Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35457172

RESUMO

Tetanus and Botulinum type B neurotoxins are bacterial metalloproteases that specifically cleave the vesicle-associated membrane protein VAMP at an identical peptide bond, resulting in inhibition of neuroexocytosis. The minute amounts of these neurotoxins commonly used in experimental animals are not detectable, nor is detection of their VAMP substrate sensitive enough. The immune detection of the cleaved substrate is much more sensitive, as we have previously shown for botulinum neurotoxin type A. Here, we describe the production in rabbit of a polyclonal antibody raised versus a peptide encompassing the 13 residues C-terminal with respect to the neurotoxin cleavage site. The antibody was affinity purified and found to recognize, with high specificity and selectivity, the novel N-terminus of VAMP that becomes exposed after cleavage by tetanus toxin and botulinum toxin type B. This antibody recognizes the neoepitope not only in native and denatured VAMP but also in cultured neurons and in neurons in vivo in neurotoxin-treated mice or rats, suggesting the great potential of this novel tool to elucidate tetanus and botulinum B toxin activity in vivo.


Assuntos
Toxinas Botulínicas Tipo A , Tétano , Animais , Anticorpos/metabolismo , Camundongos , Neurotoxinas/metabolismo , Peptídeos/metabolismo , Proteólise , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Coelhos , Ratos , Toxina Tetânica/química , Toxina Tetânica/metabolismo
2.
Annu Rev Biophys ; 51: 377-408, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35167762

RESUMO

Major recent advances and previous data have led to a plausible model of how key proteins mediate neurotransmitter release. In this model, the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) proteins syntaxin-1, SNAP-25, and synaptobrevin form tight complexes that bring the membranes together and are crucial for membrane fusion. NSF and SNAPs disassemble SNARE complexes and ensure that fusion occurs through an exquisitely regulated pathway that starts with Munc18-1 bound to a closed conformation of syntaxin-1. Munc18-1 also binds to synaptobrevin, forming a template to assemble the SNARE complex when Munc13-1 opens syntaxin-1 while bridging the vesicle and plasma membranes. Synaptotagmin-1 and complexin bind to partially assembled SNARE complexes, likely stabilizing them and preventing fusion until Ca2+ binding to synaptotagmin-1 causes dissociation from the SNARE complex and induces interactions with phospholipids that help trigger release. Although fundamental questions remain about the mechanism of membrane fusion, these advances provide a framework to investigate the mechanisms underlying presynaptic plasticity.


Assuntos
Proteínas do Tecido Nervoso , Proteínas SNARE , Fusão de Membrana , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Neurotransmissores , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Transmissão Sináptica , Sintaxina 1/química , Sintaxina 1/metabolismo
3.
Cell Death Dis ; 12(10): 939, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645799

RESUMO

Lysosome-autophagosome fusion is critical to autophagosome maturation. Although several proteins that regulate this fusion process have been identified, the prefusion architecture and its regulation remain unclear. Herein, we show that upon stimulation, multiple lysosomes form clusters around individual autophagosomes, setting the stage for membrane fusion. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein on lysosomes-vesicle-associated membrane protein 8 (VAMP8)-plays an important role in forming this prefusion state of lysosomal clusters. To study the potential role of phosphorylation on spontaneous fusion, we investigated the effect of phosphorylation of C-terminal residues of VAMP8. Using a phosphorylation mimic, we observed a decrease of fusion in an ensemble lipid mixing assay and an increase of unfused lysosomes associated with autophagosomes. These results suggest that phosphorylation not only reduces spontaneous fusion for minimizing autophagic flux under normal conditions, but also preassembles multiple lysosomes to increase the fusion probability for resuming autophagy upon stimulation. VAMP8 phosphorylation may thus play an important role in chemotherapy drug resistance by influencing autophagosome maturation.


