Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroreport ; 35(6): 343-351, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526969

RESUMO

Inflammatory pain, the most prevalent disease globally, remains challenging to manage. Electroacupuncture emerges as an effective therapy, yet its underlying mechanisms are not fully understood. This study investigates whether adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)-regulated silent information regulator 1 (SIRT1) contributes to electroacupuncture's antinociceptive effects by modulating macrophage/microglial polarization in the spinal dorsal horn of a mouse model of inflammatory pain. In this study, mice, introduced to inflammatory pain through subcutaneous injections of complete freund's adjuvant (CFA) in the plantar area, underwent electroacupuncture therapy every alternate day for 30-min sessions. The assessment of mechanical allodynia and thermal hyperalgesia in these subjects was carried out using paw withdrawal frequency and paw withdrawal latency measurements, respectively. Western blot analysis measured levels of AMPK, phosphorylation-adenosine 5'-monophosphate (AMP)-activated protein kinase, SIRT1, inducible nitric oxide synthase, cluster of differentiation 86, arginase 1, and interleukin 10. In contrast to the group treated solely with CFA, the cohort receiving both CFA and electroacupuncture demonstrated notable decreases in both thermal hyperalgesia and mechanical allodynia. This was accompanied by a marked enhancement in AMPK phosphorylation levels. AMPK knockdown reversed electroacupuncture's analgesic effects and reduced M2 macrophage/microglial polarization enhancement. Additionally, AMPK knockdown significantly weakened electroacupuncture-induced SIRT1 upregulation, and EX-527 injection attenuated electroacupuncture's facilitation of M2 macrophage/microglial polarization without affecting AMPK phosphorylation levels. Furthermore, combining electroacupuncture with SRT1720 enhanced the analgesic effect of SRT1720. Our findings suggest that AMPK regulation of SIRT1 plays a critical role in electroacupuncture's antinociceptive effect through the promotion of M2 macrophage/microglial polarization.


Assuntos
Eletroacupuntura , Hiperalgesia , Humanos , Ratos , Camundongos , Animais , Hiperalgesia/terapia , Hiperalgesia/induzido quimicamente , Proteínas Quinases Ativadas por AMP/uso terapêutico , Microglia , Sirtuína 1 , Ratos Sprague-Dawley , Dor/induzido quimicamente , Analgésicos/uso terapêutico , Adenosina , Macrófagos , Inflamação/induzido quimicamente
2.
Curr Probl Cardiol ; 49(5): 102524, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492622

RESUMO

Sodium-glucose cotransporter 2 (SGLT2) inhibitors have attracted significant attention for their broader therapeutic impact beyond simply controlling blood sugar levels, particularly in their ability to influence inflammatory pathways. This review delves into the anti-inflammatory properties of SGLT2 inhibitors, with a specific focus on canagliflozin, empagliflozin, and dapagliflozin. One of the key mechanisms through which SGLT2 inhibitors exert their anti-inflammatory effects is by activating AMP-activated protein kinase (AMPK), a crucial regulator of both cellular energy balance and inflammation. Activation of AMPK by these inhibitors leads to the suppression of pro-inflammatory pathways and a decrease in inflammatory mediators. Notably, SGLT2 inhibitors have demonstrated the ability to inhibit the release of cytokines in an AMPK-dependent manner, underscoring their direct influence on inflammatory signaling. Beyond AMPK activation, SGLT2 inhibitors also modulate several other inflammatory pathways, including the NLRP3 inflammasome, expression of Toll-like receptor 4 (TLR-4), and activation of NF-κB (Nuclear factor kappa B). This multifaceted approach contributes to their efficacy in reducing inflammation and managing associated complications in conditions such as diabetes and cardiovascular disorders. Several human and animal studies provide support for the anti-inflammatory effects of SGLT2 inhibitors, demonstrating protective effects on various cardiac cells. Additionally, these inhibitors exhibit direct anti-inflammatory effects by modulating immune cells. Overall, SGLT2 inhibitors emerge as promising therapeutic agents for targeting inflammation in a range of pathological conditions. Further research, particularly focusing on the molecular-level pathways of inflammation, is necessary to fully understand their mechanisms of action and optimize their therapeutic potential in inflammatory diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Proteínas Quinases Ativadas por AMP/uso terapêutico , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Transdução de Sinais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico
3.
Pharmacogenomics J ; 24(2): 5, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378770

