Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 34(9): ar88, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314849

RESUMO

As a prelude to fusion, the R-SNARE on one membrane zippers with Qa-, Qb-, and Qc-SNAREs from its apposed fusion partner, forming a four-helical bundle that draws the two membranes together. Because Qa- and Qb-SNAREs are anchored to the same membrane and are adjacent in the 4-SNARE bundle, their two anchors might be redundant. Using the recombinant pure protein catalysts of yeast vacuole fusion, we now report that the specific distribution of transmembrane (TM) anchors on the Q-SNAREs is critical for efficient fusion. A TM anchor on the Qa-SNARE supports rapid fusion even when the other two Q-SNAREs are unanchored, while a TM anchor on the Qb-SNARE is dispensable and is insufficient for rapid fusion as the sole Q-SNARE anchor. This does not depend on which specific TM domain is attached to the Qa-SNARE but rather is due to the Qa-SNARE being anchored per se. The need for Qa-SNARE anchoring is even seen when the homotypic fusion and vacuole protein sorting protein (HOPS), the physiological catalyst of tethering and SNARE assembly, is replaced by an artificial tether. The need for a Qa TM anchor is thus a fundamental property of vacuolar SNARE zippering-induced fusion and may reflect the need for the Qa juxtamembrane (JxQa) region to be anchored between its SNARE and TM domains. This requirement for Qa-SNARE anchoring and correct JxQa position is bypassed by Sec17/Sec18, exploiting a platform of partially zippered SNAREs. Because Qa is the only synaptic Q-SNARE with a TM anchor, the need for Qa-specific anchoring may reflect a general requirement for SNARE-mediated fusion.


Assuntos
Proteínas de Saccharomyces cerevisiae , Vacúolos , Vacúolos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas SNARE/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas Q-SNARE/metabolismo , Proteínas Recombinantes/metabolismo
2.
J Cell Sci ; 135(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35972760

RESUMO

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are membrane-associated trafficking proteins that confer identity to lipid membranes and facilitate membrane fusion. These functions are achieved through the complexing of Q-SNAREs with a specific cognate target R-SNARE, leading to the fusion of their associated membranes. These SNARE complexes then dissociate so that the Q-SNAREs and R-SNAREs can repeat this cycle. Whilst the basic function of SNAREs has been long appreciated, it is becoming increasingly clear that the cell can control the localisation and function of SNARE proteins through posttranslational modifications (PTMs), such as phosphorylation and ubiquitylation. Whilst numerous proteomic methods have shown that SNARE proteins are subject to these modifications, little is known about how these modifications regulate SNARE function. However, it is clear that these PTMs provide cells with an incredible functional plasticity; SNARE PTMs enable cells to respond to an ever-changing extracellular environment through the rerouting of membrane traffic. In this Review, we summarise key findings regarding SNARE regulation by PTMs and discuss how these modifications reprogramme membrane trafficking pathways.


Assuntos
Fusão de Membrana , Proteínas SNARE , Fusão de Membrana/fisiologia , Processamento de Proteína Pós-Traducional , Proteômica , Proteínas Q-SNARE/metabolismo , Proteínas SNARE/metabolismo
3.
Microb Pathog ; 140: 103948, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31874229

RESUMO

SNAREs (Soluble N-ethylmaleimide-sensitive factor attachment protein receptors) help intracellular vesicle trafficking and membrane fusion among eukaryotes. They are vital for growth and development of phyto-pathogenic fungi such as Fusarium graminearum which causes Fusarium Head Blight (FHB) of wheat and barley. The SNARE protein Syn8 and its homologues play many roles among different organisms. Here, we have characterized FgSyn8 in F. graminearum as a homologue of Syn8. We have integrated biochemical, microbiological and molecular genetic approaches to investigate the roles of this protein. Our results reveal that FgSyn8 is indispensable for normal vegetative growth, conidiation, conidial morphology and pathogenicity of F. graminearum. Deoxynivalenol (DON) biochemical assay reveals active participation of this protein in DON production of F. graminearum. This has further been confirmed by the production of bulbous structures among the intercalary hyphae. FgSyn8 mutant strain produced defects in perithecia formation which portrays its role in sexual reproduction. In summary, our results support that the SNARE protein FgSyn8 is required for vegetative growth, sexual reproduction, DON production and pathogenicity of F. graminearum.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Proteínas Q-SNARE/metabolismo , Tricotecenos/metabolismo , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/patogenicidade , Regulação Fúngica da Expressão Gênica , Hifas/genética , Hifas/metabolismo , Hifas/patogenicidade , Doenças das Plantas/microbiologia , Proteínas Q-SNARE/genética , Triticum/microbiologia , Virulência
4.
Plant Cell ; 31(10): 2475-2490, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31439803

