Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.794
Filtrar
1.
Molecules ; 29(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38731604

RESUMO

Edible grey oyster mushroom, Pleurotus sajor-caju, ß (1,3), (1,6) glucan possesses a wide range of biological activities, including anti-inflammation, anti-microorganism and antioxidant. However, its biological activity is limited by low water solubility resulting from its high molecular weight. Our previous study demonstrated that enzymatic hydrolysis of grey oyster mushroom ß-glucan using Hevea ß-1,3-glucanase isozymes obtains a lower molecular weight and higher water solubility, Pleurotus sajor-caju glucanoligosaccharide (Ps-GOS). Additionally, Ps-GOS potentially reduces osteoporosis by enhancing osteoblast-bone formation, whereas its effect on osteoclast-bone resorption remains unknown. Therefore, our study investigated the modulatory activities and underlying mechanism of Ps-GOS on Receptor activator of nuclear factor kappa-Β ligand (RANKL) -induced osteoclastogenesis in pre-osteoclastic RAW 264.7 cells. Cell cytotoxicity of Ps-GOS on RAW 264.7 cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and its effect on osteoclast differentiation was determined by tartrate-resistant acid phosphatase (TRAP) staining. Additionally, its effect on osteoclast bone-resorptive ability was detected by pit formation assay. The osteoclastogenic-related factors were assessed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), Western blot and immunofluorescence. The results revealed that Ps-GOS was non-toxic and significantly suppressed the formation of mature osteoclast multinucleated cells and their resorption activity by reducing the number of TRAP-positive cells and pit formation areas in a dose-dependent manner. Additionally, Ps-GOS attenuated the nuclear factor kappa light chain-enhancer of activated B cells' P65 (NFκB-P65) expression and their subsequent master osteoclast modulators, including nuclear factor of activated T cell c1 (NFATc1) and Fos proto-oncogene (cFOS) via the NF-κB pathway. Furthermore, Ps-GOS markedly inhibited RANK expression, which serves as an initial transmitter of many osteoclastogenesis-related cascades and inhibited proteolytic enzymes, including TRAP, matrix metallopeptidase 9 (MMP-9) and cathepsin K (CTK). These findings indicate that Ps-GOS could potentially be beneficial as an effective natural agent for bone metabolic disease.


Assuntos
Diferenciação Celular , NF-kappa B , Fatores de Transcrição NFATC , Osteoclastos , Pleurotus , Ligante RANK , Receptor Ativador de Fator Nuclear kappa-B , Transdução de Sinais , Animais , Camundongos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/citologia , Células RAW 264.7 , Ligante RANK/metabolismo , Diferenciação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Pleurotus/química , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , beta-Glucanas/farmacologia , beta-Glucanas/química , Oligossacarídeos/farmacologia , Oligossacarídeos/química , Osteogênese/efeitos dos fármacos
2.
PeerJ ; 12: e17342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737745

RESUMO

Background: N-Ethylmaleimide (NEM), an agonist of the potassium chloride cotransporters 2 (KCC2) receptor, has been correlated with neurosuppressive outcomes, including decreased pain perception and the prevention of epileptic seizures. Nevertheless, its relationship with sleep-inducing effects remains unreported. Objective: The present study aimed to investigate the potential enhancement of NEM on the sleep-inducing properties of alprazolam (Alp). Methods: The test of the righting reflex was used to identify the appropriate concentrations of Alp and NEM for inducing sleep-promoting effects in mice. Total sleep duration and sleep quality were evaluated through EEG/EMG analysis. The neural mechanism underlying the sleep-promoting effect was examined through c-fos immunoreactivity in the brain using immunofluorescence. Furthermore, potential CNS-side effects of the combination Alp and NEM were assessed using LABORAS automated home-cage behavioral phenotyping. Results: Combination administration of Alp (1.84 mg/kg) and NEM (1.0 mg/kg) significantly decreased sleep latency and increased sleep duration in comparison to administering 1.84 mg/kg Alp alone. This effect was characterized by a notable increase in REM duration. The findings from c-fos immunoreactivity indicated that NEM significantly suppressed neuron activation in brain regions associated with wakefulness. Additionally, combination administration of Alp and NEM showed no effects on mouse neural behaviors during automated home cage monitoring. Conclusions: This study is the first to propose and demonstrate a combination therapy involving Alp and NEM that not only enhances the hypnotic effect but also mitigates potential CNS side effects, suggesting its potential application in treating insomnia.


Assuntos
Alprazolam , Sinergismo Farmacológico , Sono , Animais , Alprazolam/farmacologia , Alprazolam/administração & dosagem , Camundongos , Masculino , Sono/efeitos dos fármacos , Eletroencefalografia/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Reflexo de Endireitamento/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/administração & dosagem
3.
Zhen Ci Yan Jiu ; 49(5): 480-486, 2024 May 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38764119