RESUMO

OBJECTIVE: To explore the role of p300 in the context of paclitaxel (PTX) resistance in triple-negative breast cancer (TNBC) cells, focusing on its interaction with the phosphoenolpyruvate carboxykinase 1 (PCK1)/adenosine monophosphate-activated protein kinase (AMPK) pathway. METHODS: The expression of p300 and PCK1 at the messenger ribonucleic acid (mRNA) level was detected using a quantitative polymerase chain reaction. The GeneCards and GEPIA databases were used to investigate the relationship between p300 and PCK1. The MDA-MB-231/PTX cell line, known for its PTX resistance, was chosen to understand the specific role of p300 in such cells. The Lipofectamine™ 3000 reagent was used to transfer the p300 small interfering RNA and the overexpression of PCK1 plasmid into MDA-MB-231/PTX. The expression levels of p300, PCK1, 5'AMPK and phosphorylated AMPK (p-AMPK) were determined using the western blot test. RESULTS: In TNBC cancer tissue, the expression of p300 was increased compared with TNBC paracancerous tissue (P < 0.05). In the MDA-MB-231 cell line of TNBC, the expression of p300 was lower than in the PTX-resistant TNBC cells (MDA-MB-231/PTX) (P < 0.05). The PCK1 expression was decreased in the TNBC cancer tissue compared with TNBC paracancerous tissue, and the PCK1 expression was reduced in MDA-MB-231/PTX than in MDA-MB-231 (P < 0.05) indicating that PCK1 was involved in the resistance function. Additionally, p-AMPK was decreased in MDA-MB-231/PTX compared with MDA-MB-231 (P < 0.05). The adenosine triphosphate (ATP) level was also detected and was significantly lower in MDA-MB-231/PTX than in MDA-MB-231 (P < 0.05). Additionally, cell proliferation increased significantly in MDA-MB-231/PTX at 48 and 72 h (P < 0.05) suggesting that MDA-MB-231/PTX cells obtained the resistance function which was associated with AMPK and ATP level. When p300 was inhibited, p-AMPK and ATP levels elevated in MDA-MB-231/PTX (P < 0.05). When PCK1 was suppressed, the ATP consumption rate decreased, and cell proliferation increased (P < 0.05). However, there were no changes in p300. CONCLUSIONS: In MDA-MB-231/PTX, p300 can inhibit p-AMPK and ATP levels by inhibiting PCK1 expression. Our findings suggest that targeting p300 could modulate the PCK1/AMPK axis, offering a potential therapeutic avenue for overcoming PTX resistance in TNBC.


Assuntos
Paclitaxel , Neoplasias de Mama Triplo Negativas , Humanos , Trifosfato de Adenosina/uso terapêutico , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular/genética , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Regulação para Cima
4.
Eur J Heart Fail ; 26(1): 155-164, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37964408

RESUMO

AIMS: Growth differentiation factor-15 (GDF-15) is upregulated in part in response to cardiomyocyte stretch and stress, and it exerts a protective role that is mediated by its action to suppress signalling through insulin-like growth factor (IGF) and enhance signalling through adenosine monophosphate-activated protein kinase (AMPK). Sodium-glucose cotransporter 2 (SGLT2) inhibitors improve outcomes in heart failure, which has been experimentally linked to AMPK. This study aimed at evaluating the associations of GDF-15 with baseline characteristics, the prognostic significance of GDF-15, and the effect of empagliflozin on GDF-15 in patients with heart failure with a reduced and preserved ejection fraction. METHODS AND RESULTS: Growth differentiation factor-15 was determined in serum samples from the EMPEROR-Reduced and EMPEROR-Preserved trials. Cox regression and mixed models for repeated measures were used to study the association with outcomes and the effect of empagliflozin on GDF-15, respectively. We studied 1124 patients (560 placebo and 564 empagliflozin) with median GDF-15 levels at baseline of 2442 (interquartile range 1603-3780) pg/ml. Patients with higher GDF-15 levels were typically older men with more severe symptoms, higher N-terminal pro-B-type natriuretic peptide levels, worse kidney function and who were prescribed metformin. Baseline levels of GDF-15 were well correlated with levels of IGF-binding protein 7 (rho = 0.64). Higher levels of GDF-15 were independently associated with an increased risk of cardiovascular death, heart failure hospitalizations, and worse kidney outcomes. When considered as a continuous variable, for each doubling in GDF-15, the adjusted hazard ratio for cardiovascular death or heart failure hospitalization was 1.40 (95% confidence interval 1.15-1.71; p < 0.001). The relative effect of empagliflozin on cardiovascular death and hospitalization for heart failure was most pronounced in patients with higher baseline levels of GDF-15 (interaction p-trend = 0.031). At week 52, when compared with placebo, empagliflozin increased GDF-15 by an additional 8% (p = 0.020), an effect that was primarily seen in patients not receiving metformin, a known AMPK activator. CONCLUSIONS: Growth differentiation factor-15 is a marker of worse heart failure severity, is an independent predictor of major heart failure outcomes and may be associated with more pronounced benefits of empagliflozin. GDF-15 is increased among metformin users, and empagliflozin was associated with an increase in GDF-15 levels, primarily in patients not receiving metformin.


Assuntos
Compostos Benzidrílicos , Glucosídeos , Insuficiência Cardíaca , Metformina , Masculino , Humanos , Idoso , Fator 15 de Diferenciação de Crescimento , Proteínas Quinases Ativadas por AMP/uso terapêutico , Volume Sistólico/fisiologia , Metformina/uso terapêutico
5.
Am J Cardiovasc Drugs ; 24(1): 39-54, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37945977