RESUMO

Multiple flowering pathways in Arabidopsis (Arabidopsis thaliana) converge on the transcriptional regulation of FLOWERING LOCUS T (FT), encoding a mobile floral stimulus that moves from leaves to the shoot apex. Despite our progress in understanding FT movement, the mechanisms underlying its transport along the endoplasmic reticulum-plasmalemma pathway in phloem companion cells remain largely unclear. Here, we show that the plasma membrane-resident syntaxin-like glutamine-soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor (Q-SNARE), SYNTAXIN OF PLANTS121 (SYP121), interacts with QUIRKY (QKY), a member of the family of multiple C2 domain and transmembrane region proteins (MCTPs), to mediate FT transport in Arabidopsis. QKY and SYP121 coordinately regulate FT movement to the plasmalemma through the endosomal trafficking pathway and are required for FT export from companion cells to sieve elements, thus affecting FT transport through the phloem to the shoot apical meristem. These findings suggest that MCTP-SNARE complex-mediated endosomal trafficking is essential for the export of florigen from phloem companion cells to sieve elements to induce flowering.plantcell;31/10/2475/FX1F1fx1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Florígeno/metabolismo , Flores/crescimento & desenvolvimento , Proteínas Q-SNARE/metabolismo , Proteínas de Arabidopsis/genética , Endossomos/metabolismo , Flores/genética , Flores/metabolismo , Flores/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Meristema/citologia , Meristema/metabolismo , Mutação , Floema/citologia , Floema/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Transporte Proteico/genética , Transporte Proteico/fisiologia , Proteínas Q-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Luz Solar
5.
J Cell Sci ; 131(20)2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30254024

RESUMO

STX19 is an unusual Qa-SNARE as it lacks a C-terminal transmembrane domain. However, it is efficiently targeted to post-Golgi membranes. Here, we set out to determine the intracellular localisation of endogenous STX19 and elucidate the mechanism by which it is targeted to membranes. We have found that a pool of STX19 is localised to tubular recycling endosomes where it colocalises with MICAL-L1 and Rab8 (which has Rab8a and Rab8b forms). Using a combination of genetic, biochemical and cell-based approaches, we have identified that STX19 is S-acylated at its C-terminus and is a substrate for several Golgi-localised S-acyltransferases, suggesting that STX19 is initially S-acylated at the Golgi before trafficking to the plasma membrane and endosomes. Surprisingly, we have found that S-acylation is a key determinant in targeting STX19 to tubular recycling endosomes, suggesting that S-acylation may play a general role in directing proteins to this compartment. In addition, S-acylation also protects STX19 from proteosomal degradation, indicating that S-acylation regulates the function of STX19 at multiple levels.This article has an associated First Person interview with the first author of the paper.


Assuntos
Acilação/genética , Transporte Proteico/genética , Proteínas Q-SNARE/metabolismo , Humanos
7.
J Biol Chem ; 291(40): 21257-21270, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27528604

