Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
Neoplasia ; 52: 100996, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38593698

RESUMO

Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy, and its incidence has increased rapidly in recent years. The BRAF inhibitor vemurafenib is effective against BRAFV600E-positive PTC; however, acquired resistance to single agent therapy frequently leads to tumor recurrence and metastasis, underscoring the need to develop tailored treatment strategies. We previously showed that the oncogenic kinase PIM1 was associated with the malignant phenotype and prognosis of PTC. In this study, we showed that sustained expression of the PIM1 protein in PTC was affected by the BRAFV600E mutation. Based on this regulatory mechanism, we tested the synergistic effects of inhibitors of BRAF (BRAFi) and PIM1 in BRAFV600E-positive PTC cell lines and xenograft tumors. LC-MS metabolomics analyses suggested that BRAFi/PIMi therapy acted by restricting the amounts of critical amino acids and nucleotides required by cancer cells as well as modulating DNA methylation. This study elucidates the role of BRAFV600E in the regulation of PIM1 in PTC and demonstrates the synergistic effect of a novel combination, BRAFi/PIMi, for the treatment of PTC. This discovery, along with the pathways that may be involved in the powerful efficacy of BRAFi/PIMi strategy from the perspective of cell metabolism, provides insight into the molecular basis of PTC progression and offers new perspectives for BRAF-resistant PTC treatment.


Assuntos
Sinergismo Farmacológico , Mutação , Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas c-pim-1 , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/tratamento farmacológico , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Modelos Animais de Doenças , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
2.
Medicine (Baltimore) ; 103(6): e36269, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335426

RESUMO

Sequence studies of the entire exome and transcriptome of lymphoma tissues have identified MYD88 and PIM1 as involved in the development and oncogenic signaling. We aimed to determine the frequency of MYD88 and PIM1 mutations, as well as their expressions in conjunction with the clinicopathological parameters identified in mature large B-cell non-Hodgkin lymphomas. The ten-year retrospective study included 50 cases of mature large B-cell lymphoma, diagnosed at the Pathology Department of the Emergency County Hospital of Constanta and Sacele County Hospital of Brasov. They were statistically analyzed by demographic, clinicopathological, and morphogenetic characteristics. We used a real-time polymerase chain reaction technique to identify PIM1 and MYD88 mutations as well as an immunohistochemical technique to evaluate the expressions of the 2 genes. Patients with lymphoma in the small bowel, spleen, brain, and testis had a low-performance status Eastern Cooperative Oncology Group (P = .001). The Eastern Cooperative Oncology Group performance status represented an independent risk factor predicting mortality (HR = 9.372, P < .001). An increased lactate dehydrogenase value was associated with a low survival (P = .002). The international prognostic index score represents a negative risk factor in terms of patient survival (HR = 4.654, P < .001). In cases of diffuse large B-cell lymphoma (DLBCL), immunopositivity of MYD88 is associated with non-germinal center B-cell origin (P < .001). The multivariate analysis observed the association between high lactate dehydrogenase value and the immunohistochemical expression of PIM1 or with the mutant status of the PIM1 gene representing negative prognostic factors (HR = 2.066, P = .042, respectively HR = 3.100, P = .004). In conclusion, our preliminary data suggest that the oncogenic mutations of PIM1 and MYD88 in our DLBCL cohort may improve the diagnosis and prognosis of DLBCL patients in an advanced stage.


Assuntos
Linfoma Difuso de Grandes Células B , Fator 88 de Diferenciação Mieloide , Masculino , Humanos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Estudos Retrospectivos , Prognóstico , Linfoma Difuso de Grandes Células B/patologia , Lactato Desidrogenases/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo
3.
Oncogene ; 43(6): 406-419, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38097734