Assuntos
Autofagossomos/metabolismo , Lisossomos/metabolismo , Fusão de Membrana , Proteínas R-SNARE/metabolismo , Autofagossomos/efeitos dos fármacos , Autofagossomos/ultraestrutura , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células HeLa , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/ultraestrutura , Fusão de Membrana/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas R-SNARE/química , Proteínas SNARE/metabolismo , Temozolomida/farmacologia
4.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33723042

RESUMO

Ykt6 is a soluble N-ethylmaleimide sensitive factor activating protein receptor (SNARE) critically involved in diverse vesicular fusion pathways. While most SNAREs rely on transmembrane domains for their activity, Ykt6 dynamically cycles between the cytosol and membrane-bound compartments where it is active. The mechanism that regulates these transitions and allows Ykt6 to achieve specificity toward vesicular pathways is unknown. Using a Parkinson's disease (PD) model, we found that Ykt6 is phosphorylated at an evolutionarily conserved site which is regulated by Ca2+ signaling. Through a multidisciplinary approach, we show that phosphorylation triggers a conformational change that allows Ykt6 to switch from a closed cytosolic to an open membrane-bound form. In the phosphorylated open form, the spectrum of protein interactions changes, leading to defects in both the secretory and autophagy pathways, enhancing toxicity in PD models. Our studies reveal a mechanism by which Ykt6 conformation and activity are regulated with potential implications for PD.


Assuntos
Sequência Conservada , Modelos Moleculares , Conformação Proteica , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Aminoácidos , Autofagia , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Evolução Molecular , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas R-SNARE/genética , Relação Estrutura-Atividade
5.
Proc Natl Acad Sci U S A ; 116(28): 13952-13957, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235584

RESUMO

R-SNAREs (soluble N-ethylmaleimide-sensitive factor receptor), Q-SNAREs, and Sec1/Munc18 (SM)-family proteins are essential for membrane fusion in exocytic and endocytic trafficking. The yeast vacuolar tethering/SM complex HOPS (homotypic fusion and vacuole protein sorting) increases the fusion of membranes bearing R-SNARE to those with 3Q-SNAREs far more than it enhances their trans-SNARE pairings. We now report that the fusion of these proteoliposomes is also supported by GST-PX or GST-FYVE, recombinant dimeric proteins which tether by binding the phosphoinositides in both membranes. GST-PX is purely a tether, as it supports fusion without SNARE recognition. GST-PX tethering supports the assembly of new, active SNARE complexes rather than enhancing the function of the fusion-inactive SNARE complexes which had spontaneously formed in the absence of a tether. When SNAREs are more disassembled, as by Sec17, Sec18, and ATP (adenosine triphosphate), HOPS is required, and GST-PX does not suffice. We propose a working model where tethering orients SNARE domains for parallel, active assembly.


Assuntos
Adenosina Trifosfatases/química , Glutationa Peroxidase/química , Proteínas de Fusão de Membrana/química , Proteínas R-SNARE/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/química , Proteínas de Transporte Vesicular/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , Endocitose/genética , Exocitose/genética , Glutationa Peroxidase/genética , Fusão de Membrana/genética , Proteínas de Fusão de Membrana/genética , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Multimerização Proteica/genética , Transporte Proteico/genética , Proteínas R-SNARE/genética , Proteínas Recombinantes/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Vacúolos/química , Vacúolos/genética , Proteínas de Transporte Vesicular/genética
6.
Mol Biol Cell ; 30(14): 1729-1742, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31067149

RESUMO

Synaptobrevin/vesicle-associated membrane protein 2 (VAMP2) is an essential soluble N-ethyl maleimide-sensitive factor attachment protein receptor (SNARE) protein that has been extensively studied in its role in synaptic vesicle fusion. However, sorting and trafficking of VAMP2 within the endosomal system is not well understood. Here, we use the yeast VAMP2 homologue Snc1 to investigate the pathways and signals required for endocytic trafficking. We identify two genetically distinct retrieval pathways from the endosomal system: a plasma membrane recycling pathway that requires the Rcy1 F-box protein and a retrograde pathway originating from the multivesicular/prevacuole endosome dependent on the Snx4-Atg20 sorting nexin complex. Lysine residues within the transmembrane domain of Snc1 are necessary for presentation of a Snx4-Atg20-dependent sorting signal located within its juxtamembrane region. Mutations of the transmembrane lysine residues ablate retrograde sorting and subject Snc1 to quality control via sorting into the degradative multivesicular endosome pathway. Degradative sorting requires lysine residues in the juxtamembrane region of Snc1 and is mediated by the Rsp5 ubiquitin ligase and its transmembrane adapters, Ear1 and Ssh4, which localize to endosome and vacuole membranes. This study shows that Snc1 is trafficked between the endosomal system and the Golgi apparatus via multiple pathways and provides evidence for protein quality control surveillance of a SNARE protein in the endo-vacuolar system.