RESUMO

Neurotransmitters and peptide hormones are secreted by regulated vesicle exocytosis. CAPS (also known as CADPS) is a 145-kDa cytosolic and peripheral membrane protein required for vesicle docking and priming steps that precede Ca2+-triggered vesicle exocytosis. CAPS binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and SNARE proteins and is proposed to promote SNARE protein complex assembly for vesicle docking and priming. We characterized purified soluble CAPS as mainly monomer in equilibrium with small amounts of dimer. However, the active form of CAPS bound to PC12 cell membranes or to liposomes containing PI(4,5)P2 and Q-SNARE proteins was mainly dimer. CAPS dimer formation required its C2 domain based on mutation or deletion studies. Moreover, C2 domain mutations or deletions resulted in a loss of CAPS function in regulated vesicle exocytosis, indicating that dimerization is essential for CAPS function. Comparison of the CAPS C2 domain to a structurally defined Munc13-1 C2A domain dimer revealed conserved residues involved in CAPS dimerization. We conclude that CAPS functions as a C2 domain-mediated dimer in regulated vesicle exocytosis. The unique tandem C2-PH domain of CAPS may serve as a PI(4,5)P2-triggered switch for dimerization. CAPS dimerization may be coupled to oligomeric SNARE complex assembly for vesicle docking and priming.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Exocitose/fisiologia , Multimerização Proteica/fisiologia , Vesículas Secretórias/metabolismo , Animais , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células PC12 , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Domínios Proteicos , Proteínas Q-SNARE/química , Proteínas Q-SNARE/genética , Proteínas Q-SNARE/metabolismo , Ratos , Vesículas Secretórias/química , Vesículas Secretórias/genética
8.
Mol Biol Cell ; 27(17): 2697-707, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27413010

RESUMO

Secretory proteins are exported from the endoplasmic reticulum in COPII vesicles. SNARE proteins-core machinery for membrane fusion-are incorporated into COPII vesicles by direct interaction with Sec24. Here we report a novel mechanism for sorting of the ER-Golgi Q-SNAREs into COPII vesicles. Different mammalian Sec24 isoforms recruit either the R-SNARE Sec22b or the Q-SNAREs Syntaxin5, GS27, and Bet1. Syntaxin5 is the only Q-SNARE that directly interacts with Sec24C, requiring its "open" conformation. Mutation within the IxM cargo-binding site of Sec24C led to a drastic reduction in sorting of all three Q-SNAREs into COPII vesicles, implying their ER export as a preassembled complex. Analysis of immunoisolated COPII vesicles and intracellular localization of Sec24 isoforms indicate that all ER-Golgi SNAREs are present on the same vesicle. Combined with existing data, our findings yield a general concept of how Sec24 isoforms can recruit fusogenic SNARE subunits to keep them functionally apart and thus prime mammalian COPII vesicles for homotypic fusion.


Assuntos
Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sítios de Ligação , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Fusão de Membrana/fisiologia , Proteínas de Membrana/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo , Transporte Proteico , Proteínas Q-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas de Transporte Vesicular/genética
9.
Proc Natl Acad Sci U S A ; 113(31): 8807-12, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27436892

RESUMO

Legionella pneumophila, the Gram-negative pathogen causing Legionnaires' disease, infects host cells by hijacking endocytic pathways and forming a Legionella-containing vacuole (LCV) in which the bacteria replicate. To promote LCV expansion and prevent lysosomal targeting, effector proteins are translocated into the host cell where they alter membrane traffic. Here we show that three of these effectors [LegC2 (Legionella eukaryotic-like gene C2)/YlfB (yeast lethal factor B), LegC3, and LegC7/YlfA] functionally mimic glutamine (Q)-SNARE proteins. In infected cells, the three proteins selectively form complexes with the endosomal arginine (R)-SNARE vesicle-associated membrane protein 4 (VAMP4). When reconstituted in proteoliposomes, these proteins avidly fuse with liposomes containing VAMP4, resulting in a stable complex with properties resembling canonical SNARE complexes. Intriguingly, however, the LegC/SNARE hybrid complex cannot be disassembled by N-ethylmaleimide-sensitive factor. We conclude that LegCs use SNARE mimicry to divert VAMP4-containing vesicles for fusion with the LCV, thus promoting its expansion. In addition, the LegC/VAMP4 complex avoids the host's disassembly machinery, thus effectively trapping VAMP4 in an inactive state.


