicos/farmacologia , Crizotinibe/farmacologia , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Células Jurkat , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Camundongos , Mutação/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/metabolismo
16.
J Mol Neurosci ; 71(12): 2514-2525, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33786723

RESUMO

Accumulating evidence suggests that neuronal apoptosis plays a critical role in early brain injury (EBI) after subarachnoid hemorrhage (SAH), and the inhibition of apoptosis can induce neuroprotective effects in SAH animal models. c-Abl has been reported to promote neuronal apoptosis in Alzheimer's disease and cerebral ischemia, but its role in SAH had not been illuminated until now. In the present study, the effect of c-Abl on neuronal apoptosis induced by SAH was investigated. c-Abl protein levels and neuronal apoptosis were markedly increased 24 h after SAH, and the inhibition of endogenous c-Abl reduced neuronal apoptosis and mortality and ameliorated neurological deficits. Furthermore, c-Abl inhibition decreased the expression of cleaved caspase-3 (CC-3) after SAH. These results demonstrate the proapoptotic effect of c-Abl in EBI after SAH. Additionally, c-Abl inhibition further enhanced the SAH-induced phosphorylation of Akt and glycogen synthase kinase (GSK)3ß. LY294002 abrogated the beneficial effects of targeting c-Abl and exacerbated neuronal apoptosis after SAH. SAH decreased LRP-1 levels and downregulated LRP-1 by RAP, and LRP-1 small interfering RNA (siRNA) induced a dramatic decrease in Akt/GSK3ß activation in the presence of c-Abl siRNA. This is the first report showing that the c-Abl tyrosine kinase may play a key role in SAH-induced neuronal apoptosis by regulating the LRP-1-dependent Akt/GSK3ß survival pathway. Thus, c-Abl has the potential to be a novel target for EBI therapy after SAH.


Assuntos
Apoptose , Proteínas Proto-Oncogênicas c-abl/metabolismo , Transdução de Sinais , Hemorragia Subaracnóidea/metabolismo , Animais , Caspase 3/metabolismo , Cromonas/farmacologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Morfolinas/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar
17.
Anticancer Agents Med Chem ; 21(9): 1099-1109, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32838725

RESUMO

BACKGROUND: After the approval of imatinib, more than 25 antitumor agents targeting kinases have been approved, and several promising candidates are at various stages of clinical evaluation. OBJECTIVES: Due to the importance of the thiazole scaffold in targeted anticancer drug discovery, the goal of this work is to identify new thiazolyl hydrazones as potent ABL1 kinase inhibitors for the management of Chronic Myeloid Leukemia (CML). METHODS: New thiazolyl hydrazones (2a-p) were synthesized and investigated for their cytotoxic effects on the K562 CML cell line. Compounds 2h, 2j and 2l showed potent anticancer activity against K562 cell line. The cytotoxic effects of these compounds on other leukemia (HL-60, MT-2 and Jurkat) and HeLa human cervical carcinoma cell lines were also investigated. Furthermore, their cytotoxic effects on Mitogen-Activated Peripheral Blood Mononuclear Cells (MA-PBMCs) were evaluated to determine their selectivity. Due to its selective and potent anticancer activity, compound 2j was benchmarked for its apoptosis-inducing potential on K562 cell line and inhibitory effects on eight different Tyrosine Kinases (TKs), including ABL1 kinase. In order to investigate the binding mode of compound 2j into the ATP binding site of ABL1 kinase (PDB: 1IEP), a molecular docking study was conducted using MOE 2018.01 program. The QikProp module of Schrödinger's Molecular modelling package was used to predict the pharmacokinetic properties of compounds 2a-p. RESULTS: 4-(4-(Methylsulfonyl)phenyl)-2-[2-((1,3-benzodioxol-4-yl)methylene)hydrazinyl]thiazole (2j) showed antiproliferative activity against K562 cell line with an IC50 value of 8.87±1.93 µM similar to imatinib (IC50= 6.84±1.11µM). Compound 2j was found to be more effective than imatinib on HL-60, Jurkat and MT-2 cells. Compound 2j also showed cytotoxic activity against HeLa cell line similar to imatinib. The higher selectivity index value of compound 2j than imatinib indicated that its antiproliferative activity was selective. Compound 2j also induced apoptosis in K562 cell line more than imatinib. Among eight TKs, compound 2j showed the strongest inhibitory activity against ABL1 kinase enzyme (IC50= 5.37±1.17µM). According to molecular docking studies, compound 2j exhibited high affinity to the ATP binding site of ABL1 kinase, forming significant intermolecular interactions. On the basis of in silico studies, this compound did not violate Lipinski's rule of five and Jorgensen's rule of three. CONCLUSION: Compound 2j stands out as a potential orally bioavailable ABL1 kinase inhibitor for the treatment of CML.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Tiazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-abl/metabolismo , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
18.
Curr Drug Targets ; 22(1): 38-51, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33050861