Assuntos
Proteínas R-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Endocitose , Endossomos/metabolismo , Epistasia Genética , Modelos Biológicos , Mutação/genética , Domínios Proteicos , Transporte Proteico , Proteínas R-SNARE/química , Proteínas R-SNARE/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Proc Natl Acad Sci U S A ; 116(18): 8699-8708, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30975750

RESUMO

Intrinsically disordered proteins (IDPs) and their conformational transitions play an important role in neurotransmitter release at the neuronal synapse. Here, the SNARE proteins are essential by forming the SNARE complex that drives vesicular membrane fusion. While it is widely accepted that the SNARE proteins are intrinsically disordered in their monomeric prefusion form, important mechanistic aspects of this prefusion conformation and its lipid interactions, before forming the SNARE complex, are not fully understood at the molecular level and remain controversial. Here, by a combination of NMR and fluorescence spectroscopy methods, we find that vesicular synaptobrevin-2 (syb-2) in its monomeric prefusion conformation shows high flexibility, characteristic for an IDP, but also a high dynamic range and increasing rigidity from the N to C terminus. The gradual increase in rigidity correlates with an increase in lipid binding affinity from the N to C terminus. It could also explain the increased rate for C-terminal SNARE zippering, known to be faster than N-terminal SNARE zippering. Also, the syb-2 SNARE motif and, in particular, the linker domain show transient and weak membrane binding, characterized by a high off-rate and low (millimolar) affinity. The transient membrane binding of syb-2 may compensate for the repulsive forces between the two membranes and/or the SNARE motifs and the membranes, helping to destabilize the hydrophilic-hydrophobic boundary in the bilayer. Therefore, we propose that optimum flexibility and membrane binding of syb-2 regulate SNARE assembly and minimize repulsive forces during membrane fusion.


Assuntos
Lipídeos/química , Proteínas SNARE/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Animais , Espectroscopia de Ressonância Magnética , Neurônios/metabolismo , Ligação Proteica , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Proteínas SNARE/química , Proteína 2 Associada à Membrana da Vesícula/química
8.
Elife ; 82019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30657450

RESUMO

Neurotransmitter release requires formation of trans-SNARE complexes between the synaptic vesicle and plasma membranes, which likely underlies synaptic vesicle priming to a release-ready state. It is unknown whether Munc18-1, Munc13-1, complexin-1 and synaptotagmin-1 are important for priming because they mediate trans-SNARE complex assembly and/or because they prevent trans-SNARE complex disassembly by NSF-αSNAP, which can lead to de-priming. Here we show that trans-SNARE complex formation in the presence of NSF-αSNAP requires both Munc18-1 and Munc13-1, as proposed previously, and is facilitated by synaptotagmin-1. Our data also show that Munc18-1, Munc13-1, complexin-1 and likely synaptotagmin-1 contribute to maintaining assembled trans-SNARE complexes in the presence of NSF-αSNAP. We propose a model whereby Munc18-1 and Munc13-1 are critical not only for mediating vesicle priming but also for precluding de-priming by preventing trans-SNARE complex disassembly; in this model, complexin-1 also impairs de-priming, while synaptotagmin-1 may assist in priming and hinder de-priming.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Munc18/química , Proteínas Sensíveis a N-Etilmaleimida/química , Proteínas do Tecido Nervoso/química , Proteína 25 Associada a Sinaptossoma/química , Sinaptotagminas/química , Animais , Células CHO , Cálcio/química , Cricetinae , Cricetulus , Microscopia Crioeletrônica , Citoplasma/química , Transferência Ressonante de Energia de Fluorescência , Cinética , Mutação , Proteínas R-SNARE/química , Ratos , Sintaxina 1/química
9.
Autophagy ; 15(2): 352-357, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30290706

RESUMO

Formation of the autolysosome involves SNARE-mediated autophagosome-lysosome fusion, which is mediated by a combination of the Qa SNARE STX17 (syntaxin 17), the Qbc SNARE SNAP29 and the R-SNAREs VAMP7/8. 2 very recent reports have now implicated another R-SNARE with a longin domain, YKT6, in this fusion process. Interestingly, these reports painted two different pictures of YKT6's involvement. Studies in HeLa cells indicated that YKT6, acting independently of STX17, could form a separate SNARE complex with SNAP29 and another Qa SNARE to mediate autophagosome-lysosome fusion. Conversely, work in Drosophila larvae fat cells showed that while Ykt6 could form a SNARE complex with Snap29 and Syx17/Stx17, it is readily outcompeted by lysosomal Vamp7 in this regard. Moreover, its activity in autophagosome-lysosome fusion is not impaired by mutation of the supposedly critical ionic zero-layer residue from R to Q. In this regard, YKT6 may therefore act in a noncanonical way to regulate fusion. Here, we ponder on the fresh mechanistic perspectives on the final membrane fusion step of macroautophagy/autophagy offered by these new findings. Further, we propose another possible mechanism as to how YKT6 might act, which may provide some reconciliation to the differences observed. Abbreviations: LD: longin domain.