Assuntos
Proteínas de Bactérias/metabolismo , Legionella pneumophila/metabolismo , Fusão de Membrana , Proteínas Q-SNARE/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Endossomos/metabolismo , Endossomos/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Legionella pneumophila/fisiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Ligação Proteica , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Interferência de RNA , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/microbiologia , Vacúolos/metabolismo , Vacúolos/microbiologia
10.
Nat Cell Biol ; 16(12): 1215-26, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25419848

RESUMO

The mechanism by which nutrient status regulates the fusion of autophagosomes with endosomes/lysosomes is poorly understood. Here, we report that O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT) mediates O-GlcNAcylation of the SNARE protein SNAP-29 and regulates autophagy in a nutrient-dependent manner. In mammalian cells, OGT knockdown, or mutating the O-GlcNAc sites in SNAP-29, promotes the formation of a SNAP-29-containing SNARE complex, increases fusion between autophagosomes and endosomes/lysosomes, and promotes autophagic flux. In Caenorhabditis elegans, depletion of ogt-1 has a similar effect on autophagy; moreover, expression of an O-GlcNAc-defective SNAP-29 mutant facilitates autophagic degradation of protein aggregates. O-GlcNAcylated SNAP-29 levels are reduced during starvation in mammalian cells and in C. elegans. Our study reveals a mechanism by which O-GlcNAc-modification integrates nutrient status with autophagosome maturation.


Assuntos
Acetilglucosamina/metabolismo , Autofagia/fisiologia , Endossomos/fisiologia , Lisossomos/fisiologia , Fusão de Membrana , N-Acetilglucosaminiltransferases/metabolismo , Fagossomos/fisiologia , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Proteínas de Membrana Lisossomal , Mutação , N-Acetilglucosaminiltransferases/genética , Ligação Proteica , Proteínas/genética , Proteínas Q-SNARE/genética , Proteínas Q-SNARE/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Proteínas R-SNARE/genética , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais/genética , Proteínas de Transporte Vesicular
11.
Elife ; 3: e01879, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24596153

RESUMO

Like other intracellular fusion events, the homotypic fusion of yeast vacuoles requires a Rab GTPase, a large Rab effector complex, SNARE proteins which can form a 4-helical bundle, and the SNARE disassembly chaperones Sec17p and Sec18p. In addition to these proteins, specific vacuole lipids are required for efficient fusion in vivo and with the purified organelle. Reconstitution of vacuole fusion with all purified components reveals that high SNARE levels can mask the requirement for a complex mixture of vacuole lipids. At lower, more physiological SNARE levels, neutral lipids with small headgroups that tend to form non-bilayer structures (phosphatidylethanolamine, diacylglycerol, and ergosterol) are essential. Membranes without these three lipids can dock and complete trans-SNARE pairing but cannot rearrange their lipids for fusion. DOI: http://dx.doi.org/10.7554/eLife.01879.001.


Assuntos
Fusão de Membrana , Lipídeos de Membrana/metabolismo , Membranas Artificiais , Proteínas Q-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Vacúolos/metabolismo , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Lipídeos de Membrana/química , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Proteolipídeos/metabolismo , Proteínas Q-SNARE/química , Proteínas R-SNARE/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Fatores de Tempo , Vacúolos/química , Proteínas de Transporte Vesicular/metabolismo
12.
J Neurosci ; 33(43): 17123-37, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24155316

RESUMO

Large dense core vesicle (LDCV) exocytosis in chromaffin cells follows a well characterized process consisting of docking, priming, and fusion. Total internal reflection fluorescence microscopy (TIRFM) studies suggest that some LDCVs, although being able to dock, are resistant to calcium-triggered release. This phenomenon termed dead-end docking has not been investigated until now. We characterized dead-end vesicles using a combination of membrane capacitance measurement and visualization of LDCVs with TIRFM. Stimulation of bovine chromaffin cells for 5 min with 6 µm free intracellular Ca2+ induced strong secretion and a large reduction of the LDCV density at the plasma membrane. Approximately 15% of the LDCVs were visible at the plasma membrane throughout experiments, indicating they were permanently docked dead-end vesicles. Overexpression of Munc18-2 or SNAP-25 reduced the fraction of dead-end vesicles. Conversely, expressing open-syntaxin increased the fraction of dead-end vesicles. These results indicate the existence of the unproductive target soluble N-ethylmaleimide-sensitive factor attachment protein receptor acceptor complex composed of 2:1 syntaxin-SNAP-25 in vivo. More importantly, they define a novel function for this acceptor complex in mediating dead-end docking.


