Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.170
Filtrar
1.
Genome Biol ; 24(1): 268, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012744

RESUMO

BACKGROUND: Enhancer dysregulation is one of the important features for cancer cells. Enhancers enriched with H3K4me3 have been implicated to play important roles in cancer. However, their detailed features and regulatory mechanisms have not been well characterized. RESULTS: Here, we profile the landscape of H3K4me3-enriched enhancers (m3Es) in 43 pairs of colorectal cancer (CRC) samples. M3Es are widely distributed in CRC and averagely possess around 10% of total active enhancers. We identify 1322 gain variant m3Es and 367 lost variant m3Es in CRC. The target genes of the gain m3Es are enriched in immune response pathways. We experimentally prove that repression of CBX8 and RPS6KA5 m3Es inhibits target gene expression in CRC. Furthermore, we find histone methyltransferase MLL1 is responsible for depositing H3K4me3 on the identified Vm3Es. We demonstrate that the transcription factor AP1/JUN interacts with MLL1 and regulates m3E activity. Application of a small chemical inhibitor for MLL1 activity, OICR-9429, represses target gene expression of the identified Vm3Es, enhances anti-tumor immunity and inhibits CRC growth in an animal model. CONCLUSIONS: Taken together, our study illustrates the genome-wide landscape and the regulatory mechanisms of m3Es in CRC, and reveals potential novel strategies for cancer treatment.


Assuntos
Neoplasias Colorretais , Histonas , Proteína de Leucina Linfoide-Mieloide , Proteínas Proto-Oncogênicas c-jun , Animais , Neoplasias Colorretais/genética , Elementos Facilitadores Genéticos , Histonas/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Fator de Transcrição AP-1/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo
2.
Mol Cancer Res ; 21(9): 908-921, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37310848

RESUMO

Luminal breast cancer has the highest bone metastasis frequency among all breast cancer subtypes; however, its metastatic mechanism has not been elucidated because of a lack of appropriate models. We have previously developed useful bone metastatic cell lines of luminal breast cancer using MCF7 cells. In this study, we characterized bone metastatic MCF7-BM cell lines and identified c-Jun as a novel bone metastasis marker of luminal breast cancer. The protein level of c-Jun was upregulated in MCF7-BM cells compared with that in parental cells, and its deficiency resulted in the suppression of tumor cell migration, transformation, and reduced osteolytic ability. In vivo, dominant-negative c-Jun exhibited smaller bone metastatic lesions and a lower metastatic frequency. Histologic analysis revealed that c-Jun expression was heterogeneous in bone metastatic lesions, whereas c-Jun overexpression mediated a vicious cycle between MCF7-BM cells and osteoclasts by enhancing calcium-induced migration and releasing the osteoclast activator BMP5. Pharmacological inhibition of c-Jun by the Jun amino-terminal kinase (JNK) inhibitor JNK-IN-8 effectively suppressed tumorigenesis and bone metastasis in MCF7-BM cells. Furthermore, c-Jun downstream signals were specifically correlated with the clinical prognosis of patients with the luminal subtype of breast cancer. Our results illustrate the potential benefits of a therapy that targets c-Jun to prevent bone metastasis in luminal breast cancer. IMPLICATIONS: c-Jun expression mediates bone metastasis in luminal breast cancer by forming a vicious cycle in the bone microenvironment, which reveals potential strategies for subtype-specific bone metastasis therapy.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Feminino , Humanos , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Células MCF-7 , Osteoclastos/metabolismo , Microambiente Tumoral , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo
3.
Aging Cell ; 22(4): e13792, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36840360

RESUMO

Diverse mouse strains have different health and life spans, mimicking the diversity among humans. To capture conserved aging signatures, we studied long-lived C57BL/6J and short-lived NZO/HILtJ mouse strains by profiling transcriptomes and epigenomes of immune cells from peripheral blood and the spleen from young and old mice. Transcriptional activation of the AP-1 transcription factor complex, particularly Fos, Junb, and Jun genes, was the most significant and conserved aging signature across tissues and strains. ATAC-seq data analyses showed that the chromatin around these genes was more accessible with age and there were significantly more binding sites for these TFs with age across all studied tissues, targeting pro-inflammatory molecules including Il6. Age-related increases in binding sites of JUN and FOS factors were also conserved in human peripheral blood ATAC-seq data. Single-cell RNA-seq data from the mouse aging cell atlas Tabula Muris Senis showed that the expression of these genes increased with age in B, T, NK cells, and macrophages, with macrophages from old mice expressing these molecules more abundantly than other cells. Functional data showed that upon myeloid cell activation via poly(I:C), the levels of JUN protein and its binding activity increased more significantly in spleen cells from old compared to young mice. In addition, upon activation, old cells produced more IL6 compared to young cells. In sum, we showed that the aging-related transcriptional activation of Jun and Fos family members in AP-1 complex is conserved across immune tissues and long- and short-living mouse strains, possibly contributing to increased inflammation with age.