RESUMO

Lipid droplets (LDs) are dynamic organelles with a neutral lipid core surrounded by a phospholipid monolayer. Solid tumors exhibit LD accumulation, and it is believed that LDs promote cell survival by providing an energy source during energy deprivation. However, the precise mechanisms controlling LD accumulation and utilization in prostate cancer are not well known. Here, we show peroxisome proliferator-activated receptor α (PPARα) acts downstream of PIM1 kinase to accelerate LD accumulation and promote cell proliferation in prostate cancer. Mechanistically, PIM1 inactivates glycogen synthase kinase 3 beta (GSK3ß) via serine 9 phosphorylation. GSK3ß inhibition stabilizes PPARα and enhances the transcription of genes linked to peroxisomal biogenesis (PEX3 and PEX5) and LD growth (Tip47). The effects of PIM1 on LD accumulation are abrogated with GW6471, a specific inhibitor for PPARα. Notably, LD accumulation downstream of PIM1 provides a significant survival advantage for prostate cancer cells during nutrient stress, such as glucose depletion. Inhibiting PIM reduces LD accumulation in vivo alongside slow tumor growth and proliferation. Furthermore, TKO mice, lacking PIM isoforms, exhibit suppression in circulating triglycerides. Overall, our findings establish PIM1 as an important regulator of LD accumulation through GSK3ß-PPARα signaling axis to promote cell proliferation and survival during nutrient stress.


Assuntos
Gotículas Lipídicas , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Glicogênio Sintase Quinase 3 beta , Gotículas Lipídicas/patologia , PPAR alfa/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proliferação de Células , Proteínas Proto-Oncogênicas c-pim-1/genética
4.
Cell Rep ; 42(12): 113469, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38039135

RESUMO

The serine/threonine-specific Moloney murine leukemia virus (PIM) kinase family (i.e., PIM1, PIM2, and PIM3) has been extensively studied in tumorigenesis. PIM kinases are downstream of several cytokine signaling pathways that drive immune-mediated diseases. Uncontrolled T helper 17 (Th17) cell activation has been associated with the pathogenesis of autoimmunity. However, the detailed molecular function of PIMs in human Th17 cell regulation has yet to be studied. In the present study, we comprehensively investigated how the three PIMs simultaneously alter transcriptional gene regulation during early human Th17 cell differentiation. By combining PIM triple knockdown with bulk and scRNA-seq approaches, we found that PIM deficiency promotes the early expression of key Th17-related genes while suppressing Th1-lineage genes. Further, PIMs modulate Th cell signaling, potentially via STAT1 and STAT3. Overall, our study highlights the inhibitory role of PIMs in human Th17 cell differentiation, thereby suggesting their association with autoimmune phenotypes.


Assuntos
Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-pim-1 , Animais , Camundongos , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Transdução de Sinais , Hematopoese , Diferenciação Celular , Células Th17/metabolismo
5.
Cancer Biol Ther ; 24(1): 2246208, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37621144

RESUMO

Significant improvement in targeted therapy for colorectal cancer (CRC) has occurred over the past few decades since the approval of the EGFR inhibitor cetuximab. However, cetuximab is used only for patients possessing the wild-type oncogene KRAS, NRAS, and BRAF, and even most of these eventually acquire therapeutic resistance, via activation of parallel oncogenic pathways such as RAS-MAPK or PI3K/Akt/mTOR. The two aforementioned pathways also contribute to the development of therapeutic resistance in CRC patients, due to compensatory and feedback mechanisms. Therefore, combination drug therapies (versus monotherapy) targeting these multiple pathways may be necessary for further efficacy against CRC. In this study, we identified PIK3CA mutant (PIK3CA MT) as a determinant of resistance to SMI-4a, a highly selective PIM1 kinase inhibitor, in CRC cell lines. In CRC cell lines, SMI-4a showed its effect only in PIK3CA wild type (PIK3CA WT) cell lines, while PIK3CA MT cells did not respond to SMI-4a in cell death assays. In vivo xenograft and PDX experiments confirmed that PIK3CA MT is responsible for the resistance to SMI-4a. Inhibition of PIK3CA MT by PI3K inhibitors restored SMI-4a sensitivity in PIK3CA MT CRC cell lines. Taken together, these results demonstrate that sensitivity to SMI-4a is determined by the PIK3CA genotype and that co-targeting of PI3K and PIM1 in PIK3CA MT CRC patients could be a promising and novel therapeutic approach for refractory CRC patients.