RESUMO

OBJECTIVES: To observe the activation state and neuronal types of somatosensory cortex and the primary motor cortex induced by electroacupuncture (EA) stimulation of "Sibai" (ST2) and "Quanliao" (SI18) acupoints in mice. METHODS: Male C57BL/6J mice were randomly divided into blank control and EA groups, with 6 mice in each group. Rats of the EA group received EA stimulation (2 Hz, 0.6 mA) at ST2 and SI18 for 30 minutes. Samples were collected after EA intervention, and immunofluorescence staining was performed to quantify the expression of the c-Fos gene (proportion of c-Fos positive cells) in the somatosensory cortex and primary motor cortex. The co-labelled cells of calcium/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) and gamma-aminobutyric acid (GABA) in the somatosensory cortex and primary motor cortex were observed and counted by using microscope after immunofluorescence staining. Another 10 mice were used to detect the calcium activity of excitatory neurons in the somatosensory cortex and primary motor cortex by fiber photometry. RESULTS: In comparison with the blank control group, the number of c-Fos positive cells, and the proportion of c-Fos and CaMKⅡ co-labelled cells in both the somatosensory cortex and primary motor cortex were significantly increased after EA stimulation (P<0.05). No significant changes were found in the proportion of c-Fos and GABA co-labeled cells in both the somatosensory cortex and primary motor cortex after EA. Results of fiber optic calcium imaging technology showed that the spontaneous calcium activity of excitatory neurons in both somatosensory cortex and primary motor cortex were obviously increased during EA compared with that before EA (P<0.01), and strikingly reduced after cessation of EA compared with that during EA (P<0.05). CONCLUSIONS: Under physiological conditions, EA of ST2 and SI18 can effectively activate excitatory neurons in the somatosensory cortex and primary motor cortex.


Assuntos
Pontos de Acupuntura , Eletroacupuntura , Camundongos Endogâmicos C57BL , Neurônios , Animais , Masculino , Camundongos , Neurônios/metabolismo , Córtex Sensório-Motor/metabolismo , Humanos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Córtex Motor/metabolismo , Córtex Somatossensorial/metabolismo
4.
eNeuro ; 11(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38749701

RESUMO

The voltage-gated calcium channel subunit α2δ-2 controls calcium-dependent signaling in neurons, and loss of this subunit causes epilepsy in both mice and humans. To determine whether mice without α2δ-2 demonstrate hippocampal activation or histopathological changes associated with seizure activity, we measured expression of the activity-dependent gene c-fos and various histopathological correlates of temporal lobe epilepsy (TLE) in hippocampal tissue from wild-type (WT) and α2δ-2 knock-out (CACNA2D2 KO) mice using immunohistochemical staining and confocal microscopy. Both genotypes demonstrated similarly sparse c-fos and ΔFosB expressions within the hippocampal dentate granule cell layer (GCL) at baseline, consistent with no difference in basal activity of granule cells between genotypes. Surprisingly, when mice were assayed 1 h after handling-associated convulsions, KO mice had fewer c-fos-positive cells but dramatically increased ΔFosB expression in the dentate gyrus compared with WT mice. After administration of a subthreshold pentylenetetrazol dose, however, KO mice dentate had significantly more c-fos expression compared with WT mice. Other histopathological markers of TLE in these mice, including markers of neurogenesis, glial activation, and mossy fiber sprouting, were similar between WT and KO mice, apart from a small but statistically significant increase in hilar mossy cell density, opposite to what is typically found in mice with TLE. This suggests that the differences in seizure-associated dentate gyrus function in the absence of α2δ-2 protein are likely due to altered functional properties of the network without associated structural changes in the hippocampus at the typical age of seizure onset.


Assuntos
Hipocampo , Camundongos Knockout , Proteínas Proto-Oncogênicas c-fos , Convulsões , Animais , Convulsões/metabolismo , Convulsões/genética , Convulsões/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Masculino , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Camundongos Endogâmicos C57BL , Pentilenotetrazol , Camundongos , Modelos Animais de Doenças , Neurônios/metabolismo , Neurônios/patologia , Convulsivantes/toxicidade
5.
Biochem Biophys Res Commun ; 717: 150044, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38718567

RESUMO

Pulpitis constitutes a significant challenge in clinical management due to its impact on peripheral nerve tissue and the persistence of chronic pain. Despite its clinical importance, the correlation between neuronal activity and the expression of voltage-gated sodium channel 1.7 (Nav1.7) in the trigeminal ganglion (TG) during pulpitis is less investigated. The aim of this study was to examine the relationship between experimentally induced pulpitis and Nav1.7 expression in the TG and to investigate the potential of selective Nav1.7 modulation to attenuate TG abnormal activity associated with pulpitis. Acute pulpitis was induced at the maxillary molar (M1) using allyl isothiocyanate (AITC). The mice were divided into three groups: control, pulpitis model, and pulpitis model treated with ProTx-II, a selective Nav1.7 channel inhibitor. After three days following the surgery, we conducted a recording and comparative analysis of the neural activity of the TG utilizing in vivo optical imaging. Then immunohistochemistry and Western blot were performed to assess changes in the expression levels of extracellular signal-regulated kinase (ERK), c-Fos, collapsin response mediator protein-2 (CRMP2), and Nav1.7 channels. The optical imaging result showed significant neurological excitation in pulpitis TGs. Nav1.7 expressions exhibited upregulation, accompanied by signaling molecular changes suggestive of inflammation and neuroplasticity. In addition, inhibition of Nav1.7 led to reduced neural activity and subsequent decreases in ERK, c-Fos, and CRMP2 levels. These findings suggest the potential for targeting overexpressed Nav1.7 channels to alleviate pain associated with pulpitis, providing practical pain management strategies.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Pulpite , Animais , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Camundongos , Masculino , Pulpite/metabolismo , Pulpite/patologia , Gânglio Trigeminal/metabolismo , Neurônios/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intercelular
6.
Cell Mol Biol Lett ; 29(1): 75, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755530