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a progressive, cureless disease, characterized by increased pulmonary vascular resistance and remodeling, with subsequent ventricular dilatation and failure. New therapeutic targets are being investigated for their potential roles in improving PAH patients' symptoms and reversing pulmonary vascular pathology. METHOD: We aimed to address the available knowledge from the published randomized controlled trials (RCTs) regarding the role of Rho-kinase (ROCK) inhibitors, bone morphogenetic protein 2 (BMP2) inhibitors, estrogen inhibitors, and AMP-activated protein kinase (AMPK) activators on the PAH evaluation parameters. This systematic review (SR) was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (CDR42022340658) and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS: Overall, 5092 records were screened from different database and registries; 8 RCTs that met our inclusion criteria were included. The marked difference in the study designs and the variability of the selected outcome measurement tools among the studies made performing a meta-analysis impossible. However, the main findings of this SR relate to the powerful potential of the AMPK activator and the imminent antidiabetic drug metformin, and the BMP2 inhibitor sotatercept as promising PAH-modifying therapies. There is a need for long-term studies to evaluate the effect of the ROCK inhibitor fasudil and the estrogen aromatase inhibitor anastrozole in PAH patients. The role of tacrolimus in PAH is questionable. The discrepancy in the hemodynamic and clinical parameters necessitates defining cut values to predict improvement. The differences in the PAH etiologies render the judgment of the therapeutic potential of the tested drugs challenging. CONCLUSION: Metformin and sotatercept appear as promising therapeutic drugs for PAH. CLINICAL TRIALS REGISTRATION: This work was registered in PROSPERO (CDR42022340658).


Assuntos
Hipertensão Pulmonar , Metformina , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/uso terapêutico , Hipertensão Pulmonar Primária Familiar , Estrogênios/uso terapêutico , Metformina/uso terapêutico
6.
J Cosmet Dermatol ; 23(1): 326-338, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37635345

RESUMO

OBJECTIVE: Increased angiogenesis is a pathological feature of psoriasis, but the pathomechanisms of angiogenesis in psoriasis are not clear. Interleukin-17A (IL-17A) is the major effect factor in the pathogenesis of psoriasis. Our results showed that IL-17A can promote angiogenesis and cause endothelial cell inflammation. Autophagy plays an important role not only in regulating inflammation, but also in regulating angiogenesis. Whether angiogenesis in psoriasis is related to autophagy remains unclear. In this study, we treated human umbilical vein endothelial cells (HUVECs) with IL-17A to simulate increased angiogenesis to study whether increased angiogenesis in psoriasis is related to autophagy. METHODS AND RESULTS: Our results showed that treatment of HUVECs with IL-17A significantly increased angiogenesis and expression levels of mRNA for multiple proinflammatory cytokines (CCL20, IL-8, CCL2, IL-6, and IL-1ß) and, while decreasing intracellular levels of nitric oxide (NO) and NO synthase (NOS) activity. Moreover, IL-17A inhibited autophagy as shown that IL-17A significantly increased expression levels of LC3II and p62 proteins. Induction of autophagy ameliorated IL-17A-mediated inflammatory response and inhibited angiogenesis, accompanied by increased p-AMPKα(Thr172) and p-ULK1(Ser555) expression, and decreased p-mTOR(Ser2448) and p-ULK1(Ser757) expression. Furthermore, inhibition of either AMPK or lysosomal acidification completely overrode autophagy-induced changes in angiogenesis and NOS activity. Finally, induction of autophagy decreased apoptosis and caspase-3 activity in IL-17A-treated HUVECs. CONCLUSIONS: These results showed that IL-17A is involved in angiogenesis and inflammatory response by inhibiting autophagy through AMPK signaling pathway, suggesting that autophagy may be a new therapeutic target for psoriasis.


Assuntos
Interleucina-17 , Psoríase , Humanos , Proteínas Quinases Ativadas por AMP/farmacologia , Proteínas Quinases Ativadas por AMP/uso terapêutico , Autofagia , Células Endoteliais/patologia , Hiperplasia , Inflamação/patologia , Interleucina-17/metabolismo , Psoríase/tratamento farmacológico
7.
J Neuroimmune Pharmacol ; 18(4): 628-639, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37919457

RESUMO

Glycoprotein non-metastatic melanoma protein B (GPNMB) got its name from the first discovery in a cell line of non-metastatic melanoma. Later studies found that GPNMB is widely expressed in various tissues and cells of the human body, most abundant in neural tissue, epithelial tissue, bone tissue, and monocyte-macrophage system. GPNMB has been shown to have anti-inflammatory effects in a variety of neurological diseases, however, it has not been reported in subarachnoid hemorrhage (SAH). Male CD-1 mice were used and intra-arterial puncture method was applied to establish the SAH model. Exogenous recombinant GPNMB (rGPNMB) was injected intracerebroventricularly 1 h after SAH. SAH grading, brain edema and blood-brain barrier (BBB) integrity were quantified, and neurobehavioral tests were performed to evaluate the effect of GPNMB on the outcome. Dorsomorphin, the selective inhibitor on AMPK was introduced to study the downstream signaling through which the GPNMB works. Furthermore, western blot, immunofluorescence staining and ELISA were utilized to confirm the signaling. After SAH, GPNMB expression increased significantly as a result of the inflammatory response. GPNMB was expressed extensively in mouse microglia, astrocytes and neurons. The administration of rGPNMB could alleviate brain edema, restore BBB integrity and improve the neurological outcome of mice with SAH. GPNMB treatment significantly magnified the expression of p-AMPK while p-NFκB, IL-1ß, IL-6 and TNF-α were suppressed; in the meantime, the combined administration of GPNMB and AMPK inhibitor could decrease the intensity of p-AMPK and reverse the quantity of p-NFκB and the above inflammatory cytokines. GPNMB has the potential of ameliorating the brain edema and neuroinflammation, protecting the BBB and improving the neurological outcome, possibly via the AMPK/NFκB signaling pathway.