Assuntos
Neoplasias do Colo , Fosfatidilinositol 3-Quinases , Humanos , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Fosfatidilinositol 3-Quinases/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Biomarcadores , Classe I de Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-pim-1/genética
6.
Cell Mol Biol (Noisy-le-grand) ; 69(3): 1-7, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37300695

RESUMO

Diffuse large B cell lymphoma (DLBCL) is a B cell neoplasm characterized by high PIM1 expression, which is responsible for poor prognosis. Activation-induced cytidine deaminase (AID) is closely linked to PIM1 hypermutation in DLBCL. Here, we found that the DNA methyltransferase 1 (DNMT1) level decreased with AID depletion in the DLBCL cell line SU-DHL-4, and increased significantly when AID was highly expressed. The double ablation of AID and DNMT1 contributed to increased PIM1 expression, which initiated faster DLBCL cell proliferation, whereas ten-eleven translocation family member 2 (TET2) decreased with AID deficiency and increased with AID overexpression in DLBCL cell line OCI-LY7. The double depletion of AID and TET2 was associated with decreased PIM1 levels and showed slower cell division. We suggest an alternative role of AID as a co-factor of DNA methylation cooperated with DNMT1, or of DNA demethylation associated with TET2 in modulating PIM1 expression. Our findings demonstrate that AID interacts with either DNMT1 or TET2 to form a complex to bind with a PIM1 promoter and thus is responsible for the modulation of PIM1 expression. These results provide insights into an alternative role of AID to DLBCL-associated genes.


Assuntos
Citidina Desaminase , Linfoma Difuso de Grandes Células B , Proteínas Proto-Oncogênicas c-pim-1 , Humanos , Linhagem Celular , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Linfoma Difuso de Grandes Células B/genética , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo
7.
J Cell Biol ; 222(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37042842

RESUMO

Distinguishing key factors that drive the switch from indolent to invasive disease will make a significant impact on guiding the treatment of prostate cancer (PCa) patients. Here, we identify a novel signaling pathway linking hypoxia and PIM1 kinase to the actin cytoskeleton and cell motility. An unbiased proteomic screen identified Abl-interactor 2 (ABI2), an integral member of the wave regulatory complex (WRC), as a PIM1 substrate. Phosphorylation of ABI2 at Ser183 by PIM1 increased ABI2 protein levels and enhanced WRC formation, resulting in increased protrusive activity and cell motility. Cell protrusion induced by hypoxia and/or PIM1 was dependent on ABI2. In vivo smooth muscle invasion assays showed that overexpression of PIM1 significantly increased the depth of tumor cell invasion, and treatment with PIM inhibitors significantly reduced intramuscular PCa invasion. This research uncovers a HIF-1-independent signaling axis that is critical for hypoxia-induced invasion and establishes a novel role for PIM1 as a key regulator of the actin cytoskeleton.


Assuntos
Actinas , Proteínas Adaptadoras de Transdução de Sinal , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-pim-1 , Humanos , Masculino , Actinas/genética , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Hipóxia , Proteômica , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Transdução de Sinais , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Invasividade Neoplásica
8.
J Pediatr Surg ; 58(6): 1155-1163, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36907773

RESUMO

BACKGROUND: Neuroblastoma arises from aberrancies in neural stem cell differentiation. PIM kinases contribute to cancer formation, but their precise role in neuroblastoma tumorigenesis is poorly understood. In the current study, we evaluated the effects of PIM kinase inhibition on neuroblastoma differentiation. METHODS: Versteeg database query assessed the correlation between PIM gene expression and the expression of neuronal stemness markers and relapse free survival. PIM kinases were inhibited with AZD1208. Viability, proliferation, motility were measured in established neuroblastoma cells lines and high-risk neuroblastoma patient-derived xenografts (PDXs). qPCR and flow cytometry detected changes in neuronal stemness marker expression after AZD1208 treatment. RESULTS: Database query showed increased levels of PIM1, PIM2, or PIM3 gene expression were associated with higher risk of recurrent or progressive neuroblastoma. Increased levels of PIM1 were associated with lower relapse free survival rates. Higher levels of PIM1 correlated with lower levels of neuronal stemness markers OCT4, NANOG, and SOX2. Treatment with AZD1208 resulted in increased expression of neuronal stemness markers. CONCLUSIONS: Inhibition of PIM kinases differentiated neuroblastoma cancer cells toward a neuronal phenotype. Differentiation is a key component of preventing neuroblastoma relapse or recurrence and PIM kinase inhibition provides a potential new therapeutic strategy for this disease.