Assuntos
Membrana Celular/metabolismo , Células Cromafins/metabolismo , Vesículas Secretórias/metabolismo , Animais , Cálcio/metabolismo , Bovinos , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Proteínas Q-SNARE/genética , Proteínas Q-SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo
13.
Mol Biol Cell ; 22(14): 2579-87, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21613542

RESUMO

It is generally accepted that soluble N-ethylmaleimide-sensitive factor attachment protein receptors mediate the docking and fusion of transport intermediates with target membranes. Our research identifies Caenorhabditis elegans homologue of synaptosomal-associated protein 29 (SNAP-29) as an essential regulator of membrane trafficking in polarized intestinal cells of living animals. We show that a depletion of SNAP-29 blocks yolk secretion and targeting of apical and basolateral plasma membrane proteins in the intestinal cells and results in a strong accumulation of small cargo-containing vesicles. The loss of SNAP-29 also blocks the transport of yolk receptor RME-2 to the plasma membrane in nonpolarized oocytes, indicating that its function is required in various cell types. SNAP-29 is essential for embryogenesis, animal growth, and viability. Functional fluorescent protein-tagged SNAP-29 mainly localizes to the plasma membrane and the late Golgi, although it also partially colocalizes with endosomal proteins. The loss of SNAP-29 leads to the vesiculation/fragmentation of the Golgi and endosomes, suggesting that SNAP-29 is involved in multiple transport pathways between the exocytic and endocytic organelles. These observations also suggest that organelles comprising the endomembrane system are highly dynamic structures based on the balance between membrane budding and fusion and that SNAP-29-mediated fusion is required to maintain proper organellar morphology and functions.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Endossomos/metabolismo , Exocitose , Complexo de Golgi/metabolismo , Mucosa Intestinal/metabolismo , Proteínas Q-SNARE/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Membrana Celular/metabolismo , Endossomos/ultraestrutura , Complexo de Golgi/ultraestrutura , Forma das Organelas , Transporte Proteico , Proteínas Q-SNARE/genética , Receptores de LDL/metabolismo
14.
Mol Biol Cell ; 22(14): 2601-11, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21613544

RESUMO

Membrane fusion within the endomembrane system follows a defined order of events: membrane tethering, mediated by Rabs and tethers, assembly of soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) complexes, and lipid bilayer mixing. Here we present evidence that the vacuolar HOPS tethering complex controls fusion through specific interactions with the vacuolar SNARE complex (consisting of Vam3, Vam7, Vti1, and Nyv1) and the N-terminal domains of Vam7 and Vam3. We show that homotypic fusion and protein sorting (HOPS) binds Vam7 via its subunits Vps16 and Vps18. In addition, we observed that Vps16, Vps18, and the Sec1/Munc18 protein Vps33, which is also part of the HOPS complex, bind to the Q-SNARE complex. In agreement with this observation, HOPS-stimulated fusion was inhibited if HOPS was preincubated with the minimal Q-SNARE complex. Importantly, artificial targeting of Vam7 without its PX domain to membranes rescued vacuole morphology in vivo, but resulted in a cytokinesis defect if the N-terminal domain of Vam3 was also removed. Our data thus support a model of HOPS-controlled membrane fusion by recognizing different elements of the SNARE complex.


Assuntos
Fusão de Membrana , Complexos Multiproteicos/metabolismo , Proteínas Q-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Vacúolos/fisiologia , Expressão Gênica , Vetores Genéticos , Complexos Multiproteicos/química , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Estrutura Terciária de Proteína , Proteínas Q-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteína 25 Associada a Sinaptossoma/genética , Vacúolos/metabolismo
15.
Dev Biol ; 355(1): 77-88, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21545795