Assuntos
Autofagossomos/metabolismo , Lisossomos/metabolismo , Fusão de Membrana , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Animais , Humanos , Modelos Biológicos , Domínios Proteicos , Transporte Proteico
10.
Methods Mol Biol ; 1860: 345-359, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30317517

RESUMO

FÓ§rster-type resonance energy transfer (FRET) with fluorescence cross-correlation spectroscopy (FCCS) is a powerful combination for observing intramolecular conformational dynamics on the micro- to millisecond timescale. Owing to its sensitivity to various physical parameters, FRET-FCCS has also been used to detect the reagent effects on proteins dynamics. However, FRET-FCCS alone cannot acquire the exact measurements of rate constants. Moreover, this technique is highly model dependent and can be unreliable when determining too many parameters at once. On the contrary, single-molecular FRET (smFRET) can measure the conformational states and their populations directly, although it is extremely challenging for probing fast dynamics under 1 ms. In this chapter, we describe how to realize sub-millisecond conformational dynamics measurements of a SNARE protein Ykt6 under lipid environments by smFRET and FRET-FCCS. This protocol includes sample preparation, microscope designs, data acquisition, and analysis methodology.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Modelos Moleculares , Proteínas R-SNARE/metabolismo , Imagem Individual de Molécula/métodos , Cisteína/genética , Transferência Ressonante de Energia de Fluorescência/instrumentação , Corantes Fluorescentes/química , Metabolismo dos Lipídeos , Lipídeos/química , Fusão de Membrana , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas R-SNARE/química , Proteínas R-SNARE/genética , Proteínas R-SNARE/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Imagem Individual de Molécula/instrumentação
11.
J Phys Chem B ; 122(48): 10834-10840, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30408418

RESUMO

Neuronal transmitters are released from nerve terminals via the fusion of synaptic vesicles with the presynaptic membrane. Vesicles are attached to the membrane via the SNARE complex, comprising the vesicle associated protein synaptobrevin (Syb), the membrane associated protein syntaxin (Syx), and the cytosolic protein SNAP25, that together form a four-helical bundle. The full assembly of Syb onto the core SNARE bundle promotes vesicle fusion. We investigated SNARE assembly using a coarse-grained model of the SNARE complex that retains chemical specificity. Steered force-control simulations of SNARE unzippering were used to set up initial disassembled states of the SNARE complex. From these states, the assembly process was simulated. We find that if Syb is in helical form and proximal to the other helices, then the SNARE complex assembles rapidly, on a microsecond time-scale, which is well within in vivo synaptic vesicle fusion time scales. Assembly times grow exponentially with a separation distance between Syb and Syx C-termini. Our results indicate that for biologically relevant rapid assembly of the SNARE complex, Syb should be in helical form, and the SNARE constituent helices brought into proximity, possibly by an agent, such as a chaperone.


Assuntos
Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Simulação de Dinâmica Molecular , Método de Monte Carlo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Proteínas Qa-SNARE/química , Proteínas R-SNARE/química , Proteína 25 Associada a Sinaptossoma/química
12.
Biomater Sci ; 6(10): 2647-2655, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30137108