Assuntos
Proteínas Proto-Oncogênicas c-fos , Fator de Transcrição AP-1 , Animais , Humanos , Camundongos , Envelhecimento/genética , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Ativação Transcricional
4.
J Virol ; 97(2): e0198722, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36728416

RESUMO

Hepatitis A virus (HAV) infection often causes acute hepatitis, which results in a case fatality rate of 0.2% and fulminant hepatitis in 0.5% of cases. However, no specific potent anti-HAV drug is available on the market to date. In the present study, we focused on inhibition of HAV internal ribosomal entry site (IRES)-mediated translation and investigated novel therapeutic drugs through drug repurposing by screening for inhibitors of HAV IRES-mediated translation and cell viability using a reporter assay and cell viability assay, respectively. The initial screening of 1,158 drugs resulted in 77 candidate drugs. Among them, nicotinamide significantly inhibited HAV HA11-1299 genotype IIIA replication in Huh7 cells. This promising drug also inhibited HAV HM175 genotype IB subgenomic replicon and HAV HA11-1299 genotype IIIA replication in a dose-dependent manner. In the present study, we found that nicotinamide inhibited the activation of activator protein 1 (AP-1) and that knockdown of c-Jun, which is one of the components of AP-1, inhibited HAV HM175 genotype IB IRES-mediated translation and HAV HA11-1299 genotype IIIA and HAV HM175 genotype IB replication. Taken together, the results showed that nicotinamide inhibited c-Jun, resulting in the suppression of HAV IRES-mediated translation and HAV replication, and therefore, it could be useful for the treatment of HAV infection. IMPORTANCE Drug screening methods targeting HAV IRES-mediated translation with reporter assays are attractive and useful for drug repurposing. Nicotinamide (vitamin B3, niacin) has been shown to effectively inhibit HAV replication. Transcription complex activator protein 1 (AP-1) plays an important role in the transcriptional regulation of cellular immunity or viral replication. The results of this study provide evidence that AP-1 is involved in HAV replication and plays a role in the HAV life cycle. In addition, nicotinamide was shown to suppress HAV replication partly by inhibiting AP-1 activity and HAV IRES-mediated translation. Nicotinamide may be useful for the control of acute HAV infection by inhibiting cellular AP-1 activity during HAV infection processes.


Assuntos
Vírus da Hepatite A , Niacinamida , Proteínas Proto-Oncogênicas c-jun , Humanos , Avaliação Pré-Clínica de Medicamentos , Hepatite A , Vírus da Hepatite A/efeitos dos fármacos , Vírus da Hepatite A/fisiologia , Niacinamida/farmacologia , Biossíntese de Proteínas , Fator de Transcrição AP-1/genética , Replicação Viral/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-jun/genética
5.
Tissue Cell ; 81: 102010, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36608637