Assuntos
Edema Encefálico , Melanoma , Hemorragia Subaracnóidea , Ratos , Camundongos , Masculino , Humanos , Animais , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Proteínas Quinases Ativadas por AMP/uso terapêutico , Edema Encefálico/tratamento farmacológico , Doenças Neuroinflamatórias , Ratos Sprague-Dawley , Transdução de Sinais , Glicoproteínas , Glicoproteínas de Membrana/farmacologia , Glicoproteínas de Membrana/uso terapêutico
8.
Support Care Cancer ; 31(9): 506, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37542585

RESUMO

OBJECTIVE: Acupuncture has become a popular complementary treatment in oncology. This study is based on RNA-Seq transcriptome sequencing technology to investigate the molecular mechanisms underlying the effect of acupuncture-mediated regulation of the Leptin/AMPK signaling pathway on mitochondrial dysfunction-induced fatigue in breast cancer patients after chemotherapy. METHODS: Peripheral blood samples from 10 patients with post-operative chemotherapy for breast cancer were selected for transcriptome sequencing to screen the key molecular pathways involved in fatigue after chemotherapy in breast cancer patients. Besides, peripheral blood samples were collected from 138 post-operative chemotherapy patients with breast cancer to study the composite fatigue and quality of life scores. Flow cytometry was used to detect T lymphocyte subsets in peripheral blood-specific immune cells. In addition, a blood cell analyzer was used to measure peripheral blood leukocyte counts, and MSP-PCR was used to detect mitochondrial DNA mutations in peripheral blood leukocytes. RESULTS: Transcriptome bioinformatics analysis screened 147 up-regulated mRNAs and 160 down-regulated mRNAs. Leptin protein was confirmed as the key factor. Leptin was significantly higher in the peripheral blood of breast cancer patients who developed fatigue after chemotherapy. Acupuncture treatment effectively improved post-chemotherapy fatigue and immune status in breast cancer patients, suppressed the expression of Leptin/AMPK signaling pathway-related factor and leukocyte counts, and significantly reduced the rate of mitochondrial DNA mutations in peripheral blood leukocytes. CONCLUSION: The Leptin/AMPK signaling pathway may be the key molecular pathway affecting the occurrence of fatigue after chemotherapy in breast cancer patients. Leptin may improve post-chemotherapy fatigue in breast cancer patients by activating AMPK phosphorylation and alleviating mitochondrial functional impairment.


Assuntos
Terapia por Acupuntura , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Leptina/efeitos adversos , Proteínas Quinases Ativadas por AMP/uso terapêutico , Qualidade de Vida , Fadiga/induzido quimicamente , Fadiga/terapia , DNA Mitocondrial/efeitos adversos , Transdução de Sinais
9.
Ophthalmic Res ; 66(1): 1230-1244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37647867

RESUMO

INTRODUCTION: Uveal melanoma (UM) responds poorly to targeted therapies or immune checkpoint inhibitors. Adenosine monophosphate-activated protein kinase (AMPK) is a pivotal serine/threonine protein kinase that coordinates vital processes such as cell growth. Targeting AMPK pathway, which represents a critical mechanism mediating the survival of UM cells, may prove to be a novel treatment strategy for UM. We aimed to demonstrate the effects of AMPK modulation on UM cells. METHODS: In silico analyses were performed to compare UM and normal melanocyte cells via Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA). The effects of AMPK modulation on cell viability and proliferation in UM cell lines with different molecular profiles (i.e., 92-1, MP46, OMM2.5, and Mel270) were investigated via XTT cell viability and proliferation assays after treating the cells with varying concentrations of A-769662 (AMPK activator) or dorsomorphin (AMPK inhibitor). RESULTS: KEGG/GSEA studies demonstrated that genes implicated in the AMPK signaling pathway were differentially regulated in UM. Gene sets comprising genes involved in AMPK signaling and genes involved in energy-dependent regulation of mammalian target of rapamycin by liver kinase B1-AMPK were downregulated in UM. We observed gradual decreases in the numbers of viable UM cells as the concentration of A-769662 treatment increased. All UM cells demonstrated statistically significant decreases in cell viability when treated with 200 µm A-769662. Moreover, the effects of AMPK inhibition on UM cells were potent, since low doses of dorsomorphin treatment resulted in significant decreases in viabilities of UM cells. The half maximal inhibitory concentration (IC50) values confirmed the potency of dorsomorphin treatment against UM in vitro. CONCLUSION: AMPK may act like a friend or a foe in cancer depending on the context. As such, the current study contributes to the literature in determining the effects of therapeutic strategies targeting AMPK in several UM cells. We propose a new perspective in the treatment of UM. Targeting AMPK pathway may open up new avenues in developing novel therapeutic approaches to improve overall survival in UM.