RESUMO

Previously, our group carried out a series of studies using branched polyethyleneimine with 25 000 g mol-1 molar mass (bPEI-25k) as a gene delivery vector and came up with the theory that free cationic chains un-complexed with plasmid DNA (pDNA) can greatly increase the gene transfection efficiency and influence the intracellular delivery process. These free chains can penetrate the membrane quickly, with some of them embedded inside the lipid bi-layers. The "stuck-out" cationic chain ends would shield the signal protein, prevent/delay the development of the later endolysosomes and enhance the efficiency of gene delivery. To mimic the effect of cationic polymers, we selected to use vesicle associated membrane protein-8 (VAMP8) and modified its N-terminus with different cationic cell penetrating peptides (CPPs). The modified fusion proteins are expressed in an Escherichia coli system and purified after extraction. These modified VAMP8 proteins are used as free chains for gene transfection, while using bPEI-25k to condense the pDNA. The results show that the gene transfection efficiency of bPEI-25k/pDNA polyplexes is obviously enhanced in the 293 T cell line. Furthermore, the gene sequences encoding these modified VAMP8 proteins are sub-cloned to pcDNA-3.1 vector and then transferred to 293 T before the treatment with bPEI-25k/pDNA polyplexes. From the result, the transfection efficiency of bPEI-25k/pDNA complexes is enhanced at a similar level to that using modified VAMP8 as free chains. Our current results prove that free cationic chains are probably embedded with the membrane and influence intracellular trafficking, pointing out a new idea to design an effective non-viral gene delivery system.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Técnicas de Transferência de Genes , Proteínas R-SNARE/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , DNA/administração & dosagem , Células HEK293 , Humanos , Plasmídeos , Polietilenoimina/administração & dosagem , Polietilenoimina/química , Proteínas R-SNARE/química , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/química
13.
Biochem Biophys Res Commun ; 503(4): 2841-2847, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30119892

RESUMO

N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are involved in the fusion of vesicles with their target membranes. R-SNARE protein Ykt6 is one of the most conserved SNARE in eukaryotes. The conformational state of Ykt6 is regulated by the lipidations at its C-terminal motif. Previous studies show that the binding of dodecylphosphocholine (DPC) can stabilize a closed conformation of rat Ykt6 (rYkt6) and mimic the farnesylated rYkt6. Despite this model, the detailed conformational dynamics of Ykt6 is still unclear. Here, we combined smFRET and MD simulation to demonstrate that the un-lipidated rYkt6 adopts five major conformational states. DPC binding shifts the conformational distribution toward the more closed states. At the same time, there remain considerable fractions of open and semi-open conformations in the presence of DPC. These newly revealed dynamic features of rYkt6 are consistent with its unique functional diversity in neuronal cells.


Assuntos
Simulação de Dinâmica Molecular , Fosforilcolina/análogos & derivados , Proteínas R-SNARE/química , Animais , Sítios de Ligação , Carbocianinas/química , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Mutação , Fosforilcolina/química , Fosforilcolina/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodaminas/química , Ácidos Sulfônicos/química
14.
Prog Nucl Magn Reson Spectrosc ; 105: 41-53, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29548366

RESUMO

SNARE-mediated membrane fusion is a ubiquitous process responsible for intracellular vesicle trafficking, including membrane fusion in exocytosis that leads to hormone and neurotransmitter release. The proteins that facilitate this process are highly dynamic and adopt multiple conformations when they interact with other proteins and lipids as they form highly regulated molecular machines that operate on membranes. Solution NMR is an ideal method to capture high-resolution glimpses of the molecular transformations that take place when these proteins come together and work on membranes. Since solution NMR has limitations on the size of proteins and complexes that can be studied, lipid bilayer model membranes cannot be used in these approaches, so the relevant interactions are typically studied in various types of membrane-mimetics that are tractable by solution NMR methods. In this review we therefore first summarize different membrane-mimetic systems that are commonly used or that show promise for solution NMR studies of membrane-interacting proteins. We then summarize recent NMR studies on two SNARE proteins, syntaxin and synaptobrevin, and two related regulatory proteins, complexin and α-synuclein, and their interactions with membrane lipids. These studies provide a structural and dynamical framework for how these proteins might carry out their functions in the vicinity of lipid membranes. The common theme throughout these studies is that membrane interactions have major influences on the structural dynamics of these proteins that cannot be ignored when attempting to explain their functions in contemporary models of SNARE-mediated membrane fusion.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Materiais Biomiméticos/química , Espectroscopia de Ressonância Magnética/métodos , Proteínas do Tecido Nervoso/química , Proteínas SNARE/química , alfa-Sinucleína/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Humanos , Bicamadas Lipídicas/química , Fusão de Membrana , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Conformação Proteica , Transporte Proteico , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Proteínas SNARE/metabolismo , alfa-Sinucleína/metabolismo
15.
FEBS Lett ; 592(7): 1161-1172, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29485200