RESUMO

OBJECTIVE: Esophageal squamous cell carcinoma (ESCC) is a globally aggressive malignant tumor. This study aimed to investigate the mechanism of JUND in ESCC development via MAPRE2. METHODS: ESCC cells (KYSE-450 and ECA109) were transfected with small interfering RNA (si)-JUND, si-MAPRE2, si-JUND, or pcDNA3.1-MAPRE2. JUND and MAPRE2 expression in ESCC cells was detected with quantitative real-time polymerase chain reaction and western blot. Cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays were used to determine ESCC cell proliferation. Dual-luciferase reporter gene and chromatin immunoprecipitation assays were performed to assess binding between JUND and MAPRE2. Human umbilical vein endothelial cells (HUVECs) were co-cultured with ESCC cell supernatants. Angiogenesis was assessed with an in vitro angiogenesis assay. Western blot was conducted to evaluate the expression of angiogenic proteins [vascular endothelial growth factor A (VEGFA), matrix metallopeptidase 9 (MMP-9), and angiopoietin-2 (ang2)]. RESULTS: The levels of expression of JUND and MAPRE2 were high in ESCC cells. Mechanistically, JUND bound to MAPRE2 promoter and increased MAPRE2 transcription. Downregulation of JUND or MAPRE2 inhibited KYSE-450 and ECA109 cell proliferation and reduced the levels of expression of VEGFA, MMP-9, and ang2 and tube formation in HUVECs co-cultured with ESCC cell supernatants. MAPRE2 upregulation counteracted the inhibitory effects of JUND silencing on cell proliferative and angiogenic capabilities in ESCC. CONCLUSIONS: JUND promoted MAPRE2 transcription, thereby facilitating cell proliferative and angiogenic abilities in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Proteínas Associadas aos Microtúbulos , Proteínas Proto-Oncogênicas c-jun , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Células Endoteliais/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Metaloproteinase 9 da Matriz/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Interferente Pequeno , Regulação para Cima/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(37): e2123451119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067301

RESUMO

Filaggrin (FLG), an essential structural protein for skin barrier function, is down-regulated under chronic inflammatory conditions, leading to disruption of the skin barrier. However, the detailed molecular mechanisms of how FLG changes in the context of chronic inflammation are poorly understood. Here, we identified the molecular mechanisms by which inflammatory cytokines inhibit FLG expression in the skin. We found that the AP1 response element within the -343/+25 of the FLG promoter was necessary for TNFα + IFNγ-induced down-regulation of FLG promoter activity. Using DNA affinity precipitation assay, we observed that AP1 subunit composition binding to the FLG promoter was altered from c-FOS:c-JUN (at the early time) to FRA1:c-JUN (at the late time) in response to TNFα + IFNγ stimulation. Knockdown of FRA1 or c-JUN abrogated TNFα + IFNγ-induced FLG suppression. Histone deacetylase (HDAC) 1 interacted with FRA1:c-JUN under TNFα + IFNγ stimulation. Knockdown of HDAC1 abrogated the inhibitory effect of TNFα + IFNγ on FLG expression. The altered expression of FLG, FRA1, c-JUN, and HDAC1 was confirmed in mouse models of 2,4-dinitrochlorobenzene-induced atopic dermatitis and imiquimod-induced psoriasis. Thus, the current study demonstrates that TNFα + IFNγ stimulation suppresses FLG expression by promoting the FRA1:c-JUN:HDAC1 complex. This study provides insight into future therapeutic strategies targeting the FRA1:c-JUN:HDAC1 complex to restore impaired FLG expression in chronic skin inflammation.


Assuntos
Proteínas Filagrinas , Histona Desacetilase 1 , Queratinócitos , Proteínas Proto-Oncogênicas c-fos , Proteínas Proto-Oncogênicas c-jun , Animais , Doença Crônica , Dermatite/genética , Dermatite/metabolismo , Regulação para Baixo , Proteínas Filagrinas/genética , Proteínas Filagrinas/metabolismo , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Interferon gama/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Camundongos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
7.
Epigenetics Chromatin ; 15(1): 29, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35941657

RESUMO

BACKGROUND: Loss-of-function mutations of the multiple endocrine neoplasia type 1 (MEN1) gene are causal to the MEN1 tumor syndrome, but they are also commonly found in sporadic pancreatic neuroendocrine tumors and other types of cancers. The MEN1 gene product, menin, is involved in transcriptional and chromatin regulation, most prominently as an integral component of KMT2A/MLL1 and KMT2B/MLL2 containing COMPASS-like histone H3K4 methyltransferase complexes. In a mutually exclusive fashion, menin also interacts with the JunD subunit of the AP-1 and ATF/CREB transcription factors. RESULTS: Here, we applied and in silico screening approach for 253 disease-related MEN1 missense mutations in order to select a set of nine menin mutations in surface-exposed residues. The protein interactomes of these mutants were assessed by quantitative mass spectrometry, which indicated that seven of the nine mutants disrupt interactions with both MLL1/MLL2 and JunD complexes. Interestingly, we identified three missense mutations, R52G, E255K and E359K, which predominantly reduce the MLL1 and MLL2 interactions when compared with JunD. This observation was supported by a pronounced loss of binding of the R52G, E255K and E359K mutant proteins at unique MLL1 genomic binding sites with less effect on unique JunD sites. CONCLUSIONS: Our results underline the effects of MEN1 gene mutations in both familial and sporadic tumors of endocrine origin on the interactions of menin with the MLL1 and MLL2 histone H3K4 methyltransferase complexes and with JunD-containing transcription factors. Menin binding pocket mutants R52G, E255K and E359K have differential effects on MLL1/MLL2 and JunD interactions, which translate into differential genomic binding patterns. Our findings encourage future studies addressing the pathophysiological relevance of the separate MLL1/MLL2- and JunD-dependent functions of menin mutants in MEN1 disease model systems.