Assuntos
Proteínas Quinases Ativadas por AMP , Melanoma , Humanos , Proteínas Quinases Ativadas por AMP/farmacologia , Proteínas Quinases Ativadas por AMP/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Melanoma/tratamento farmacológico , Melanoma/genética
10.
Microbiol Spectr ; 11(4): e0366422, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37338348

RESUMO

The pivotal roles of gut microbiota in severe acute pancreatitis-associated acute lung injury (SAP-ALI) are increasingly revealed, and recent discoveries in the gut-lung axis have provided potential approaches for treating SAP-ALI. Qingyi decoction (QYD), a traditional Chinese medicine (TCM), is commonly used in clinical to treat SAP-ALI. However, the underlying mechanisms remain to be fully elucidated. Herein, by using a caerulein plus lipopolysaccharide (LPS)-induced SAP-ALI mice model and antibiotics (Abx) cocktail-induced pseudogermfree mice model, we tried to uncover the roles of the gut microbiota by administration of QYD and explored its possible mechanisms. Immunohistochemical results showed that the severity of SAP-ALI and intestinal barrier functions could be affected by the relative depletion of intestinal bacteria. The composition of gut microbiota was partially recovered after QYD treatment with decreased Firmicutes/Bacteroidetes ratio and increased relative abundance in short-chain fatty acids (SCFAs)-producing bacteria. Correspondingly increased levels of SCFAs (especially propionate and butyrate) in feces, gut, serum, and lungs were observed, generally consistent with changes in microbes. Western-blot analysis and RT-qPCR results indicated that the AMPK/NF-κB/NLRP3 signaling pathway was activated after oral administration of QYD, which was found to be possibly related to the regulatory effects on SCFAs in the intestine and lungs. In conclusion, our study provides new insights into treating SAP-ALI through modulating the gut microbiota and has prospective practical value for clinical use in the future. IMPORTANCE Gut microbiota affects the severity of SAP-ALI and intestinal barrier function. During SAP, a significant increase in the relative abundance of gut pathogens (Escherichia, Enterococcus, Enterobacter, Peptostreptococcus, Helicobacter) was observed. At the same time, QYD treatment decreased pathogenic bacteria and increased the relative abundance of SCFAs-producing bacteria (Bacteroides, Roseburia, Parabacteroides, Prevotella, Akkermansia). In addition, The AMPK/NF-κB/NLRP3 pathway mediated by SCFAs along the gut-lung axis may play an essential role in preventing the pathogenesis of SAP-ALI, which allows for reduced systemic inflammation and restoration of the intestinal barrier.


Assuntos
Lesão Pulmonar Aguda , Microbioma Gastrointestinal , Pancreatite , Camundongos , Animais , Pancreatite/tratamento farmacológico , Pancreatite/induzido quimicamente , Pancreatite/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Quinases Ativadas por AMP/uso terapêutico , Doença Aguda , Estudos Prospectivos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Ácidos Graxos Voláteis
11.
Curr Neuropharmacol ; 21(12): 2550-2562, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37132110

RESUMO

BACKGROUND: OL-FS13, a neuroprotective peptide derived from Odorrana livida, can alleviate cerebral ischemia-reperfusion (CI/R) injury, although the specific underlying mechanism remains to be further explored. OBJECTIVE: The effect of miR-21-3p on the neural-protective effects of OL-FS13 was examined. METHODS: In this study, the multiple genome sequencing analysis, double luciferase experiment, RT-qPCR, and Western blotting were used to explore the mechanism of OL-FS13. RESULTS: Showed that over-expression of miR-21-3p against the protective effects of OL-FS13 on oxygen- glucose deprivation/re-oxygenation (OGD/R)-damaged pheochromocytoma (PC12) cells and in CI/R-injured rats. miR-21-3p was then found to target calcium/calmodulin-dependent protein kinase 2 (CAMKK2), and its overexpression inhibited the expression of CAMKK2 and phosphorylation of its downstream adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), thereby inhibiting the therapeutic effects of OL-FS13 on OGD/R and CI/R. Inhibition of CAMKK2 also antagonized up-regulated of nuclear factor erythroid 2-related factor 2 (Nrf-2) by OL-FS13, thereby abolishing the antioxidant activity of the peptide. CONCLUSION: Our results showed that OL-FS13 alleviated OGD/R and CI/R by inhibiting miR-21-3p to activate the CAMKK2/AMPK/Nrf-2 axis.


Assuntos
Isquemia Encefálica , MicroRNAs , Traumatismo por Reperfusão , Ratos , Animais , MicroRNAs/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Proteínas Quinases Ativadas por AMP/uso terapêutico , Neuroproteção , Oxigênio/metabolismo , Apoptose , Isquemia Encefálica/metabolismo
12.
Ann Endocrinol (Paris) ; 84(4): 483-497, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37209947

RESUMO

Glucocorticoid treatment is prescribed in 2 to 3% of the population for various diseases. Chronic exposure to excess glucocorticoid can lead to iatrogenic Cushing's syndrome, which is associated with increased morbidity, especially from cardiovascular diseases and infections. While several 'steroid-sparing' drugs have been introduced, glucocorticoid treatment is still applied in a large number of patients. We have previously showed that the enzyme AMPK plays a key role in mediating the metabolic effects of glucocorticoids. While metformin is the most widely used drug for treatment of diabetes mellitus, its mechanism of effect is still debated. Among several effects, it stimulates AMPK in peripheral tissue, affects the mitochondrial electron chain, influences gut bacteria and stimulates GDF15. We have hypothesised that metformin will counteract the metabolic effects of glucocorticoids, even in patients without diabetes. Two double-blind placebo-controlled randomised clinical studies were conducted: in the first, glucocorticoid-naive patients started metformin treatment early together with the glucocorticoid treatment. While in placebo group glycaemic indices worsened, these sequelae were prevented in the metformin group, suggesting a beneficial effect of metformin on glycaemic control in non-diabetic patients receiving glucocorticoid treatment. In the second study, we treated patients already on established glucocorticoid therapy for a longer period with metformin or placebo. In addition to the beneficial effects on glucose metabolism, we observed significant improvement in lipid, liver, fibrinolysis, bone and inflammatory parameters, as well as fat tissue and carotid intima media thickness. Moreover, patients had a lower risk of developing pneumonia and a reduced number of admissions to hospital, representing financial advantage for the health service. We believe that the routine use of metformin for patients on glucocorticoid treatment would represent a key advantage in the care for this patient population.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Metformina/uso terapêutico , Glucocorticoides/efeitos adversos , Hipoglicemiantes/efeitos adversos , Proteínas Quinases Ativadas por AMP/uso terapêutico , Espessura Intima-Media Carotídea , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
13.
Trends Mol Med ; 29(8): 622-634, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37210227