RESUMO

As a SNARE binding protein, tomosyn has been reported to negatively regulate synaptic exocytosis via arresting syntaxin-1 and SNAP-25 into a nonfusogenic product that precludes synaptobrevin-2 entry, raising the question how the assembly of the SNARE complex is achieved. Here, we have investigated new functions of tomosyn in SNARE complex formation and SNARE-mediated vesicle fusion. Assisted by NSF/α-SNAP, syntaxin-1 escapes tomosyn arrest and assembles into the Munc18-1/syntaxin-1 complex. Munc13-1 then catalyzes the transit of syntaxin-1 from the Munc18-1/syntaxin-1 complex to the SNARE complex in a manner specific to synaptobrevin-2 but resistant to tomosyn. Our data suggest that tomosyn ensures SNARE assembly in a way amenable to tight regulation by Munc18-1 and Munc13-1.


Assuntos
Complexos Multiproteicos/química , Proteínas Munc18/química , Proteínas do Tecido Nervoso/química , Proteínas R-SNARE/química , Proteína 25 Associada a Sinaptossoma/química , Humanos , Complexos Multiproteicos/metabolismo , Proteínas Munc18/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas R-SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Sintaxina 1/química , Sintaxina 1/metabolismo , Proteína 2 Associada à Membrana da Vesícula/química , Proteína 2 Associada à Membrana da Vesícula/metabolismo
16.
Methods Mol Biol ; 1662: 59-73, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861817

RESUMO

Homology modeling allows the prediction of a protein structure based on sequence similarity to a known structure of homologous proteins. In this chapter, we use a plant-specific AtSar1a-Atsec23a pair of proteins as a case study to illustrate how to use homology modeling to understand the specificity of the pairwise interaction between AtSar1a and AtSec23a. The detailed procedures described here are also useful in structure prediction of other protein complexes.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/química , Proteínas Ativadoras de GTPase/química , Regulação da Expressão Gênica de Plantas , Modelos Moleculares , Proteínas R-SNARE/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Transporte Vesicular/química , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Cristalografia por Raios X , Retículo Endoplasmático/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Células Vegetais/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Transporte Proteico , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Software , Homologia Estrutural de Proteína , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
17.
Nat Commun ; 8: 14130, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28770820

RESUMO

Botulinum neurotoxins are known to have seven serotypes (BoNT/A-G). Here we report a new BoNT serotype, tentatively named BoNT/X, which has the lowest sequence identity with other BoNTs and is not recognized by antisera against known BoNTs. Similar to BoNT/B/D/F/G, BoNT/X cleaves vesicle-associated membrane proteins (VAMP) 1, 2 and 3, but at a novel site (Arg66-Ala67 in VAMP2). Remarkably, BoNT/X is the only toxin that also cleaves non-canonical substrates VAMP4, VAMP5 and Ykt6. To validate its activity, a small amount of full-length BoNT/X was assembled by linking two non-toxic fragments using a transpeptidase (sortase). Assembled BoNT/X cleaves VAMP2 and VAMP4 in cultured neurons and causes flaccid paralysis in mice. Thus, BoNT/X is a novel BoNT with a unique substrate profile. Its discovery posts a challenge to develop effective countermeasures, provides a novel tool for studying intracellular membrane trafficking, and presents a new potential therapeutic toxin for modulating secretions in cells.


Assuntos
Toxinas Botulínicas/metabolismo , Botulismo/microbiologia , Clostridium botulinum/enzimologia , Neurotoxinas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Toxinas Botulínicas/química , Toxinas Botulínicas/genética , Toxinas Botulínicas/toxicidade , Botulismo/genética , Botulismo/metabolismo , Clostridium botulinum/genética , Humanos , Camundongos , Modelos Moleculares , Neurotoxinas/química , Neurotoxinas/genética , Neurotoxinas/toxicidade , Proteínas R-SNARE/química , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Alinhamento de Sequência , Proteína 2 Associada à Membrana da Vesícula/química , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
18.
PLoS One ; 12(7): e0180912, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28746398