Assuntos
Neoplasia Endócrina Múltipla Tipo 1 , Proteínas Proto-Oncogênicas/genética , Histonas/metabolismo , Humanos , Neoplasia Endócrina Múltipla Tipo 1/genética , Neoplasia Endócrina Múltipla Tipo 1/metabolismo , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fatores de Transcrição/metabolismo , Virulência
8.
J Biol Chem ; 298(8): 102229, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35787376

RESUMO

The AP-1 transcription factor family crucially regulates progression of the cell cycle, as well as playing roles in proliferation, differentiation, and the stress response. The two best described AP-1 family members, cFos and cJun, are known to dimerize to form a functional AP-1 heterodimer that binds to a consensus response element sequence. Although cJun can also homodimerize and bind to DNA, the canonical view is that cFos cannot bind DNA without heterodimerizing with cJun. Here, we show that cFos can actually bind to DNA in the absence of cJun in vitro. Using dual color single molecule imaging of cFos alone, we directly visualize binding to and movement on DNA. Of all these DNA-bound proteins, detailed analysis suggested 30 to 46% were homodimers. Furthermore, we constructed fluorescent protein fusions of cFos and cJun for Förster resonance energy transfer experiments. These constructs indicated complete dimerization of cJun, but although cFos could dimerize, its extent was reduced. Finally, to provide orthogonal confirmation of cFos binding to DNA, we performed bulk-phase circular dichroism experiments that showed clear structural changes in DNA; these were found to be specific to the AP-1 consensus sequence. Taken together, our results clearly show cFos can interact with DNA both as monomers and dimers independently of its archetypal partner, cJun.


Assuntos
Proteínas Proto-Oncogênicas c-fos , Proteínas Proto-Oncogênicas c-jun , Fator de Transcrição AP-1 , Dicroísmo Circular , DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica , Multimerização Proteica , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
9.
J Biochem ; 172(3): 177-187, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35748379

RESUMO

Increasing evidence suggests that trehalose, a non-reducing disaccharide, ameliorates disease phenotypes by activating autophagy in animal models of various human diseases, including neurodegenerative diseases. Multiple in vitro studies suggest that activation of transcription factor EB, a master regulator of lysosomal biogenesis and autophagy genes, is a major contributor to trehalose-induced autophagy at later stages of exposure. However, underlying causes of trehalose-induced autophagy possibly occur at the early stage of the exposure period. In this study, we investigated the effects of short-term exposure of HeLa cells to trehalose on several signal transduction pathways to elucidate the initial events involved in its beneficial effects. Phospho-protein array analysis revealed that trehalose decreases levels of phosphorylated c-Jun, a component of the transcription factor activator protein-1, after 6 h. Trehalose also rapidly reduced mRNA expression levels of c-Jun and JunB, a member of the Jun family, within 1 h, resulting in a subsequent decrease in their protein levels. Future studies, exploring the interplay between decreased c-Jun and JunB protein levels and beneficial effects of trehalose, may provide novel insights into the mechanisms of trehalose action.


