Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
1.
J Transl Med ; 22(1): 347, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605354

RESUMO

BACKGROUND: THOC7-AS1 and FSTL1 expression are frequently upregulated in cutaneous squamous cell carcinoma (cSCC). However, their molecular biological mechanisms remain elusive and their potential as therapeutic targets needs urgent exploration. METHODS: Human tissue samples were used to evaluate clinical parameters. In vitro and in vivo experiments assessed biological functions. Quantitative PCR, western blot, immunohistochemistry, immunocytochemistry, immunoprecipitation, RNA fluorescence in situ hybridization, RNA pull-down, RNA immunoprecipitation, silver staining, chromatin immunoprecipitation, dual luciferase reporter assays etc. were utilized to explore the molecular biological mechanisms. RESULTS: We found FSTL1 is an oncogene in cSCC, with high expression in tumor tissues and cells. Its elevated expression closely associates with tumor size and local tissue infiltration. In vitro and in vivo, high FSTL1 expression promotes cSCC proliferation, migration and invasion, facilitating malignant behaviors. Mechanistically, FSTL1 interacts with ZEB1 to promote epithelial-to-mesenchymal transition (EMT) in cSCC cells. Exploring upstream regulation, we found THOC7-AS1 can interact with OCT1, which binds the FSTL1 promoter region and promotes FSTL1 expression, facilitating cSCC progression. Finally, treating tumors with THOC7-AS1 antisense oligonucleotides inhibited cSCC proliferative and migratory abilities, delaying tumor progression. CONCLUSIONS: The THOC7-AS1/OCT1/FSTL1 axis regulates EMT and promotes tumor progression in cSCC. This study provides clues and ideas for cSCC targeted therapy.


Assuntos
Carcinoma de Células Escamosas , Proteínas Relacionadas à Folistatina , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteínas Relacionadas à Folistatina/genética , Proteínas Relacionadas à Folistatina/metabolismo , Regulação Neoplásica da Expressão Gênica , Hibridização in Situ Fluorescente , RNA , RNA Longo não Codificante/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
2.
Gene ; 906: 148263, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38346455

RESUMO

Flolistatin-related protein 1 (FSTL1), a secreted glycoprotein that is involved in many physiological functions, has attracted much interest and has been implicated in a wide range of diseases, including heart diseases and inflammatory diseases. In recent years, the involvement of FSTL1 in cancer progression has been implicated and researched. FSTL1 plays a contradictory role in cancer, depending on the cancer type as well as the contents of the tumor microenvironment. As reviewed here, the structure and distribution of FSTL1 are first introduced. Subsequently, the expression and clinical significance of FSTL1 in various types of cancer as a tumor enhancer or inhibitor are addressed. Furthermore, we discuss the functional role of FSTL1 in various processes that involve tumor cell proliferation, metastasis, immune responses, stemness, cell apoptosis, and resistance to chemotherapy. FSTL1 expression is tightly controlled in cancer, and a multitude of cancer-related signaling cascades like TGF-ß/BMP/Smad signaling, AKT, NF-κB, and Wnt-ß-catenin signaling pathways are modulated by FSTL1. Finally, FSTL1 as a therapeutic target using monoclonal antibodies is stated. Herein, we review recent findings showing the double-edged characteristics and mechanisms of FSTL1 in cancer and elaborate on the current understanding of therapeutic approaches targeting FSTL1.


Assuntos
Proteínas Relacionadas à Folistatina , Neoplasias , Humanos , Proteínas Relacionadas à Folistatina/genética , Proteínas Relacionadas à Folistatina/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , NF-kappa B/metabolismo , Microambiente Tumoral , Via de Sinalização Wnt , Animais
3.
Mol Cell Biochem ; 479(1): 171-181, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37138144

RESUMO

Intervertebral disc degeneration (IDD) causes pain in the back and neck. This study investigated the role of long non-coding RNA HLA complex group 18 (HCG18) in a cell model of IDD. An IDD model was established by stimulating nucleus pulposus (NP) cells with interleukin (IL)-1ß. MTT assay was performed to evaluate NP cell viability. The apoptosis was detected by flow cytometry. The expressions of HCG18, microRNA (miR)-495-3p, and follistatin-like protein-1 (FSTL1) were measured by RT-qPCR. The interactions of miR-495-3p with HCG18 and FSTL1 were analyzed by luciferase reporter assay. IL-1ß stimulation upregulated HCG18 and FSTL1, but downregulated miR-495-3p in NP cells. Silencing of HCG18 or FSTL1, as well as miR-495-3p overexpression in NP cells alleviated IL-1ß-induced apoptosis and inflammation of NP cells. Both HCG18 and FSTL1 had binding sites for miR-495-3p. Overexpression of FSTL1 abolished the effects of HCG18 silencing on IL-1ß-induced apoptosis and inflammation. The HCG18/miR-495-3p/FSTL1 axis is essential for IDD development. Therapeutic strategies targeting this axis may be used for IDD treatment.