RESUMO

BACKGROUND: Mechanical spinal cord injury (SCI) is a deteriorative neurological disorder, causing secondary neuroinflammation and neuropathy. ADAM8 is thought to be an extracellular metalloproteinase, which regulates proteolysis and cell adherence, but whether its intracellular region is involved in regulating neuroinflammation in microglia after SCI is unclear. METHODS: Using animal tissue RNA-Seq and clinical blood sample examinations, we found that a specific up-regulation of ADAM8 in microglia was associated with inflammation after SCI. In vitro, microglia stimulated by HMGB1, the tail region of ADAM8, promoted microglial inflammation, migration and proliferation by directly interacting with ERKs and Fra-1 to promote activation, then further activated Map3k4/JNKs/p38. Using SCI mice, we used BK-1361, a specific inhibitor of ADAM8, to treat these mice. RESULTS: The results showed that administration of BK-1361 attenuated the level of neuroinflammation and reduced microglial activation and recruitment by inhibiting the ADAM8/Fra-1 axis. Furthermore, treatment with BK-1361 alleviated glial scar formation, and also preserved myelin and axonal structures. The locomotor recovery of SCI mice treated with BK-1361 was therefore better than those without treatment. CONCLUSIONS: Taken together, the results showed that ADAM8 was a critical molecule, which positively regulated neuroinflammatory development and secondary pathogenesis by promoting microglial activation and migration. Mechanically, ADAM8 formed a complex with ERK and Fra-1 to further activate the Map3k4/JNK/p38 axis in microglia. Inhibition of ADAM8 by treatment with BK-1361 decreased the levels of neuroinflammation, glial formation, and neurohistological loss, leading to favorable improvement in locomotor functional recovery in SCI mice.


Assuntos
Proteínas ADAM , Proteínas de Membrana , Microglia , Doenças Neuroinflamatórias , Proteínas Proto-Oncogênicas c-fos , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/tratamento farmacológico , Camundongos , Microglia/metabolismo , Microglia/efeitos dos fármacos , Proteínas ADAM/metabolismo , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/genética , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inflamação/patologia , Inflamação/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Humanos , Antígenos CD
7.
Wei Sheng Yan Jiu ; 53(2): 300-309, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38604968

RESUMO

OBJECTIVE: To investigate the effects and possible mechanisms of negative air ions(NAIs) on blood pressure, oxidative stress, and inflammatory status in spontaneous hypertension rats(SHR). METHODS: A total of 60 SHR(half male and half female) were randomly divided into one-month and three-month groups, 30 rats per groups, based on the duration of the intervention. Each group was further randomized into three groups based on the daily intervention time: SHR control group, 2 h NAIs-SHR group, and 6 h NAIs-SHR group, 10 rats per groups. In addition, 20 Wistar Kyoto(WKY)(half male and half female), were randomized into one-month WKY group and three-month WKY group, 10 rats per groups, based on the intervention time. The 2 h NAIs-SHR group and 6 h NAIs-SHR group were exposed to an environment with NAIs concentrations of 4.5×10~4-5×10~4 cm~3 per day for 2 h and 6 h. The WKY group and SHR group were exposed to normal air on a daily basis. Blood pressure of rats in each group was measured every three days, while weight was measured once a week. After sacrificing the rats in the first month and the third month of rearing, wet weight of the organs was weighed. The enzyme linked immunosorbent assay(ELISA) was used to detect 8-hydroxylated deoxyguanosine(8-OHdG), interleukin-6(IL-6), interleukin-8(IL-8), tumor necrosis factor-α(TNF-α), nitric oxide(NO) and endothelin-1(ET-1) levels. Reactive oxygen species(ROS) detection kit was used to detect ROS level. Malondialdehyde(MDA) and superoxide dismutase(SOD), glutathione(GSH) and glutathione disulfide(GSSG) were measured by colorimetric analysis. HE staining was conducted to observe the histopathological morphological changes of the thoracic aorta in each group, and Western blot was conducted to detect the thoracic aortap38 mitogen-activated protein kinase(p38 MAPK), extracellular signal-regulated kinases(ERK), c-Jun n-terminal kinase(JNK), c-fos proteins, c-jun proteins and their phosphorylated proteins level. RESULTS: The weight of WKY male mice in the same week age group was higher than that of SHR control group, and there was no significant difference in the weight between the other groups. The coefficient of heart in SHR control group(4.66±0.48) was higher than that in WKY group(3.73±0.15)(P<0.05), while there were no significant differences in the coefficients of brain, kidney, liver and spleen among the groups. Blood pressure in WKY group at the same age was lower than that in SHR group, and blood pressure in SHR control group at 2-5 and 8-11 weeks was higher than that in 2 h NAIs-SHR and 6 h NAIs-SHR groups(P<0.05). HE staining showed that the internal, middle and external membranes of thoracic aorta in 2 h NAIs-SHR group and 6 h NAIs-SHR group were improved to varying degrees compared with those in SHR control group, including disordered internal membrane structure, thickened middle membrane and broken external membrane. In terms of oxidative stress levels, compared with the SHR control group, the ROS(0.66%±0.17%, 0.49%±0.32%) and 8-OHdG((48.29±8.00) ng/mL, (33.13±14.67)ng/mL) levels were lower in the 6 h NAIs-SHR group(P<0.05), while the GSH/GSSG ratio was higher in the one-month 6 h NAIs-SHR group(10.08±4.93). Compared with the 2 h NAIs-SHR group, the ROS level(0.99%±0.19%) was lower in the 6 h NAIs-SHR group(P<0.05). In terms of inflammatory factor levels, compared with the SHR control group, the IL-8 levels((160.44±56.54) ng/L, (145.77±38.39) ng/L) were lower in the 6 h NAIs-SHR group(P<0.05), while the ET-1 level((249.55±16.98) ng/L) was higher in the one-month WKY group. There was no significant difference in NO levels among the groups. The relative expression of p-p38 protein in the thoracic aorta of rats in the one-month SHR control group was lower than that in the WKY group(P<0.05). The relative expression of p-p38 and p-c-fos proteins in the thoracic aorta of rats at three-months was higher in the SHR control group than in the 2 h NAIs-SHR and 6 h NAIs-SHR groups(P<0.05). CONCLUSION: The intervention of NAIs at a concentration of 4.5×10~4-5×10~4/cm~3 may regulate the partial oxidation and inflammatory state of SHR rats through the ROS/MAPK/AP1 signaling pathway, thereby reducing their blood pressure level.