Assuntos
Proteínas Proto-Oncogênicas c-jun , Fatores de Transcrição , Trealose , Neoplasias do Colo do Útero , Autofagia , Feminino , Células HeLa , Humanos , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Mensageiro/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Trealose/farmacologia
10.
Cells ; 11(9)2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35563758

RESUMO

Interleukin (IL)-3 is a pleiotropic cytokine that regulates the survival, proliferation, and differentiation of hematopoietic cells. The binding of IL-3 to its receptor activates intracellular signaling, inducing transcription of immediate early genes (IEGs) such as c-fos, c-jun, and c-myc; however, transcriptional regulation under IL-3 signaling is not fully understood. This study assessed the role of the inhibitor of nuclear factor-κB kinases (IKKs) in inducing IL-3-mediated expression of IEGs. We show that IKK1 and IKK2 are required for the IL-3-induced immediate expression of c-fos and c-jun in murine hematopoietic Ba/F3 cells. Although IKK2 is well-known for its pivotal role as a regulator of the canonical nuclear factor-κB (NF-κB) pathway, activation of IKKs did not induce the nuclear translocation of the NF-κB transcription factor. We further revealed the important role of IKK2 in the activation of c-Jun N-terminal kinase (JNK), which mediates the IL-3-induced expression of c-fos and c-jun. These findings indicate that the IKK2-JNK axis modulates the IL-3-induced expression of IEGs in a canonical NF-κB-independent manner.


Assuntos
Interleucina-3 , NF-kappa B , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-jun/genética , Animais , Quinase I-kappa B/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , NF-kappa B/metabolismo , Transdução de Sinais
11.
Ophthalmic Genet ; 43(4): 488-495, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35445627

RESUMO

PURPOSE: To explore the underlying molecular mechanism of pterygium and identify the key genes regulating the development of pterygium. METHODS: Differentially expressed mRNAs were obtained from the Gene Expression Omnibus (GEO) database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using the DAVID (http://david.abcc.ncifcrf.gov/). The differential expressions of hub genes were verified using the reverse transcription-real-time fluorescent quantitative PCR (RT-qPCR). The function of the hub genes was further confirmed based on associations between the single nucleotide polymorphisms (SNPs) in hub genes and pterygium. The genotyping results were analyzed using SNPStats online software in five gene models, including codominant, dominant, recessive, overdominant, and log-additive. Five gene models were analyzed using SNPStats. RESULTS: We found that 240 genes were significantly differentially expressed. Functional enrichment analysis showed that focal adhesion pathway is extremely meaningful, among which JUN, FN1, and LAMB1 were verified to significantly differentially express in pterygium (P = 0.0011, P = 0.0018, and P = 0.0050, respectively). However, the all nine candidate SNPs (rs11688, rs3748814 in JUN; rs1263, rs1132741, rs1250259 in FN1; rs20556, rs35710474, rs25659, rs4320486 in LAMB1), were not statistically associated with pterygium. CONCLUSION: Our results demonstrated that JUN, FN1, and LAMB1 polymorphisms were not associated with susceptibility to pterygium in Chinese Han population. Considering the fact that these three genes are differentially expressed in pterygium, further research is needed to explain its involvement in pterygium.


Assuntos
Fibronectinas , Laminina , Proteínas Proto-Oncogênicas c-jun , Pterígio , China , Túnica Conjuntiva/anormalidades , Fibronectinas/genética , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Humanos , Laminina/genética , Proteínas Proto-Oncogênicas c-jun/genética , Pterígio/genética
12.
Viruses ; 14(2)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35215950

RESUMO

Encephalomyocarditis virus can cause myocarditis and encephalitis in pigs and other mammals, thus posing a potential threat to public health safety. The 2A protein is an important virulence factor of EMCV. Previous studies have shown that the 2A protein may be related to the inhibition of apoptosis by virus, but its specific molecular mechanism is not clear. In this study, the 2A protein was expressed in Escherichia coli in order to find interacting cell proteins. A pull down assay, coupled with mass spectrometry, revealed that the 2A protein possibly interacted with annexin A2. Co-immunoprecipitation assays and confocal imaging analysis further demonstrated that the 2A protein interacted with annexin A2 in cells. In reducing the expression of annexin A2 by siRNA, the ability of the 2A protein to inhibit apoptosis was weakened and the proliferation of EMCV was slowed down. These results suggest that annexin A2 is closely related to the inhibition of apoptosis by 2A. Furthermore, both RT-PCR and western blot results showed that the 2A protein requires annexin A2 interaction to inhibit apoptosis via JNK/c-Jun pathway. Taken together, our data indicate that the 2A protein inhibits apoptosis by interacting with annexin A2 via the JNK/c-Jun pathway. These findings provide insight into the molecular pathogenesis underlying EMCV infection.