Assuntos
Recidiva Local de Neoplasia , Neuroblastoma , Humanos , Proliferação de Células , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Diferenciação Celular , Fenótipo , Neuroblastoma/tratamento farmacológico , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia
9.
Mol Cancer ; 22(1): 18, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36694243

RESUMO

Decades of research has recognized a solid role for Pim kinases in lymphoproliferative disorders. Often up-regulated following JAK/STAT and tyrosine kinase receptor signaling, Pim kinases regulate cell proliferation, survival, metabolism, cellular trafficking and signaling. Targeting Pim kinases represents an interesting approach since knock-down of Pim kinases leads to non-fatal phenotypes in vivo suggesting clinical inhibition of Pim may have less side effects. In addition, the ATP binding site offers unique characteristics that can be used for the development of small inhibitors targeting one or all Pim isoforms. This review takes a closer look at Pim kinase expression and involvement in hematopoietic cancers. Current and past clinical trials and in vitro characterization of Pim kinase inhibitors are examined and future directions are discussed. Current studies suggest that Pim kinase inhibition may be most valuable when accompanied by multi-drug targeting therapy.


Assuntos
Neoplasias Hematológicas , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
10.
Int J Gynecol Pathol ; 42(3): 282-292, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35443252

RESUMO

Serous carcinoma (SC) is an aggressive histologic type of endometrial carcinoma (EMC) with a poor prognosis. The development of novel therapeutics for SC is an important issue. PIM1 is a serine/threonine kinase involved in various cellular functions, such as cell cycle progression, apoptosis, and transcriptional activation via the phosphorylation of many target proteins, including MYC. PIM1 is overexpressed in several cancers and has been associated with treatment-resistance. We investigated the expression and function of PIM1 in EMC, particularly SC. Immunohistochemical analysis in 133 EMC cases [103 endometrioid carcinomas (EC) and 30 SC] revealed the significantly stronger expression of PIM1 in SC than in EC and significantly shorter survival of patients with overexpression of PIM1 in all EMC cases, as well as in only SC cases. A multivariate analysis identified overexpression of PIM1 as an independent prognostic factor. The knockdown of PIM1 by siRNA in the SC cell line, ARK1, decreased the expression of phosphorylated MYC and reduced proliferation, migration, and invasion. The PIM1 inhibitor, SGI-1776, reduced cell viability in SC cell lines (ARK1, ARK2, and SPAC1L) with IC50 between 1 and 5 µM. SGI-1776 also reduced the migration and invasion of ARK1 cells. Moreover, the oral administration of SGI-1776 significantly suppressed subcutaneous ARK1 xenograft tumor growth in nude mice without impairing health. These results indicate that PIM1 is involved in the acquisition of aggressiveness and suggest the potential of PIM1 as a novel therapeutic target and SGI-1776 as a therapeutic agent for SC.


Assuntos
Carcinoma , Neoplasias do Endométrio , Animais , Camundongos , Feminino , Humanos , Linhagem Celular Tumoral , Prognóstico , Camundongos Nus , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Endométrio/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo
11.
Cell Mol Gastroenterol Hepatol ; 15(1): 121-152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36191855

RESUMO

BACKGROUND & AIMS: Metastasis indicates a grave prognosis in patients with hepatocellular carcinoma (HCC). Our previous studies showed that RNA binding motif protein Y-linked (RBMY) is potentially a biomarker for poor survival in HCC patients, but its role in metastasis is largely unclear. METHODS: A total of 308 male patients with primary HCC were enrolled. RBMY expression was traced longitudinally by immunostaining from the manifestation of a primary HCC tumor to the formation of a distant metastasis, and its upstream regulators were screened with a protein microarray. A series of metastasis assays in mouse models and HCC cell lines were performed to explore new functional insights into RBMY. RESULTS: Cytoplasmic expression of RBMY was associated with rapid distant metastasis (approximately 1 year after resection) and had a predictive power of 82.4% for HCC metastasis. RBMY conferred high migratory and invasive potential upon phosphorylation by the provirus integration in Moloney 1 (PIM1) kinase. Binding of PIM1 to RBMY caused mutual stabilization and massive translocation of RBMY from nuclei to mitochondria, thereby preventing mitochondrial apoptosis and augmenting mitochondrial generation of adenosine triphosphate/reactive oxygen species to enhance cell motility. Depletion of RBMY suppressed Snail1/zinc finger E-box binding homeobox transcription factor 1-mediated epithelial-mesenchymal transition and dynamin-related protein 1-dependent mitochondrial fission. Inactivation and knockout of PIM1 down-regulated the expression of RBMY. In nude mice, cytoplasmic RBMY promoted liver-to-lung metastasis by increasing epithelial-mesenchymal transition, mitochondrial proliferation, and mitochondrial fission, whereas nuclear-restricted RBMY impeded the mitochondrial switch and failed to induce lung metastasis. CONCLUSIONS: This study showed the regulation of HCC metastasis by PIM1-driven cytoplasmic expression of RBMY and suggested a novel therapeutic target for attenuating metastasis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , Proteínas Nucleares , Proteínas Proto-Oncogênicas c-pim-1 , Proteínas de Ligação a RNA , Animais , Masculino , Camundongos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/secundário , Camundongos Nus , Integração Viral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo
12.
Nat Commun ; 13(1): 5866, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195600