Assuntos
Hipertensão , Interleucina-8 , Feminino , Ratos , Masculino , Camundongos , Animais , Ratos Endogâmicos SHR , Pressão Sanguínea , Ratos Endogâmicos WKY , Interleucina-8/metabolismo , Interleucina-8/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/farmacologia , Dissulfeto de Glutationa/metabolismo , Dissulfeto de Glutationa/farmacologia , Espécies Reativas de Oxigênio , Estresse Oxidativo , Inflamação
8.
Science ; 384(6693): eadk6742, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38669575

RESUMO

Drugs of abuse are thought to promote addiction in part by "hijacking" brain reward systems, but the underlying mechanisms remain undefined. Using whole-brain FOS mapping and in vivo single-neuron calcium imaging, we found that drugs of abuse augment dopaminoceptive ensemble activity in the nucleus accumbens (NAc) and disorganize overlapping ensemble responses to natural rewards in a cell type-specific manner. Combining FOS-Seq, CRISPR-perturbation, and single-nucleus RNA sequencing, we identified Rheb as a molecular substrate that regulates cell type-specific signal transduction in NAc while enabling drugs to suppress natural reward consumption. Mapping NAc-projecting regions activated by drugs of abuse revealed input-specific effects on natural reward consumption. These findings characterize the dynamic, molecular and circuit basis of a common reward pathway, wherein drugs of abuse interfere with the fulfillment of innate needs.


Assuntos
Homeostase , Núcleo Accumbens , Recompensa , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Animais , Camundongos , Neurônios/metabolismo , Drogas Ilícitas/efeitos adversos , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Masculino , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Transdução de Sinais , Transtornos Relacionados ao Uso de Substâncias , Análise de Célula Única , Cocaína/farmacologia , Cálcio/metabolismo
9.
Life Sci ; 348: 122673, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38679193

RESUMO

AIMS: Glycine receptors (GlyRs) are potentiated by physiologically relevant concentrations of ethanol, and mutations in the intracellular loop of α1 and α2 subunits reduced the effect of the drug. Knock-in (KI) mice having these individual mutations revealed that α1 and α2 subunits played a role in ethanol-induced sedation and ethanol intake. In this study, we wanted to examine if the effects of stacking both mutations in a 2xKI mouse model (α1/α2) generated by a selective breeding strategy further impacted cellular and behavioral responses to ethanol. MAIN METHODS: We used electrophysiological recordings to examine ethanol's effect on GlyRs and evaluated ethanol-induced neuronal activation using c-Fos immunoreactivity and the genetically encoded calcium indicator GCaMP6s in the nucleus accumbens (nAc). We also examined ethanol-induced behavior using open field, loss of the righting response, and drinking in the dark (DID) paradigm. KEY FINDINGS: Ethanol did not potentiate GlyRs nor affect neuronal excitability in the nAc from 2xKI. Moreover, ethanol decreased the Ca2+ signal in WT mice, whereas there were no changes in the signal in 2xKI mice. Interestingly, there was an increase in c-Fos baseline in the 2xKI mice in the absence of ethanol. Behavioral assays showed that 2xKI mice recovered faster from a sedative dose of ethanol and had higher ethanol intake on the first test day of the DID test than WT mice. Interestingly, an open-field assay showed that 2xKI mice displayed less anxiety-like behavior than WT mice. SIGNIFICANCE: The results indicate that α1 and α2 subunits are biologically relevant targets for regulating sedative effects and ethanol consumption.


Assuntos
Etanol , Técnicas de Introdução de Genes , Receptores de Glicina , Animais , Etanol/farmacologia , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Camundongos , Masculino , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos Transgênicos , Receptores de GABA-A
10.
Behav Brain Res ; 466: 114983, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38580200

RESUMO

Humans and other animals exhibit aversive behavioral and emotional responses to unequal reward distributions compared with their conspecifics. Despite the significance of this phenomenon, experimental animal models designed to investigate social inequity aversion and delve into the underlying neurophysiological mechanisms are limited. In this study, we developed a rat model to determine the effects of socially equal or unequal reward and stress on emotional changes in male rats. During the training session, the rats were trained to escape when a sound cue was presented, and they were assigned to one of the following groups: all escaping rats [advantageous equity (AE)], freely moving rats alongside a restrained rat [advantageous inequity (AI)], all restrained rats [disadvantageous equity (DE)], and a rat restrained in the presence of freely moving companions [disadvantageous inequity (DI)]. During the test session, rats in the advantageous group (AE and AI) escaped after the cue sound (expected reward acquisition), whereas rats in the disadvantageous group (DE and DI) could not escape despite the cue being presented (expected reward deprivation). Emotional alteration induced by exposure to restraint stress under various social interaction circumstances was examined using an open field test. Notably, the DI group displayed reduced exploration of the center zone during the open field tests compared with the other groups, indicating heightened anxiety-like behaviors in response to reward inequity. Immunohistochemical analysis revealed increased c-Fos expression in the medial prefrontal and orbitofrontal cortices, coupled with reduced c-Fos expression in the striatum and nucleus accumbens under DI conditions, in contrast to the other experimental conditions. These findings provide compelling evidence that rats are particularly sensitive to reward inequity, shedding light on the neurophysiological basis for distinct cognitive processes that manifest when individuals are exposed to social equity and inequity situations.