Assuntos
Anexina A2/metabolismo , Apoptose , Vírus da Encefalomiocardite/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Virais/metabolismo , Animais , Anexina A2/genética , Apoptose/genética , Linhagem Celular , Cricetinae , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Sistema de Sinalização das MAP Quinases , Ligação Proteica , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Suínos , Proteínas Virais/genética , Replicação Viral
13.
Hum Mol Genet ; 31(8): 1242-1262, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-34718572

RESUMO

The regeneration-associated gene (RAG) expression program is activated in injured peripheral neurons after axotomy and enables long-distance axon re-growth. Over 1000 genes are regulated, and many transcription factors are upregulated or activated as part of this response. However, a detailed picture of how RAG expression is regulated is lacking. In particular, the transcriptional targets and specific functions of the various transcription factors are unclear. Jun was the first-regeneration-associated transcription factor identified and the first shown to be functionally important. Here we fully define the role of Jun in the RAG expression program in regenerating facial motor neurons. At 1, 4 and 14 days after axotomy, Jun upregulates 11, 23 and 44% of the RAG program, respectively. Jun functions relevant to regeneration include cytoskeleton production, metabolic functions and cell activation, and the downregulation of neurotransmission machinery. In silico analysis of promoter regions of Jun targets identifies stronger over-representation of AP1-like sites than CRE-like sites, although CRE sites were also over-represented in regions flanking AP1 sites. Strikingly, in motor neurons lacking Jun, an alternative SRF-dependent gene expression program is initiated after axotomy. The promoters of these newly expressed genes exhibit over-representation of CRE sites in regions near to SRF target sites. This alternative gene expression program includes plasticity-associated transcription factors and leads to an aberrant early increase in synapse density on motor neurons. Jun thus has the important function in the early phase after axotomy of pushing the injured neuron away from a plasticity response and towards a regenerative phenotype.


Assuntos
Axônios , Regeneração Nervosa , Axônios/metabolismo , Axotomia , Neurônios Motores/metabolismo , Regeneração Nervosa/genética , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Metabolism ; 127: 154936, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34801581

RESUMO

BACKGROUND: The pathogenesis of experimental diabetic cardiomyopathy may involve the activator protein 1 (AP-1) member, JunD. Using non-diabetic heart transplant (HTX) in recipients with diabetes, we examined the effects of the diabetic milieu (hyperglycemia and insulin resistance) on cardiac JunD expression over 12 months. Because sodium/glucose cotransporter-2 inhibitors (SGLT2i) significantly reverse high glucose-induced AP-1 binding in the proximal tubular cell, we investigated JunD expression in a subgroup of type 2 diabetic recipients receiving SGLT2i treatment. METHODS: We evaluated 77 first HTX recipients (40 and 37 patients with and without diabetes, respectively). Among the recipients with diabetes, 17 (45.9%) were receiving SGLT2i treatment. HTX recipients underwent standard clinical evaluation (metabolic status, echocardiography, coronary computed tomography angiography, and endomyocardial biopsy). In the biopsy samples, we evaluated JunD, insulin receptor substrates 1 and 2 (IRS1 and IRS2), peroxisome proliferator-activated receptor-γ (PPAR-γ), and ceramide levels using real-time polymerase chain reaction and immunofluorescence. The biopsy evaluations in this study were performed at 1-4 weeks (basal), 5-12 weeks (intermediate), and up to 48 weeks (final, end of 12-month follow-up) after HTX. RESULTS: There was a significant early and progressive increase in the cardiac expression of JunD/PPAR-γ and ceramide levels, along with a significant decrease in IRS1 and IRS2 in recipients with diabetes but not in those without diabetes. These molecular changes were blunted in patients with diabetes receiving SGLT2i treatment. CONCLUSION: Early pathogenesis in human diabetic cardiomyopathy is associated with JunD/PPAR-γ overexpression and lipid accumulation following HTX in recipients with diabetes. Remarkably, this phenomenon was reduced by concomitant therapy with SGLT2i, which acted directly on diabetic hearts.