RESUMO

Uveitis is a severe autoimmune disease, and a common cause of blindness; however, its individual cellular dynamics and pathogenic mechanism remain poorly understood. Herein, by performing single-cell RNA sequencing (scRNA-seq) on experimental autoimmune uveitis (EAU), we identify disease-associated alterations in cell composition and transcriptional regulation as the disease progressed, as well as a disease-related molecule, PIM1. Inhibiting PIM1 reduces the Th17 cell proportion and increases the Treg cell proportion, likely due to regulation of PIM1 to the protein kinase B (AKT)/Forkhead box O1 (FOXO1) pathway. Moreover, inhibiting PIM1 reduces Th17 cell pathogenicity and reduces plasma cell differentiation. Importantly, the upregulation of PIM1 in CD4+ T cells and plasma cells is conserved in a human uveitis, Vogt-Koyanagi-Harada disease (VKH), and inhibition of PIM1 reduces CD4+ T and B cell expansion. Collectively, a dynamic immune cellular atlas during uveitis is developed and implicate that PIM1 may be a potential therapeutic target for VKH.


Assuntos
Doenças Autoimunes , Uveíte , Síndrome Uveomeningoencefálica , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Células Th17 , Uveíte/tratamento farmacológico , Uveíte/genética , Síndrome Uveomeningoencefálica/tratamento farmacológico , Síndrome Uveomeningoencefálica/metabolismo
13.
Nat Commun ; 13(1): 5237, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068222

RESUMO

Protein kinase-mediated phosphorylation plays a critical role in many biological processes. However, the identification of key regulatory kinases is still a great challenge. Here, we develop a trans-omics-based method, central kinase inference, to predict potentially key kinases by integrating quantitative transcriptomic and phosphoproteomic data. Using known kinases associated with anti-cancer drug resistance, the accuracy of our method denoted by the area under the curve is 5.2% to 29.5% higher than Kinase-Substrate Enrichment Analysis. We further use this method to analyze trans-omic data in hepatocyte maturation and hepatic reprogramming of human dermal fibroblasts, uncovering 5 kinases as regulators in the two processes. Further experiments reveal that a serine/threonine kinase, PIM1, promotes hepatic conversion and protects human dermal fibroblasts from reprogramming-induced ferroptosis and cell cycle arrest. This study not only reveals new regulatory kinases, but also provides a helpful method that might be extended to predict central kinases involved in other biological processes.


Assuntos
Ferroptose , Ciclo Celular , Pontos de Checagem do Ciclo Celular/genética , Resistencia a Medicamentos Antineoplásicos , Ferroptose/genética , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo
14.
Curr Neurovasc Res ; 19(1): 92-99, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35388757

RESUMO

OBJECTIVES: Melatonin (MT) is a pineal hormone with antineoplastic potential. This study aims to explore the therapeutic potential and mechanism of MT on glioblastoma (GBM). METHODS: A human GBM cell line, LN229, was used to evaluate the function of MT. Cell viability, apoptosis, and migration were detected by CCK-8, flow cytometry, and transwell assays, respectively. The mRNA and protein expressions of specific genes were measured by qRT-PCR and western blot, respectively. The regulatory relationship between miR-16-5p and PIM1 was validated by dual luciferase reporter gene assay. A mouse xenograft model was established to prove the anti-tumor effect and related mechanisms of MT in vivo. RESULTS: MT inhibited the viability and migration and promoted the apoptosis of LN229 cells in a dose-dependent manner. MiR-16-5p was dose-dependently up-regulated by MT in LN229 cells, negatively regulating its target PIM1. MiR-16-5p inhibitor eliminated the anti-tumor effect of MT in LN229 cells, while si-PIM1 reversed the effect of miR-16-5p inhibitor in MT-treated cells. MT inhibited the tumor growth in vivo and MT-induced PIM1 down-regulation was reversed by miR- 16-5p inhibition in tumor tissues. CONCLUSIONS: MT inhibits the malignant progression of GBM via regulating miR-16-5p-mediated PIM1.