RESUMO

There are currently several pharmacological therapies available for the treatment of obesity, targeting both the central nervous system (CNS) and peripheral tissues. In recent years, small extracellular vesicles (sEVs) have been shown to be involved in many pathophysiological conditions. Because of their special nanosized structure and contents, sEVs can activate receptors and trigger intracellular pathways in recipient cells. Notably, in addition to transferring molecules between cells, sEVs can also alter their phenotypic characteristics. The purpose of this review is to discuss how sEVs can be used as a CNS-targeted strategy for treating obesity. Furthermore, we will evaluate current findings, such as the sEV-mediated targeting of hypothalamic AMP-activated protein kinase (AMPK), and discuss how they can be translated into clinical application.


Assuntos
Vesículas Extracelulares , Obesidade , Humanos , Obesidade/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/uso terapêutico
14.
Clin Exp Rheumatol ; 41(4): 902-909, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36826789

RESUMO

OBJECTIVES: Takayasu's arteritis (TAK) is a progressive autoimmune vasculitis that mainly affects the aorta and its major branches. While recent studies have identified proinflammatory T cells, including Th1 and Th17 cells, as the dominant infiltrates in the arterial adventitia, mechanisms underpinning the maintenance of such vasculogenic T cells remain obscure. METHODS: 75 patients with TAK and 30 age-matched healthy controls were enrolled in this study. CD4 T cells from TAK patients were activated with anti-CD3/CD28 beads to mimic vasculogenic T cells. The survival of T cells was detected by quantifying Annexin-V+7-AAD+ fractions. Expression and activity of AMP-activated protein kinase (AMPK) were determined using phosflow cytometry and immunoblots. Specific inhibitors and shRNA were applied to block the function of AMPK and Notch1, while erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) were used to reflect the disease activity of TAK patients. RESULTS: T cells from TAK patients undergo spontaneous differentiation into vasculogenic proinflammatory T cells with prolonged survival capacity. Mechanistic explorations uncover AMPK hyperactivity in such T cells from TAK patients, promoting mitochondrial metabolism and their survival. Such AMPK hyperactivity results from the robust Notch1 activity in TAK T cells. Accordingly, T cell-intrinsic phosphor-AMPK reflects the disease activity in clinical TAK patients. CONCLUSIONS: AMPK hyperactivity is essential for maintaining the vasculogenic proinflammatory T cells in TAK patients, serving as a promising therapeutic target for TAK management.


Assuntos
Arterite de Células Gigantes , Arterite de Takayasu , Humanos , Proteínas Quinases Ativadas por AMP/uso terapêutico , Proteína C-Reativa/metabolismo , Diferenciação Celular , Linfócitos T/imunologia
15.
Sci Transl Med ; 15(679): eabq6288, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36652537

RESUMO

Deregulated de novo lipid synthesis (DNLS) is a potential druggable vulnerability in glioblastoma (GBM), a highly lethal and incurable cancer. Yet the molecular mechanisms that determine susceptibility to DNLS-targeted therapies remain unknown, and the lack of brain-penetrant inhibitors of DNLS has prevented their clinical evaluation as GBM therapeutics. Here, we report that YTX-7739, a clinical-stage inhibitor of stearoyl CoA desaturase (SCD), triggers lipotoxicity in patient-derived GBM stem-like cells (GSCs) and inhibits fatty acid desaturation in GSCs orthotopically implanted in mice. When administered as a single agent, or in combination with temozolomide (TMZ), YTX-7739 showed therapeutic efficacy in orthotopic GSC mouse models owing to its lipotoxicity and ability to impair DNA damage repair. Leveraging genetic, pharmacological, and physiological manipulation of key signaling nodes in gliomagenesis complemented with shotgun lipidomics, we show that aberrant MEK/ERK signaling and its repression of the energy sensor AMP-activated protein kinase (AMPK) primarily drive therapeutic vulnerability to SCD and other DNLS inhibitors. Conversely, AMPK activation mitigates lipotoxicity and renders GSCs resistant to the loss of DNLS, both in culture and in vivo, by decreasing the saturation state of phospholipids and diverting toxic lipids into lipid droplets. Together, our findings reveal mechanisms of metabolic plasticity in GSCs and provide a framework for the rational integration of DNLS-targeted GBM therapies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Glioblastoma/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Dano ao DNA , Lipídeos , Células-Tronco Neoplásicas/metabolismo
16.
Expert Opin Drug Deliv ; 20(1): 159-174, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36446395