RESUMO

Abl1 tyrosine kinase is a validated target for the treatment of chronic myeloid leukemia. It is a form of cancer that is difficult to treat and much research is being done to identify new molecular entities and to tackle drug resistance issues. In recent years, drug resistance of Abl1 tyrosine kinase has become a major healthcare concern. Second and third-generation TKI reported better responses against the resistant forms; still they had no impact on long-term survival prolongation. New compounds derived from natural products and organic small molecule inhibitors can lay the foundation for better clinical therapies in the future. Computational methods, experimental and biological studies can help us understand the mechanism of drug resistance and identify novel molecule inhibitors. ADMET parameters analysis of reported drugs and novel small molecule inhibitors can also provide valuable insights. In this review, available therapies, point mutations, structure-activity relationship and ADMET parameters of reported series of Abl1 tyrosine kinase inhibitors and drugs are summarised. We summarise in detail recent computational and molecular biology studies that focus on designing drug molecules, investigation of natural product compounds and organic new chemical entities. Current ongoing research suggests that selective targeting of Abl1 tyrosine kinase at the molecular level to combat drug resistance in chronic myeloid leukemia is promising.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Fusão bcr-abl/genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/genética
19.
Cell Mol Neurobiol ; 41(3): 431-448, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32399753

RESUMO

Amyloid beta (Aß) peptides represent one of the most studied etiological factors of Alzheimer's disease. Nevertheless, the effects elicited by different molecular forms of amyloid beta peptides widely vary between the studies, mostly depending on experimental conditions. Despite the enormous amount of accumulated evidences concerning the pathological effects of amyloid beta peptides, the exact identity of the amyloid beta species is still controversial, and even less is clear as regards to the downstream effectors that mediate the devastating impact of these peptides on synapses in the central nervous system. Recent publications indicate that some of the neurotoxic effects of amyloid beta peptides may be mediated via the activation of proteins belonging to the Abelson non-receptor tyrosine kinase (Abl) family, that are known to regulate actin cytoskeleton structure as well as phosphorylate microtubule-associated tau protein, a hallmark of Alzheimer's disease. By performing series of miniature excitatory postsynaptic currents (mEPSC) recordings in cultured hippocampal cells, we demonstrate that activation of Abl kinases by acute application of 42 amino acid-length monomeric amyloid beta (Aß1-42) peptides reduces spontaneous synaptic release, while this effect can be rescued by pharmacologic inhibition of Abl kinase activity, or by reduction of Abl expression with small interfering RNAs. Our electrophysiological data are further reinforced by a subsequent biochemical analysis, showing enhanced phosphorylation of Abl kinase substrate CT10 Regulator of Kinase-homolog-Like (Crkl) upon treatment of hippocampal neurons with Aß peptides. Thus, we conclude that Abl kinase activation may be involved in Aß-induced weakening of synaptic transmission.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Fragmentos de Peptídeos/toxicidade , Proteínas Proto-Oncogênicas c-abl/metabolismo , Sinapses/metabolismo , Animais , Ativação Enzimática/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hidantoínas/farmacologia , Mesilato de Imatinib/farmacologia , Neurotransmissores/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Pirimidinas/farmacologia , RNA Interferente Pequeno/metabolismo , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
20.
Mol Divers ; 25(2): 1025-1050, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32328961

RESUMO

4-Thiazolidinones and phenylaminopyrimidines are known as anticancer agents. Imatinib is the pioneer phenylaminopyrimidine derivative kinase inhibitor, which is used for the treatment of chronic myeloid leukemia. With a hybrid approach, a novel series of 5-benzylidene-2-arylimino-4-thiazolidinone derivatives containing phenylaminopyrimidine core were designed, synthesized, and tested for their anticancer activity on K562 (chronic myeloid leukemia), PC3 (prostat cancer), and SHSY-5Y (neuroblastoma) cells. Since superior anticancer activity was observed on K562 cells, further biological studies of selected compounds (8, 15, and 34) were performed on K562 cells. For the synthesis of designed compounds, thiourea compounds were converted to 2-imino-1,3-thiazolidin-4-ones with α-chloroacetic acid in the presence of sodium acetate. 5-Benzylidene-2-imino-1,3-thiazolidin-4-one derivatives were obtained by Knoevenagel condensation of 2-imino-1,3-thiazolidin-4-ones with related aldehydes. Compounds 8, 15, and 34 were evaluated for cell viability, apoptosis studies, cell cycle experiments, and DNA damage assays. IC50 values of compounds 8, 15, and 34 were found as 5.26 ± 1.03, 3.52 ± 0.91, and 8.16 ± 1.27 µM, respectively, in K562 cells. Preferably, these compounds showed less toxicity towards L929 cells compared to imatinib. Furthermore, compounds 8 and 15 significantly induced early and late apoptosis in a time-dependent manner. Compounds 15 and 34 induced cell cycle arrest at G0/G1 phase and compound 8 caused cell cycle arrest at G2/M phase. Based on DNA damage assay, compounds 8 and 15 were found to be more genotoxic than imatinib towards K562 cells. To put more molecular insight, possible Abl inhibition mechanisms of most active compounds were predicted by molecular docking studies. In conclusion, a novel series of 5-benzylidene-2-arylimino-4-thiazolidinone derivatives and their promising anticancer activities were reported herein.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Pirimidinas , Tiazolidinas , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/química , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Tiazolidinas/síntese química , Tiazolidinas/química , Tiazolidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...