Assuntos
Glioblastoma , Melatonina , MicroRNAs , Animais , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Humanos , Melatonina/farmacologia , Melatonina/uso terapêutico , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo
16.
Cell Cycle ; 21(13): 1376-1390, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35285410

RESUMO

Clear cell renal cell carcinoma (ccRCC) is one of the most common and lethal types of urologic cancer. With low survival rates among patients in advanced stages of disease, and increasing rate of morbidity and mortality worldwide, novel therapeutic targets for ccRCC clinical intervention are necessary. In this study, we investigated the functional role of circZKSCAN1 in ccRCC progression. Our results suggested that circZKSCAN1 was abundantly expressed in ccRCC tumor tissues and cells. CircZKSCAN1 knockdown significantly inhibited cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition of renal cell carcinoma (RCC) cells, whereas potentiated Natural Killer (NK) cell-mediated cytotoxicity against RCC cells in vitro and repressed tumor growth in vivo. Furthermore, we identified a novel circZKSCAN1/miR-1294/PIM1 axis was identified in RCC progression, showing that the expression of circZKSCAN1 expression in RCC cells was transcriptionally regulated by Kruppel-like factor 2. The results of our study may provide new insights for ccRCC basic research.Abbreviations: ccRCC: clear cell renal cell carcinoma; ChIP: chromatin immunoprecipitation; circRNA: circular RNA; EDU: 5-ethynyl-2'-deoxyuridine; EMT: epithelial-mesenchymal transition; FBS: fetal bovine serum; FISH: RNA fluorescent in situ hybridization; KLF2: Kruppel-like factor 2; NC: normal control; NK cell: natural killer cell; NOD/SCID: nonobese severe diabetic/severe combined immunodeficiency; PIM1: Pim-1 proto-oncogene, serine/threonine kinase; RCC: renal cell carcinoma; ZKSCAN1: zinc finger with KRAB and SCAN domains 1.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , Carcinogênese/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Neoplasias Renais/patologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , RNA Circular , Fatores de Transcrição/metabolismo
17.
Cells ; 11(6)2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35326457

RESUMO

Proviral integration sites for Moloney murine leukemia virus (PIM) kinases are upregulated at the protein level in response to hypoxia and have multiple protumorigenic functions, promoting cell growth, survival, and angiogenesis. However, the mechanism responsible for the induction of PIM in hypoxia remains unknown. Here, we examined factors affecting PIM kinase stability in normoxia and hypoxia. We found that PIM kinases were upregulated in hypoxia at the protein level but not at the mRNA level, confirming that PIMs were upregulated in hypoxia in a hypoxia inducible factor 1-independent manner. PIM kinases were less ubiquitinated in hypoxia than in normoxia, indicating that hypoxia reduced their proteasomal degradation. We identified the deubiquitinase ubiquitin-specific protease 28 (USP28) as a key regulator of PIM1 and PIM2 stability. The overexpression of USP28 increased PIM protein stability and total levels in both normoxia and hypoxia, and USP28-knockdown significantly increased the ubiquitination of PIM1 and PIM2. Interestingly, coimmunoprecipitation assays showed an increased interaction between PIM1/2 and USP28 in response to hypoxia, which correlated with reduced ubiquitination and increased protein stability. In a xenograft model, USP28-knockdown tumors grew more slowly than control tumors and showed significantly lower levels of PIM1 in vivo. In conclusion, USP28 blocked the ubiquitination and increased the stability of PIM1/2, particularly in hypoxia. These data provide the first insight into proteins responsible for controlling PIM protein degradation and identify USP28 as an important upstream regulator of this hypoxia-induced, protumorigenic signaling pathway.