Assuntos
Comportamento Animal , Emoções , Proteínas Proto-Oncogênicas c-fos , Estresse Psicológico , Animais , Masculino , Ratos , Comportamento Animal/fisiologia , Sinais (Psicologia) , Emoções/fisiologia , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Recompensa , Comportamento Social , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia
11.
Prog Neurobiol ; 237: 102612, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642602

RESUMO

Recurrent seizures lead to accumulation of the activity-dependent transcription factor ∆FosB in hippocampal dentate granule cells in both mouse models of epilepsy and mouse models of Alzheimer's disease (AD), which is also associated with increased incidence of seizures. In patients with AD and related mouse models, the degree of ∆FosB accumulation corresponds with increasing severity of cognitive deficits. We previously found that ∆FosB impairs spatial memory in mice by epigenetically regulating expression of target genes such as calbindin that are involved in synaptic plasticity. However, the suppression of calbindin in conditions of neuronal hyperexcitability has been demonstrated to provide neuroprotection to dentate granule cells, indicating that ∆FosB may act over long timescales to coordinate neuroprotective pathways. To test this hypothesis, we used viral-mediated expression of ∆JunD to interfere with ∆FosB signaling over the course of several months in transgenic mice expressing mutant human amyloid precursor protein (APP), which exhibit spontaneous seizures and develop AD-related neuropathology and cognitive deficits. Our results demonstrate that persistent ∆FosB activity acts through discrete modes of hippocampal target gene regulation to modulate neuronal excitability, limit recurrent seizure activity, and provide neuroprotection to hippocampal dentate granule cells in APP mice.


Assuntos
Precursor de Proteína beta-Amiloide , Giro Denteado , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-fos , Convulsões , Animais , Giro Denteado/metabolismo , Camundongos , Convulsões/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Neuroproteção/fisiologia , Modelos Animais de Doenças , Doença de Alzheimer/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Humanos
12.
Dis Model Mech ; 17(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616770

RESUMO

Dystonia is thought to arise from abnormalities in the motor loop of the basal ganglia; however, there is an ongoing debate regarding cerebellar involvement. We adopted an established cerebellar dystonia mouse model by injecting ouabain to examine the contribution of the cerebellum. Initially, we examined whether the entopeduncular nucleus (EPN), substantia nigra pars reticulata (SNr), globus pallidus externus (GPe) and striatal neurons were activated in the model. Next, we examined whether administration of a dopamine D1 receptor agonist and dopamine D2 receptor antagonist or selective ablation of striatal parvalbumin (PV, encoded by Pvalb)-expressing interneurons could modulate the involuntary movements of the mice. The cerebellar dystonia mice had a higher number of cells positive for c-fos (encoded by Fos) in the EPN, SNr and GPe, as well as a higher positive ratio of c-fos in striatal PV interneurons, than those in control mice. Furthermore, systemic administration of combined D1 receptor agonist and D2 receptor antagonist and selective ablation of striatal PV interneurons relieved the involuntary movements of the mice. Abnormalities in the motor loop of the basal ganglia could be crucially involved in cerebellar dystonia, and modulating PV interneurons might provide a novel treatment strategy.


Assuntos
Corpo Estriado , Modelos Animais de Doenças , Distonia , Interneurônios , Parvalbuminas , Proteínas Proto-Oncogênicas c-fos , Receptores de Dopamina D2 , Animais , Interneurônios/metabolismo , Interneurônios/efeitos dos fármacos , Parvalbuminas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Distonia/patologia , Distonia/metabolismo , Distonia/fisiopatologia , Corpo Estriado/patologia , Corpo Estriado/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D1/metabolismo , Cerebelo/patologia , Cerebelo/metabolismo , Ouabaína/farmacologia , Camundongos Endogâmicos C57BL , Camundongos , Masculino
13.
Eur J Neurosci ; 59(10): 2522-2534, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38650479

RESUMO

Dopamine neurons signal the salience of environmental stimuli and influence learning, although it is less clear if these neurons also determine the salience of memories. Ventral tegmental area (VTA) dopamine neurons increase their firing in the presence of new objects and reduce it upon repeated, inconsequential exposures, marking the shift from novelty to familiarity. This study investigates how dopamine neuron activity during repeated familiar object exposure affects an animal's preference for new objects in a subsequent novel object recognition (NOR) test. We hypothesize that a single familiarization session will not sufficiently lower dopamine activity, such that the memory of a familiar object remains salient, leading to equal exploration of familiar and novel objects and weaker NOR discrimination. In contrast, multiple familiarization sessions likely suppress dopamine activity more effectively, reducing the salience of the familiar object and enhancing subsequent novelty discrimination. Our experiments in mice indicated that multiple familiarization sessions reduce VTA dopamine neuron activation, as measured by c-Fos expression, and enhance novelty discrimination compared with a single familiarization session. Dopamine neurons that show responsiveness to novelty were primarily located in the paranigral nucleus of the VTA and expressed vesicular glutamate transporter 2 transcripts, marking them as dopamine-glutamate neurons. Chemogenetic inhibition of dopamine neurons during a single session paralleled the effects of multiple sessions, improving NOR. These findings suggest that a critical role of dopamine neurons during the transition from novelty to familiarity is to modulate the salience of an object's memory.