RESUMO

SNARE domain proteins are key molecules mediating intracellular fusion events. SNAP25 family proteins are unique target-SNAREs possessing two SNARE domains. Here we report the genetic, molecular, and cell biological characterization of C. elegans SNAP-29. We found that snap-29 is an essential gene required throughout the life-cycle. Depletion of snap-29 by RNAi in adults results in sterility associated with endomitotic oocytes and pre-meiotic maturation of the oocytes. Many of the embryos that are produced are multinucleated, indicating a defect in embryonic cytokinesis. A profound defect in secretion by oocytes and early embryos in animals lacking SNAP-29 appears to be the underlying defect connecting these phenotypes. Further analysis revealed defects in basolateral and apical secretion by intestinal epithelial cells in animals lacking SNAP-29, indicating a broad requirement for this protein in the secretory pathway. A SNAP-29-GFP fusion protein was enriched on recycling endosomes, and loss of SNAP-29 disrupted recycling endosome morphology. Taken together these results suggest a requirement for SNAP-29 in the fusion of post-Golgi vesicles with the recycling endosome for cargo to reach the cell surface.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Endossomos/fisiologia , Complexo de Golgi/fisiologia , Infertilidade/genética , Proteínas Q-SNARE/fisiologia , Proteínas SNARE/fisiologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Feminino , Masculino , Oócitos/metabolismo , Oócitos/fisiologia , Proteínas Q-SNARE/genética , Proteínas Q-SNARE/metabolismo , Interferência de RNA , Proteínas SNARE/genética , Proteínas SNARE/metabolismo
16.
EMBO Rep ; 10(8): 851-6, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19557002

RESUMO

The sorting of post-Golgi R-SNAREs (vesicle-associated membrane protein (VAMP)1, 2, 3, 4, 7 and 8) is still poorly understood. To address this, we developed a system to investigate their localization, trafficking and cell-surface levels. Here, we show that the distribution and internalization of VAMPs 3 and 8 are determined solely through a new conserved mechanism that uses coiled-coil interactions, and that VAMP4 does not require these interactions for its trafficking. We propose that VAMPs 3 and 8 are trafficked while in a complex with Q-SNAREs. We also show that the dileucine motif of VAMP4 is required for both its internalization and retrieval to the trans-Golgi network. However, when the dileucine motif is mutated, the construct can still be internalized potentially through coiled-coil interactions with Q-SNAREs.


Assuntos
Complexo de Golgi/metabolismo , Proteínas R-SNARE/metabolismo , Animais , Humanos , Modelos Biológicos , Ligação Proteica , Transporte Proteico/fisiologia , Proteínas Q-SNARE/metabolismo , Proteínas R-SNARE/química , Rede trans-Golgi/metabolismo
17.
Mol Biol Cell ; 20(11): 2639-49, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19369418

RESUMO

Syntaxin 18, a soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) protein implicated in endoplasmic reticulum (ER) membrane fusion, forms a complex with other SNAREs (BNIP1, p31, and Sec22b) and several peripheral membrane components (Sly1, ZW10, and RINT-1). In the present study, we showed that a peripheral membrane protein encoded by the neuroblastoma-amplified gene (NAG) is a subunit of the syntaxin 18 complex. NAG encodes a protein of 2371 amino acids, which exhibits weak similarity to yeast Dsl3p/Sec39p, an 82-kDa component of the complex containing the yeast syntaxin 18 orthologue Ufe1p. Under conditions favoring SNARE complex disassembly, NAG was released from syntaxin 18 but remained in a p31-ZW10-RINT-1 subcomplex. Binding studies showed that the extreme N-terminal region of p31 is responsible for the interaction with NAG and that the N- and the C-terminal regions of NAG interact with p31 and ZW10-RINT-1, respectively. Knockdown of NAG resulted in a reduction in the expression of p31, confirming their intimate relationship. NAG depletion did not substantially affect Golgi morphology and protein export from the ER, but it caused redistribution of Golgi recycling proteins accompanied by a defect in protein glycosylation. These results together suggest that NAG links between p31 and ZW10-RINT-1 and is involved in Golgi-to-ER transport.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Qa-SNARE/metabolismo , Sítios de Ligação/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Glicosilação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , Lisossomos/metabolismo , Espectrometria de Massas , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Proteínas de Neoplasias/genética , Ligação Proteica , Transporte Proteico , Proteínas Q-SNARE/genética , Proteínas Q-SNARE/metabolismo , Proteínas Qa-SNARE/genética , Interferência de RNA , Transfecção
18.
Cell Mol Life Sci ; 65(18): 2814-32, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18726177

RESUMO

SNARE (SNAP receptor) proteins drive intracellular membrane fusion and contribute specificity to membrane trafficking. The formation of SNAREpins between membranes is spatially and temporally controlled by a network of sequentially acting accessory components. These regulators add an additional layer of specificity, arrest SNAREpin intermediates, lower the energy required for fusion, and couple membrane fusion to triggering signals. The functional activity of some of these regulators determines the plasticity of regulated exocytosis.