Assuntos
Hipóxia , Proteínas Proto-Oncogênicas c-pim-1 , Linhagem Celular Tumoral , Enzimas Desubiquitinantes , Humanos , Hipóxia/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-pim-1/genética , Ubiquitina Tiolesterase
18.
Eur Arch Otorhinolaryngol ; 279(7): 3679-3684, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34993612

RESUMO

PURPOSE: Proviral integration site for Moloney murine leukemia virus (PIMs) are proto-oncogenes encoding serine/threonine kinases that phosphorylate a variety of substrates involved in the regulation of cellular processes. Elevated expression of PIM-1 has been associated with poor prognosis in several types of cancer. There are no studies that have analyzed the response to radiotherapy in patients with head and neck squamous cell carcinoma (HNSCC) according to the expression of PIM-1. The aim of our study was to analyze the relationship between the transcriptional expression of PIM-1 and local response to radiotherapy in HNSCC patients. METHODS: We determined the transcriptional expression of PIM-1 in 135 HNSCC patients treated with radiotherapy, including patients treated with chemoradiotherapy (n = 65) and bioradiotherapy (n = 15). RESULTS: During the follow-up, 48 patients (35.6%) had a local recurrence of the tumor. Patients with local recurrence had a higher level of PIM-1 expression than those who achieved local control of the disease (P = 0.017). Five-year local recurrence-free survival for patients with a high expression of PIM-1 (n = 43) was 44.6% (95% CI 29.2-60.0%), and for patients with low expression (n = 92) it was 71.9% (95% CI 62.5-81.3%) (P = 0.007). According to the results of multivariate analysis, patients with a high PIM-1 expression had a 2.2-fold increased risk of local recurrence (95% CI 1.22-4.10, P = 0.009). CONCLUSION: Patients with elevated transcriptional expression levels of PIM-1 had a significantly higher risk of local recurrence after radiotherapy.


Assuntos
Neoplasias de Cabeça e Pescoço , Animais , Quimiorradioterapia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Camundongos , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia
19.
Hum Cell ; 35(2): 427-440, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35000143

RESUMO

The Proviral Integration of Molony murine leukemia virus (PIM)-1 protein contributes to the solid cancers and hematologic malignancies, cell growth, proliferation, differentiation, migration, and other life activities. Many studies have related these functions to its molecular structure, subcellular localization and expression level. However, recognition of specific active sites and their effects on the activity of this constitutively active kinase is still a challenge. Based on the close relationship between its molecular structure and functional activity, this review covers the specific residues involved in the binding of ATP and different substrates in its catalytic domain. This review then elaborates on the relevant changes in protein conformation and cell functions after PIM-1 binds to different substrates. Therefore, this intensive study can improve the understanding of PIM-1-regulated signaling pathways by facilitating the discovery of its potential phosphorylation substrates.


Assuntos
Neoplasias Hematológicas , Proteínas Proto-Oncogênicas c-pim-1 , Animais , Domínio Catalítico , Proliferação de Células , Camundongos , Fosforilação , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-pim-1/química , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo
20.
Cell Mol Neurobiol ; 42(3): 695-708, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32897512

RESUMO

Many studies have found that the dysregulation of long noncoding RNA (lncRNA) contributed to cancer initiation, progression, and recurrence via multiple signaling pathways. However, the underlying mechanisms of lncRNA in temozolomide (TMZ)-resistant gliomas were not well understood, hindering the improvement of TMZ-based therapies. The present study demonstrated that the lncRNA KCNQ1OT1 increased in TMZ-resistant glioma cells compared to the TMZ-sensitive cells. The introduction of KCNQ1OT1 promoted cell viability, clonogenicity, and rhodamine 123 efflux while hampering TMZ-induced apoptosis. Moreover, KCNQ1OT1 directly sponged miR-761, which decreased in TMZ-resistant sublines. The overexpression of miR-761 attenuated cell viability and clonogenicity, while triggering apoptosis and rhodamine 123 accumulation post-TMZ exposure, leading to a response to TMZ. The interaction between miR-761 and 3'-untranslated region of PIM1 attenuated PIM1-mediated signaling cascades. Furthermore, the knockdown of KCNQ1OT1 augmented the TMZ-induced tumor regression in TMZ-resistant U251 mouse models. Briefly, the present study evaluated that KCNQ1OT1 conferred TMZ resistance by releasing PIM1 expression from miR-761, resulting in the upregulation of PIM-mediated MDR1, c-Myc, and Survivin. The present findings demonstrated that the interplay of KCNQ1OT1: miR-761: PIM1 regulated chemoresistance in gliomas and provided a promising therapeutic target for TMZ-resistant glioma patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Glioma , MicroRNAs , Proteínas Proto-Oncogênicas c-pim-1 , RNA Longo não Codificante , Temozolomida , Animais , Antineoplásicos Alquilantes/farmacologia , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Humanos , Camundongos , MicroRNAs/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , RNA Longo não Codificante/genética , Temozolomida/farmacologia , Temozolomida/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...