Assuntos
Cardiomiopatias Diabéticas , Coração/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-jun/genética , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Adulto , Biópsia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/cirurgia , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/cirurgia , Feminino , Seguimentos , Expressão Gênica/efeitos dos fármacos , Coração/fisiologia , Transplante de Coração , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
15.
Cancer Sci ; 113(1): 319-333, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34714590

RESUMO

Dysregulation of long noncoding RNA SNHG17 is associated with the occurrence of several tumors; however, its role in esophageal squamous cell carcinoma (ESCC) remains obscure. The present study demonstrated that SNHG17 was upregulated in ESCC tissues and cell lines, induced by TGF-ß1, and associated with poor survival. It is also involved in the epithelial-to-mesenchymal transition (EMT) process. The mechanism underlying SNHG17-regulated c-Myc was detected by RNA immunoprecipitation, RNA pull-down, chromatin immunoprecipitation, and luciferase reporter assays. SNHG17 was found to directly regulate c-Myc transcription by binding to c-Jun protein and recruiting the complex to specific sequences of the c-Myc promoter region, thereby increasing its expression. Moreover, SNHG17 hyperactivation induced by TGF-ß1 results in PI3K/AKT pathway activation, promoting cells EMT, forming a positive feedback loop. Furthermore, SNHG17 facilitated ESCC tumor growth in vivo. Overall, this study demonstrated that the SNHG17/c-Jun/c-Myc axis aggravates ESCC progression and EMT induction by TGF-ß1 and may serve as a new therapeutic target for ESCC.


Assuntos
Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-myc/genética , RNA Longo não Codificante/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Estadiamento de Neoplasias , Transplante de Neoplasias , Regulação para Cima
16.
Cells ; 10(12)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34943776

RESUMO

Specific proteins and processes have been identified in post-myocardial infarction (MI) pathological remodeling, but a comprehensive understanding of the complete molecular evolution is lacking. We generated microarray data from swine heart biopsies at baseline and 6, 30, and 45 days after infarction to feed machine-learning algorithms. We cross-validated the results using available clinical and experimental information. MI progression was accompanied by the regulation of adipogenesis, fatty acid metabolism, and epithelial-mesenchymal transition. The infarct core region was enriched in processes related to muscle contraction and membrane depolarization. Angiogenesis was among the first morphogenic responses detected as being sustained over time, but other processes suggesting post-ischemic recapitulation of embryogenic processes were also observed. Finally, protein-triggering analysis established the key genes mediating each process at each time point, as well as the complete adverse remodeling response. We modeled the behaviors of these genes, generating a description of the integrative mechanism of action for MI progression. This mechanistic analysis overlapped at different time points; the common pathways between the source proteins and cardiac remodeling involved IGF1R, RAF1, KPCA, JUN, and PTN11 as modulators. Thus, our data delineate a structured and comprehensive picture of the molecular remodeling process, identify new potential biomarkers or therapeutic targets, and establish therapeutic windows during disease progression.


Assuntos
Adipogenia/genética , Transição Epitelial-Mesenquimal/genética , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Algoritmos , Animais , Biópsia , Aprendizado Profundo , Modelos Animais de Doenças , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Humanos , Análise em Microsséries , Modelos Moleculares , Contração Muscular/genética , Infarto do Miocárdio/patologia , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-raf/genética , Receptor IGF Tipo 1/genética , Suínos/genética
17.
Oncogene ; 40(48): 6579-6589, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34615995

RESUMO

Metastasis of bladder cancer is a complex process and has been associated with poor clinical outcomes. However, the mechanisms of bladder cancer metastasis remain largely unknown. The present study found that the long noncoding RNA lnc00892 was significantly downregulated in bladder cancer tissues, with low lnc00892 expression associated with poor prognosis of bladder cancer patients. Lnc00892 significantly inhibited the migration, invasion, and metastasis of bladder cancer cells in vitro and in vivo. In-depth analysis showed that RhoA/C acted downstream of lnc00892 to inhibit bladder cancer metastasis. Mechanistically, lnc00892 reduces nucleolin gene transcription by competitively binding the promoter of nucleolin with c-Jun, thereby inhibiting nucleolin-mediated stabilization of RhoA/RhoC mRNA. Taken together, these findings provide novel insights into understanding the mechanisms of bladder cancer metastasis and suggest that lnc00892 can serve as a potential therapeutic target in patients with invasive bladder cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Neoplasias da Bexiga Urinária/patologia , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas c-jun/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína rhoA de Ligação ao GTP/genética , Proteína de Ligação a GTP rhoC/genética , Nucleolina
18.
Biomed Pharmacother ; 143: 112096, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34563951