RESUMO

The secretory pathway in neurons requires efficient targeting of cargos and regulatory proteins to their release sites. Tomosyn contributes to synapse function by regulating synaptic vesicle (SV) and dense-core vesicle (DCV) secretion. While there is large support for the presynaptic accumulation of tomosyn in fixed preparations, alternative subcellular locations have been suggested. Here we studied the dynamic distribution of tomosyn-1 (Stxbp5) and tomosyn-2 (Stxbp5l) in mouse hippocampal neurons and observed a mixed diffuse and punctate localization pattern of both isoforms. Tomosyn-1 accumulations were present in axons and dendrites. As expected, tomosyn-1 was expressed in about 75% of the presynaptic terminals. Interestingly, also bidirectional moving tomosyn-1 and -2 puncta were observed. Despite the lack of a membrane anchor these puncta co-migrated with synapsin and neuropeptide Y, markers for respectively SVs and DCVs. Genetic blockade of two known tomosyn interactions with synaptotagmin-1 and its cognate SNAREs did not abolish its vesicular co-migration, suggesting an interplay of protein interactions mediated by the WD40 and SNARE domains. We hypothesize that the vesicle-binding properties of tomosyns may control the delivery, pan-synaptic sharing and secretion of neuronal signaling molecules, exceeding its canonical role at the plasma membrane.


Assuntos
Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Animais , Axônios/metabolismo , Sítios de Ligação , Western Blotting , Células Cultivadas , Dendritos/metabolismo , Hipocampo/citologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia Imunoeletrônica , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neurônios/ultraestrutura , Neuropeptídeo Y/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ligação Proteica , Transporte Proteico , Proteínas R-SNARE/química , Proteínas R-SNARE/genética , Vesículas Secretórias/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo
19.
Biochem Biophys Res Commun ; 487(2): 388-395, 2017 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-28414125

RESUMO

Sec22c has been characterized as an endoplasmic reticulum (ER)-localized transmembrane protein involved in regulation of the vesicle transport between the ER and the Golgi. Sec22c has several isoforms generated by alternative splicing that changes the number of the C-terminal transmembrane domains (TMDs). However, the physiological significance of the splicing remains unknown. Here we show that the splicing isoforms containing four TMDs unexpectedly localized at cis-Golgi, whereas the splicing isoforms containing less than four TMDs localized at the ER. The C-terminal fragment containing the four TMDs was sufficient for the cis-Golgi localization and bound to ADP-ribosylation factor 4 (ARF4). ARF4 knockdown and overexpression of a constitutively active mutant of ARF4 decreased the cis-Golgi localization of the C-terminal fragment and the full-length protein, respectively. These results indicate that the splicing-dependent changes in the number of TMDs allow Sec22c to regulate the subcellular localization in cooperation with ARF4, implying that Sec22c will function at the Golgi as well as the ER.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Retículo Endoplasmático/química , Complexo de Golgi/química , Células HeLa , Humanos , Ligação Proteica , Frações Subcelulares , Distribuição Tecidual
20.
Plant Physiol ; 173(1): 536-551, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27821719

RESUMO

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play a major role in membrane fusion and contribute to cell expansion, signaling, and polar growth in plants. The SNARE SYP121 of Arabidopsis thaliana that facilitates vesicle fusion at the plasma membrane also binds with, and regulates, K+ channels already present at the plasma membrane to affect K+ uptake and K+-dependent growth. Here, we report that its cognate partner VAMP721, which assembles with SYP121 to drive membrane fusion, binds to the KAT1 K+ channel via two sites on the protein, only one of which contributes to channel-gating control. Binding to the VAMP721 SNARE domain suppressed channel gating. By contrast, interaction with the amino-terminal longin domain conferred specificity on VAMP721 binding without influencing gating. Channel binding was defined by a linear motif within the longin domain. The SNARE domain is thought to wrap around this structure when not assembled with SYP121 in the SNARE complex. Fluorescence lifetime analysis showed that mutations within this motif, which suppressed channel binding and its effects on gating, also altered the conformational displacement between the VAMP721 SNARE and longin domains. The presence of these two channel-binding sites on VAMP721, one also required for SNARE complex assembly, implies a well-defined sequence of events coordinating K+ uptake and the final stages of vesicle traffic. It suggests that binding begins with VAMP721, and subsequently with SYP121, thereby coordinating K+ channel gating during SNARE assembly and vesicle fusion. Thus, our findings also are consistent with the idea that the K+ channels are nucleation points for SNARE complex assembly.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Ativação do Canal Iônico/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Motivos de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sítios de Ligação , Fusão de Membrana , Canais de Potássio Corretores do Fluxo de Internalização/genética , Domínios Proteicos , Dobramento de Proteína , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/genética , Tirosina/química , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...