Assuntos
Neurônios Dopaminérgicos , Camundongos Endogâmicos C57BL , Reconhecimento Psicológico , Área Tegmentar Ventral , Animais , Reconhecimento Psicológico/fisiologia , Neurônios Dopaminérgicos/fisiologia , Neurônios Dopaminérgicos/metabolismo , Área Tegmentar Ventral/fisiologia , Camundongos , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética
14.
Mol Pain ; 20: 17448069241254201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38670551

RESUMO

It has been widely recognized that electroacupuncture (EA) inducing the release of ß-endorphin represents a crucial mechanism of EA analgesia. The arcuate nucleus (ARC) in the hypothalamus is a vital component of the endogenous opioid peptide system. Serving as an integration center, the periaqueductal gray (PAG) receives neural fiber projections from the frontal cortex, insular cortex, and ARC. However, the specific mechanisms how EA facilitates the release of ß-endorphin within the ARC, eliciting analgesic effects are yet to be elucidated. In this study, we conducted in vivo and in vitro experiments by transcriptomics, microdialysis, photogenetics, chemical genetics, and calcium imaging, combined with transgenic animals. Firstly, we detected 2 Hz EA at the Zusanli (ST36) increased the level of ß-endorphin and transcriptional level of proopiomelanocortin (POMC). Our transcriptomics profiling demonstrated that 2 Hz EA at the ST36 modulates the expression of c-Fos and Jun B in ARC brain nuclear cluster, and the transcriptional regulation of 2 Hz EA mainly occur in POMC neurons by Immunofluorescence staining verification. Meaning while, 2 Hz EA specifically activated the cAMP-PKA-CREB signaling pathway in ARC which mediating the c-Fos and Jun B transcription, and 2 Hz EA analgesia is dependent on the activation of cAMP-PKA-CREB signaling pathway in ARC. In order to investigate how the ß-endorphin produced in ARC transfer to integration center PAG, transneuronal tracing technology was used to observe the 2 Hz EA promoted the neural projection from ARC to PAG compared to 100 Hz EA and sham mice. Inhibited PAGGABA neurons, the transfer of ß-endorphin from the ARC nucleus to the PAG nucleus through the ARCPOMC-PAGGABA neural circuit. Furthermore, by manipulating the excitability of POMC neurons from ARCPOMC to PAGGABA using inhibitory chemogenetics and optogenetics, we found that this inhibition significantly reduced transfer of ß-endorphin from the ARC nucleus to the PAG nucleus and the effectiveness of 2 Hz EA analgesia in neurological POMC cyclization recombination enzyme (Cre) mice and C57BL/6J mice, which indicates that the transfer of ß-endorphin depends on the activation of POMC neurons prefect from ARCPOMC to PAGGABA. These findings contribute to our understanding of the neural circuitry underlying the EA pain-relieving effects and maybe provide valuable insights for optimizing EA stimulation parameters in clinical pain treatment using the in vivo dynamic visual investigating the central analgesic mechanism.


Assuntos
Núcleo Arqueado do Hipotálamo , Eletroacupuntura , Substância Cinzenta Periaquedutal , Pró-Opiomelanocortina , beta-Endorfina , Animais , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/genética , Substância Cinzenta Periaquedutal/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Eletroacupuntura/métodos , beta-Endorfina/metabolismo , Masculino , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Camundongos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Neurônios/metabolismo
15.
Fish Shellfish Immunol ; 149: 109529, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561069

RESUMO

This study was designed to investigate the potential neuronal damage mechanism of the okadaic acid (OA) in the brain tissues of zebrafish embryos by evaluating in terms of immunofluorescence of Nf KB, TLR-4, caspase 3, ERK ½, c-FOS and 8-OHdG signaling pathways. We also evaluated body malformations. For this purpose, zebrafish embryos were exposed to 0.5 µg/ml, 1 µg/ml and 2.5 µg/ml of OA for 5 days. After application, FITC/GFP labeled protein-specific antibodies were used in immunofluorescence assay for NfKB, TLR-4, caspase 3, ERK ½, c-FOS and 8-OHdG respectively. The results indicated that OA caused immunofluorescence positivity of NfKB, TLR-4, caspase 3, ERK ½, c-FOS and 8-OHdG in a dose-dependent manner in the brain tissues of zebrafish embryos. Pericardial edema (PE), nutrient sac edema (YSE) and body malformations, tail malformation, short tail and head malformation (BM) were detected in zebrafish embryos. These results suggest that OA induces neuronal damage by affecting the modulation of DNA damage, apoptotic, and inflammatory activities in the brain tissues of zebrafish embryos. The increase in signaling pathways shows that OA can cause damage in the structure and function of brain nerve cells. Our results provide a new basis for the comprehensive assessment of the neural damage of OA and will offer enable us to better understand molecular the mechanisms underlying the pathophysiology of OA toxicity.