RESUMO

OBJECTIVES: The present study aims to formulate and evaluate the efficacy of chrysin-loaded nanoemulsion (CH NE) against lithium/pilocarpine-induced epilepsy in rats, as well as, elucidate its effect on main epilepsy pathogenesis cornerstones; neuronal hyperactivity, oxidative stress, and neuroinflammation. METHODS: NEs were characterized by droplet size, zeta potential, pH, in vitro release, accelerated and long-term stability studies. Anti-convulsant efficacy of the optimized formula and underlying mechanisms involved were assessed and compared to that from CH suspension given orally at a 30 folds higher dose. RESULTS: Optimized formula displayed a droplet size of 48.09 ± 0.83 nm, PDI 0.25 ± 0.011, sustained release, and good stability. CH treatment reduced seizures scoring, corrected behavioral and histological changes induced by Li/Pilo. Moreover, CH restored neurotransmitters balance and oxidative stress markers levels. Besides, CH induced microglia polarization from M1 to M2 hindering inflammation induced by Li/Pilo. Also, CH restored energy metabolism homeostasis via regulating protein expression of AMPK/SIRT-1/PGC-1α pathway markers. CH NE formulation was found to significantly enhance drug delivery to rats' hippocampus compared to CH suspension. CONCLUSION: Our findings prove the therapeutic efficacy of CH NE at a lower dose which could be a potential brain targeting platform to combat epilepsy.


Assuntos
Epilepsia , Estado Epiléptico , Ratos , Animais , Pilocarpina/toxicidade , Microglia/patologia , Lítio/efeitos adversos , Proteínas Quinases Ativadas por AMP/farmacologia , Proteínas Quinases Ativadas por AMP/uso terapêutico , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia , Epilepsia/tratamento farmacológico , Estresse Oxidativo
17.
Transl Stroke Res ; 14(3): 364-382, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35852765

RESUMO

Intraventricular hemorrhage (IVH) is a subtype of intracerebral hemorrhage (ICH) with high morbidity and mortality. Posthemorrhagic hydrocephalus (PHH) is a common and major complication that affects prognosis, but the mechanism is still unclear. Inflammation and fibrosis have been well established as the major causes of PHH after IVH. In this study, we aimed to investigate the effects of metformin on IVH in adult male mice and further explored the underlying molecular mechanisms of these effects. In the acute phase, metformin treatment exerted dose-dependent neuroprotective effects by reducing periependymal apoptosis and neuronal degeneration and decreasing brain edema. Moreover, high-dose metformin reduced inflammatory cell infiltration and the release of proinflammatory factors, thus protecting ependymal structure integrity and subependymal neurons. In the chronic phase, metformin administration improved neurocognitive function and reduced delayed hydrocephalus. Additionally, metformin significantly inhibited basal subarachnoid fibrosis and ependymal glial scarring. The ependymal structures partially restored. Mechanically, IVH reduced phospho-AMPK (p-AMPK) and SIRT1 expression and activated the phospho-NF-κB (p-NF-κB) inflammatory signaling pathway. However, metformin treatment increased AMPK/SIRT1 expression and lowered the protein expression of p-NF-κB and its downstream inflammation. Compound C and EX527 administration reversed the anti-inflammatory effect of metformin. In conclusion, metformin attenuated neuroinflammation and subsequent fibrosis after IVH by regulating AMPK /SIRT1/ NF-κB pathways, thereby reducing delayed hydrocephalus. Metformin may be a promising therapeutic agent to prevent delayed hydrocephalus following IVH.


Assuntos
Hidrocefalia , Sirtuína 1 , Masculino , Animais , Camundongos , NF-kappa B , Proteínas Quinases Ativadas por AMP/uso terapêutico , Hemorragia Cerebral/complicações , Hemorragia Cerebral/tratamento farmacológico , Hidrocefalia/tratamento farmacológico , Hidrocefalia/etiologia , Fibrose , Inflamação/etiologia , Inflamação/complicações
18.
Exp Brain Res ; 241(1): 113-125, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36374318

RESUMO

Salidroside (SAL), an antioxidant derived from Rhodiola rosea, exerts neuroprotective effects in cerebral ischemia/reperfusion (I/R) injury; however, the mechanisms have not been fully elucidated. The present study established a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) and a cellular model of oxygen-glucose deprivation/reoxygenation (OGD/R) to explore the roles and mechanisms of SAL in cerebral I/R injury. The rat model of MCAO/R was established and rats were treated with different doses of SAL. The Zea-Longa scoring system and 2,3,5-triphenyltetrazolium chloride (TTC) staining showed that SAL reduced neurological deficit scores and cerebral infarct volumes in MCAO/R rats. The results of Morris water maze (MWM) test showed that SAL reduced memory impairment in MCAO/R rats. In addition, SAL significantly reduced oxidative stress and suppressed inflammatory response. Next, the OGD/R model was established with PC12 cells and treated with SAL. The results of flow cytometry and 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assays showed that SAL reduced apoptosis, enhanced cell viability and protected neuronal cells from damage by decreasing lactate dehydrogenase (LDH) activity. SAL increased the expression of TSC complex subunit 2 (TSC2), and activated the 5'-AMP-activated protein kinase (AMPK) and inhibited the mammalian target of rapamycin (mTOR) signaling pathways. It was verified that SAL alleviated cerebral I/R injury by regulating the AMPK/TSC2/mTOR pathway to induce autophagy. In conclusion, SAL reduces the inflammatory response and oxidative stress in a concentration-dependent manner, and protects against cerebral I/R injury by modulating TSC2-induced autophagy. These findings suggest SAL may prove to be a potential therapeutic agent for ischemic stroke.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Animais , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Proteínas Quinases Ativadas por AMP/uso terapêutico , Apoptose , Autofagia , Infarto da Artéria Cerebral Média , Mamíferos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Serina-Treonina Quinases TOR/uso terapêutico
19.
Comb Chem High Throughput Screen ; 26(5): 950-964, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35658881