RESUMO

Nucleosome assembly protein 1-like 1 (NAP1L1) is significantly involved in the development of various cancers. However, its role in the molecular mechanism of nasopharyngeal carcinoma (NPC) remains undetermined. In this study, we detected the upregulated expression of NAP1L1 mRNA and protein levels by quantitative polymerase chain reaction and Western blot analysis in NPC cell lines. Results of the immunohistochemistry analysis of NPC tissue biopsies showed that upregulated NAP1L1 protein expression promoted NPC progression and negatively correlated with poor prognosis in NPC patients. Suppression of NAP1L1 expression by small interfering RNA (siRNA) or small hairpin RNA (shRNA) methods significantly decreased cell proliferation in vivo and in vitro. Mechanism analysis revealed that the regulation of cell growth was enriched by Gene Set Enrichment Analysis based on RNA sequencing data. Cell cycle-induced genes CCND1 and E2F1 were downregulated in NAP1L1 knockdown NPC cells. Reduced NAP1L1 suppressed the recruitment of hepatoma-derived growth factor (HDGF) and decreased its expression. Knockdown of HDGF reduced the expression of c-JUN, a key oncogenic transcription factor that can induce the expression of cyclin D1 (CCND1), reducing cell cycle progression and suppressing cell growth in NPC. Transfecting HDGF or c-JUN could reverse the growth-suppressive effects in NAP1L1-downregulated NPC cells. The data obtained in this study suggest that NAP1L1 acts as a potential oncogene by activating HDGF/c-JUN/CCND1 signaling in NPC.


Assuntos
Proliferação de Células , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Animais , Linhagem Celular Tumoral , Ciclina D1/genética , Ciclina D1/metabolismo , Bases de Dados Genéticas , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Proteína 1 de Modelagem do Nucleossomo/genética , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Interferência de RNA , Transdução de Sinais , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Front Endocrinol (Lausanne) ; 12: 689845, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335468

RESUMO

The impairment of pancreatic ß-cells function is partly caused by lipotoxicity, which aggravates the development of type 2 diabetes mellitus. Activator Protein 1 member JunD modulates apoptosis and oxidative stress. Recently, it has been found that JunD regulates lipid metabolism in hepatocytes and cardiomyocytes. Here, we studied the role of JunD in pancreatic ß-cells. The lipotoxic effects of palmitic acid on INS-1 cells were measured, and JunD small-interfering RNA was used to assess the effect of JunD in regulating lipid metabolism and insulin secretion. The results showed that palmitic acid stimulation induced the overexpression of JunD, impaired glucose-stimulated insulin secretion, and increased intracellular lipid accumulation of ß-cells. Moreover, the gene expression involved in lipid metabolism (Scd1, Fabp4, Fas, Cd36, Lpl, and Plin5) was upregulated, while gene expression involved in the pancreatic ß-cells function (such as Pdx1, Nkx6.1, Glut2, and Irs-2) was decreased. Gene silencing of JunD reversed the lipotoxic effects induced by PA on ß-cells. These results suggested that JunD regulated the function of pancreatic ß-cells by altering lipid accumulation.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Metabolismo dos Lipídeos/fisiologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular , Dieta Hiperlipídica , Glucose/farmacologia , Insulina/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Proteínas Proto-Oncogênicas c-jun/genética , Ratos , Regulação para Cima
20.
JCI Insight ; 6(13)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34236045

RESUMO

The AP-1 transcription factor c-Jun is required for Ras-driven tumorigenesis in many tissues and is considered as a classical proto-oncogene. To determine the requirement for c-Jun in a mouse model of K-RasG12D-induced lung adenocarcinoma, we inducibly deleted c-Jun in the adult lung. Surprisingly, we found that inactivation of c-Jun, or mutation of its JNK phosphorylation sites, actually increased lung tumor burden. Mechanistically, we found that protein levels of the Jun family member JunD were increased in the absence of c-Jun. In c-Jun-deficient cells, JunD phosphorylation was increased, and expression of a dominant-active JNKK2-JNK1 transgene further increased lung tumor formation. Strikingly, deletion of JunD completely abolished Ras-driven lung tumorigenesis. This work identifies JunD, not c-Jun, as the crucial substrate of JNK signaling and oncogene required for Ras-induced lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Carcinogênese , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas ras/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Genes jun/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MAP Quinase Quinase 7/genética , MAP Quinase Quinase 7/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-jun/genética , Fator de Transcrição AP-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...