Assuntos
Encéfalo , NF-kappa B , Ácido Okadáico , Transdução de Sinais , Receptor 4 Toll-Like , Peixe-Zebra , Animais , Peixe-Zebra/imunologia , Encéfalo/efeitos dos fármacos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ácido Okadáico/toxicidade , NF-kappa B/metabolismo , NF-kappa B/imunologia , 8-Hidroxi-2'-Desoxiguanosina , Caspase 3/metabolismo , Caspase 3/genética , Larva/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo
16.
Proc Natl Acad Sci U S A ; 121(18): e2404188121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657045

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. HCC incidence is on the rise, while treatment options remain limited. Thus, a better understanding of the molecular pathways involved in HCC development has become a priority to guide future therapies. While previous studies implicated the Activator Protein-1 (AP-1) (Fos/Jun) transcription factor family members c-Fos and c-Jun in HCC formation, the contribution of Fos-related antigens (Fra-) 1 and 2 is unknown. Here, we show that hepatocyte-restricted expression of a single chain c-Jun~Fra-2 protein, which functionally mimics the c-Jun/Fra-2 AP-1 dimer, results in spontaneous HCC formation in c-Jun~Fra-2hep mice. Several hallmarks of human HCC, such as cell cycle dysregulation and the expression of HCC markers are observed in liver tumors arising in c-Jun~Fra-2hep mice. Tumorigenesis occurs in the context of mild inflammation, low-grade fibrosis, and Pparγ-driven dyslipidemia. Subsequent analyses revealed increased expression of c-Myc, evidently under direct regulation by AP-1 through a conserved distal 3' enhancer. Importantly, c-Jun~Fra-2-induced tumors revert upon switching off transgene expression, suggesting oncogene addiction to the c-Jun~Fra-2 transgene. Tumors escaping reversion maintained c-Myc and c-Myc target gene expression, likely due to increased c-Fos. Interfering with c-Myc in established tumors using the Bromodomain and Extra-Terminal motif inhibitor JQ-1 diminished liver tumor growth in c-Jun~Fra-2 mutant mice. Thus, our data establish c-Jun~Fra-2hep mice as a model to study liver tumorigenesis and identify the c-Jun/Fra-2-Myc interaction as a potential target to improve HCC patient stratification and/or therapy.


Assuntos
Carcinoma Hepatocelular , Antígeno 2 Relacionado a Fos , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-fos , Proteínas Proto-Oncogênicas c-jun , Proteínas Proto-Oncogênicas c-myc , Fator de Transcrição AP-1 , Animais , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Camundongos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Antígeno 2 Relacionado a Fos/metabolismo , Antígeno 2 Relacionado a Fos/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Humanos , Hepatócitos/metabolismo , Multimerização Proteica , Regulação Neoplásica da Expressão Gênica , Camundongos Transgênicos
17.
J Cell Mol Med ; 28(9): e18357, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38683127

RESUMO

In our previous study, intranuclear cardiac troponin I (cTnI) may function as a co-factor of Yin Yang 1(YY1). Here, we aimed to explore the role of intranuclear cTnI in ageing hearts. Nuclear translocation of cTnI was demonstrated using Western blot and immunofluorescence. The potential nuclear localization sequences (NLSs) of cTnI were predicted by a web server and then verified in 293T cells by putative NLS-eGFP-GST and NLS-mutant transfection. The ratio of Nuclear cTnI/ Total cTnI (Nu/T) decreased significantly in ageing hearts, accompanied with ATG5-decline-related impaired cardiac autophagy. RNA sequencing was performed in cTnI knockout hearts. The differential expressed genes (DEGs) were analysed by overlapping with YY1 ChIP-sequencing data. cTnI gain and loss experiments in vitro determined those filtered DEGs' expression levels. A strong correlation was found between expression patterns cTnI and FOS. Using ChIP-q-PCR, we demonstrated that specific binding DNA sequences of cTnI were enriched in the FOS promoter -299 to -157 region. It was further verified that pcDNA3.1 (-)-cTnI could increase the promoter activity of FOS by using luciferase report assay. At last, we found that FOS can regulate the ATG5 (autophagy-related gene 5) gene by using a luciferase report assay. Taken together, our results indicate that decreased intranuclear cTnI in ageing hearts may cause impaired cardiac autophagy through the FOS/ATG5 pathway.


Assuntos
Envelhecimento , Proteína 5 Relacionada à Autofagia , Autofagia , Núcleo Celular , Miocárdio , Troponina I , Troponina I/metabolismo , Troponina I/genética , Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Envelhecimento/metabolismo , Envelhecimento/genética , Animais , Miocárdio/metabolismo , Humanos , Núcleo Celular/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Camundongos , Células HEK293 , Masculino , Regiões Promotoras Genéticas , Regulação da Expressão Gênica , Miócitos Cardíacos/metabolismo , Camundongos Knockout
18.
Mol Pain ; 20: 17448069241252385, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38631845