RESUMO

AIMS: Atractylodes macrocephala is a traditional Chinese medicine with a variety of pharmacological activities. This study aimed to evaluate its anti-hyperuricemia and antiinflammatory effects on gout, and to preliminarily explore its mechanism. METHODS: The hyperuricemia rat model was established by intraperitoneal injection of oteracil potassium and intragastric gavage of yeast powder solution. And the acute gouty arthritis (GA) model was established by injecting monosodium urate (MSU) suspension. In the study of the antihyperuricemia effect of Atractylodes macrocephala, the healthy male Sprague-Dawley rats were randomly divided into the blank group, hyperuricemia group allopurinol group as well as low, moderate and high dose groups of Atractylodes macrocephala decoction (N=8 rats in each group). Serum, liver and kidney tissue samples were collected from each group. Serum uric acid (UA), adenosine deaminase (ADA) and xanthine oxidase (XOD) levels in each group were detected by enzyme-linked immunosorbent assay (ELISA). Protein levels of ADA and XOD in liver tissues were detected by Western blot, and renal histological changes were observed by Hematoxylin-eosin (H&E) and Masson staining. In order to investigate the anti-inflammatory effect of Atractylodes macrocephala, the healthy male Sprague-Dawley rats were randomly divided into the blank group, GA group, colchicine group, high, moderate and low dose groups of Atractylodes macrocephala decoction (N=8 rats in each group), and serum and synovial tissue of each group were collected. Then the level of serum interleukin (IL)-1ß and tumor necrosis factor (TNF)-α was observed by ELISA, and the histological changes of synovial tissue were observed by H&E staining. Besides, the expression of adenosine monophosphate- activated protein kinase (AMPK) /silent information regulator (SIRT) 1/ nuclear factor kappa B (NF-κB) protein in synovial tissue was observed by Western blot and immunohistochemistry. The markers of M1 and M2 macrophages, inducible nitric oxide synthase (iNOS) and arginase-1 (ARG1) were observed by Western blot and immunofluorescence. RESULTS: Atractylodes macrocephala could reduce the production of UA by inhibiting the level of ADA and XOD, and could improve renal injury and fibrosis. In addition, Atractylodes macrophages could reduce the levels of IL-1ß and TNF-α, activate AMPK/SIRT1 signaling pathway, and inhibit the activation of NF-κB and the polarization of macrophages to a pro-inflammatory phenotype. CONCLUSION: Atractylodes macrocephala shows good anti-hyperuricemic and anti-inflammatory effects, and its anti-inflammation pharmacological activity may be related to the inhibition of M1 macrophage polarization and NF-κB activation through activating AMPK/SIRT1.


Assuntos
Artrite Gotosa , Atractylodes , Hiperuricemia , Ratos , Masculino , Animais , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/tratamento farmacológico , Artrite Gotosa/metabolismo , Ácido Úrico , Atractylodes/metabolismo , Sirtuína 1/uso terapêutico , NF-kappa B/metabolismo , NF-kappa B/uso terapêutico , Ratos Sprague-Dawley , Proteínas Quinases Ativadas por AMP/uso terapêutico , Hiperuricemia/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
20.
Acta Cardiol ; 78(1): 64-71, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34994666

RESUMO

BACKGROUND: The autophagy associated signalling pathways such as AMPK/mTOR previously were suggested to play a crucial role in protecting from ischaemia-reperfusion injury (IRI). The objective of this study was to evaluate the effect of metformin (DMBG) on autophagy during myocardial IRI with diabetes mellitus (DM). METHODS: The DM rat model was established using streptozocin, and further induced ischaemia model via transitory ligation of the left anterior coronary artery and following reperfusion. The model rats were treated with 400 mg/kg/day DMBG for 1 week. Autophagosomes were investigated using transmission electron microscopy. Autophagy-associated signalling pathways were detected by western blot. RESULTS: The myocardial infarct size was shown to significantly increase in the DM rats exposed to IRI compared to negative control, but decrease in DMBG treated. The mature autophagosomes were elevated in infarction and marginal zones of DM + IRI + DMBG compared to DM + IRI. Furthermore, the increasing protein levels of LC3-II, BECLIN 1, autophagy related 5 (ATG5) and AMP-activated protein kinase suggested activated autophagy-associated intracellular signalling AMPK and mTOR pathways upon DMBG treated. CONCLUSIONS: Taken together, the outcomes determinate a novel mechanism that DMBG could activate autophagy process to provide a cardio-protective effect against DM induced myocardial IRI.


Assuntos
Diabetes Mellitus , Metformina , Traumatismo por Reperfusão Miocárdica , Ratos , Humanos , Animais , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Proteínas Quinases Ativadas por AMP/uso terapêutico , Metformina/farmacologia , Metformina/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Serina-Treonina Quinases TOR/uso terapêutico , Autofagia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...