Assuntos
Fusão de Membrana/fisiologia , Proteínas SNARE/metabolismo , Animais , Exocitose/fisiologia , Humanos , Proteínas Munc18/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Q-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas SNARE/química , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Sinaptotagminas/metabolismo , Vesículas Transportadoras/metabolismo
19.
J Cell Sci ; 121(Pt 12): 2097-106, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18505797

RESUMO

Vasopressin regulates the fusion of the water channel aquaporin 2 (AQP2) to the apical membrane of the renal collecting-duct principal cells and several lines of evidence indicate that SNARE proteins mediate this process. In this work MCD4 renal cells were used to investigate the functional role of a set of Q- and R-SNAREs, together with that of Munc18b as a negative regulator of the formation of the SNARE complex. Both VAMP2 and VAMP3 were associated with immunoisolated AQP2 vesicles, whereas syntaxin 3 (Stx3), SNAP23 and Munc18 were associated with the apical plasma membrane. Co-immunoprecipitation experiments indicated that Stx3 forms complexes with VAMP2, VAMP3, SNAP23 and Munc18b. Protein knockdown coupled to apical surface biotinylation demonstrated that reduced levels of the R-SNAREs VAMP2 and VAMP3, and the Q-SNAREs Stx3 and SNAP23 strongly inhibited AQP2 fusion at the apical membrane. In addition, knockdown of Munc18b promoted a sevenfold increase of AQP2 fused at the plasma membrane without forskolin stimulation. Taken together these findings propose VAMP2, VAMP3, Stx3 and SNAP23 as the complementary set of SNAREs responsible for AQP2-vesicle fusion into the apical membrane, and Munc18b as a negative regulator of SNARE-complex formation in renal collecting-duct principal cells.


Assuntos
Túbulos Renais Coletores/fisiologia , Proteínas Munc18/metabolismo , Proteínas Q-SNARE/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Animais , Aquaporina 2/antagonistas & inibidores , Aquaporina 2/genética , Aquaporina 2/metabolismo , Linhagem Celular , Polaridade Celular , Cães , Exocitose , Retroalimentação Fisiológica , Fusão de Membrana , Proteínas Munc18/genética , Especificidade de Órgãos , Transporte Proteico/genética , Proteínas Q-SNARE/antagonistas & inibidores , Proteínas Q-SNARE/genética , RNA Interferente Pequeno , Vasopressinas/metabolismo , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 3 Associada à Membrana da Vesícula/genética
20.
J Cell Sci ; 121(Pt 8): 1243-51, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18388312

RESUMO

Insulin recruits two transmembrane proteins, GLUT4 and IRAP, to the plasma membrane of muscle cells and adipocytes. The subcellular trafficking and localization of GLUT4, and to a lesser extent IRAP, have been intensely studied, yet the molecular mechanisms responsible for their insulin-responsive compartmentalization remain unknown. Herein we have investigated the endocytosis and recycling of IRAP from the cell surface back to the insulin-responsive compartment (IRC). Our results show that a key dileucine motif at position 76,77 (LL76,77), although required for the initial biosynthetic entry of IRAP into the IRC, is dispensable for entry into the IRC via the endosomal system. Indeed, we found that an AA76,77 mutant of IRAP is fully capable of undergoing endocytosis and is correctly routed back to the IRC. To verify that the AA76,77 mutant enters the bona fide IRC, we show that the internalized IRAP-AA76,77 construct is sequestered in an IRC that is insensitive to brefeldin A yet sensitive to a dominant-interfering mutant of AS160 (AS160-4P). In addition, we show that the GGA clathrin adaptors are not required for the re-entry of IRAP from the cell surface back into the IRC, whereas the Q-SNARE syntaxin 6 is required for this process.


Assuntos
Compartimento Celular , Clatrina/metabolismo , Cistinil Aminopeptidase/metabolismo , Insulina/metabolismo , Proteínas Q-SNARE/metabolismo , Proteínas Qa-SNARE/metabolismo , Células 3T3-L1 , Animais , Sequência de Bases , Membrana Celular/metabolismo , Endocitose , Camundongos , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...