RESUMO

Preemptive analgesia is used for postoperative pain management, providing pain relief with few adverse effects. In this study, the effect of a preemptive regime on rat behavior and c-fos expression in the spinal cord of the uterine surgical pain model was evaluated. It was a lab-based experimental study in which 60 female Sprague-Dawley rats; eight to 10 weeks old, weighing 150-300 gm were used. The rats were divided into two main groups: (i) superficial pain group (SG) (with skin incision only), (ii) deep pain group (with skin and uterine incisions). Each group was further divided into three subgroups based on the type of preemptive analgesia administered i.e., "tramadol, buprenorphine, and saline subgroups." Pain behavior was evaluated using the "Rat Grimace Scale" (RGS) at 2, 4, 6, 9 and 24 h post-surgery. Additionally, c-fos immunohistochemistry was performed on sections from spinal dorsal horn (T12-L2), and its expression was evaluated using optical density and mean cell count 2 hours postoperatively. Significant reduction in the RGS was noted in both the superficial and deep pain groups within the tramadol and buprenorphine subgroups when compared to the saline subgroup (p ≤ .05). There was a significant decrease in c-fos expression both in terms of number of c-fos positive cells and the optical density across the superficial laminae and lamina X of the spinal dorsal horn in both SD and DG (p ≤ .05). In contrast, the saline group exhibited c-fos expression primarily in laminae I-II and III-IV for both superficial and deep pain groups and lamina X in the deep pain group only (p ≤ .05). Hence, a preemptive regimen results in significant suppression of both superficial and deep components of pain transmission. These findings provide compelling evidence of the analgesic efficacy of preemptive treatment in alleviating pain response associated with uterine surgery.


Assuntos
Modelos Animais de Doenças , Dor Pós-Operatória , Proteínas Proto-Oncogênicas c-fos , Ratos Sprague-Dawley , Útero , Animais , Feminino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Dor Pós-Operatória/tratamento farmacológico , Útero/cirurgia , Útero/efeitos dos fármacos , Anestesia Geral/métodos , Analgesia/métodos , Tramadol/farmacologia , Tramadol/uso terapêutico , Medição da Dor , Ratos , Anestesia Local/métodos , Comportamento Animal/efeitos dos fármacos , Buprenorfina/farmacologia , Buprenorfina/uso terapêutico
19.
Neuropharmacology ; 253: 109959, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648925

RESUMO

Nicotine use produces psychoactive effects, and chronic use is associated with physiological and psychological symptoms of addiction. However, chronic nicotine use is known to decrease food intake and body weight gain, suggesting that nicotine also affects central metabolic and appetite regulation. We recently showed that acute nicotine self-administration in nicotine-dependent animals produces a short-term increase in food intake, contrary to its long-term decrease of feeding behavior. As feeding behavior is regulated by complex neural signaling mechanisms, this study aimed to test the hypothesis that nicotine intake in animals exposed to chronic nicotine may increase activation of pro-feeding regions and decrease activation of pro-satiety regions to produce the acute increase in feeding behavior. FOS immunohistochemistry revealed that acute nicotine intake in nicotine self-administering animals increased activation of the pro-feeding arcuate and lateral hypothalamic nuclei and decreased activation of the pro-satiety parabrachial nucleus. Regional correlational analysis also showed that acute nicotine changes the functional connectivity of the hunger/satiety network. Further dissection of the role of the arcuate nucleus using electrophysiology found that putative POMC neurons in animals given chronic nicotine exhibited decreased firing following acute nicotine application. These brain-wide central signaling changes may contribute to the acute increase in feeding behavior we see in rats after acute nicotine and provide new areas of focus for studying both nicotine addiction and metabolic regulation.


Assuntos
Encéfalo , Nicotina , Animais , Nicotina/farmacologia , Masculino , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ratos , Ratos Sprague-Dawley , Agonistas Nicotínicos/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Pró-Opiomelanocortina/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Autoadministração , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Anorexia/induzido quimicamente
20.
Invest Ophthalmol Vis Sci ; 65(4): 30, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635244

RESUMO

Purpose: This study aims to elucidate the calcitonin gene-related peptide (CGRP) mediation and primary mechanism of corneal sensory nerves on tear production of the lacrimal gland. Methods: Mouse corneal denervation models were constructed through surgical axotomy, pharmacologic treatment with capsaicin or resiniferatoxin, and Trpv1-Cre/DTR mice with diphtheria toxin injection. The capsaicin-treated mice received subconjunctival injection of CGRP or substance P, while the normal C57BL/6J mice were administered with CGRP receptor antagonist BIBN-4096. Furthermore, double immunostaining of c-FOS+ and choline acetyltransferase was used to evaluate the activation of the superior salivatory nucleus (SSN). Mouse lacrimal glands were collected for transcriptomic sequencing and subsequent RNA and protein expression analysis. Results: The corneal denervated mice exhibited a significant reduction in corneal sensitivity and tear secretion. In capsaicin-treated mice, tear secretion decreased to 2.5 ± 0.5 mm compared to 6.3 ± 0.9 mm in control mice (P < 0.0001). However, exogenous administration of CGRP in capsaicin-treated mice increased tear secretion from 2.6 ± 0.5 mm to 4.5 ± 0.5 mm (P = 0.0009), while BIBN-4096 treatment reduced tear secretion to 3.4 ± 0.5 mm when compared to 7.3 ± 0.7 mm in control mice (P = 0.0022). Furthermore, c-FOS+ cell number in the SSN increased by twofold (P = 0.0168) after CGRP administration compared with capsaicin-treated mice. In addition, the expressions of CCNA2, Ki67, PCNA, and CDK1 in acinar cells of the lacrimal gland were impaired by corneal denervation and alleviated by CGRP administration. Conclusions: CGRP released by corneal sensory nerves mediates tear secretion of the lacrimal gland, providing a new strategy for improving tear secretion in patients with neurotrophic keratitis.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Aparelho Lacrimal , Animais , Camundongos , Capsaicina , Genes fos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...