Assuntos
Proteínas Relacionadas à Folistatina , Degeneração do Disco Intervertebral , MicroRNAs , RNA Longo não Codificante , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Relacionadas à Folistatina/genética , Apoptose , Interleucina-1beta/metabolismo , Inflamação/genética
4.
Obesity (Silver Spring) ; 32(2): 352-362, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38018497

RESUMO

OBJECTIVE: The aim of this study was to investigate the role of the follistatin-like 1 (Fstl1) and disco-interacting protein 2 homolog A (DIP2a) axis in relation to lipid metabolism during and after endurance exercise and to elucidate the mechanisms underlying the metabolic effects of Fstl1 on adipocytes, considering its regulation by exercise and muscle mass and its link to obesity. METHODS: Twenty-nine sedentary males participated in endurance exercise, and blood samples were collected during and after the exercise. Body composition, Fstl1, glycerol, epinephrine, growth hormone, and atrial natriuretic peptide were measured. 3T3-L1 adipocytes, with or without DIP2a knockdown, were treated with Fstl1 to assess glycerol release, cyclic AMP/cyclic GMP production, and hormone sensitive lipase phosphorylation. The association between DIP2a gene expression levels in human adipose tissues and exercise-induced lipolysis was examined. RESULTS: Fstl1 levels significantly increased during endurance exercise and following recovery, correlating with lean body mass and lipolysis. In 3T3-L1 adipocytes, Fstl1 increased glycerol release, cyclic GMP production, and hormone sensitive lipase activation, but these effects were attenuated by DIP2a knockdown. DIP2a gene expression in human adipose tissues correlated with serum glycerol concentrations during endurance exercise. CONCLUSIONS: Fstl1 is a myokine facilitating lipid mobilization during and after endurance exercise through DIP2a-mediated lipolytic effects in adipocytes.


Assuntos
Proteínas Relacionadas à Folistatina , Folistatina , Humanos , Masculino , GMP Cíclico/metabolismo , Folistatina/metabolismo , Proteínas Relacionadas à Folistatina/genética , Proteínas Relacionadas à Folistatina/metabolismo , Glicerol/metabolismo , Mobilização Lipídica , Lipólise/fisiologia , Miocinas , Esterol Esterase/metabolismo
5.
Oncol Rep ; 50(6)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37888756

RESUMO

The abnormal expression of follistatin­like protein 1 (FSTL1) in various tumors is a crucial regulator of the biological process of tumorigenesis. Nonetheless, the regulatory role of FSTL1 in cervical cancer is yet to be elucidated. Hence, the present study aimed to explore the expression, function, and molecular mechanism of FSTL1 in cervical cancer. The expression of FSTL1 in normal and cervical cancer tissues was examined using quantitative reverse transcription­polymerase chain reaction and immunohistochemistry assays. The effects of abnormal expression of FSTL1 on cervical cancer cells were assessed using colony formation, MTT, wound­healing, Transwell, apoptosis, and nude mouse tumorigenicity assays. FSTL1­related molecular mechanisms were screened using gene chip analysis. Western blotting analysis was used to verify the regulatory mechanisms of FSTL1 in cervical cancer. The results indicated that the expression of FSTL1 was downregulated in cervical cancer tissues and that its downregulation was associated with tumor differentiation, pathologic type, and infiltration depth. Moreover, FSTL1 inhibited the proliferation, migration, and invasion of cervical cancer cells as well as xenograft tumor growth and promoted cell apoptosis. In addition, the findings of gene chip analysis suggested that the differentially expressed genes of FSTL1 were predominantly enriched in multiple signaling pathways, of which the insulin­like growth factor (IGF)­1 signaling pathway was significantly activated. Western blotting suggested the involvement of FSTL1 in the regulation of the IGF­1R/PI3K/AKT/BCL­2 signaling pathway. These data establish the downregulation of FSTL1 in cervical cancer tissues. FSTL1 inhibited the proliferation, migration, and invasion of cervical cancer cells and promoted their apoptosis. Furthermore, xenograft tumor growth in nude mice was inhibited. FSTL1 may be involved in the regulation of the IGF­1R/PI3K/AKT/BCL­2 signaling pathway in cervical cancer. Therefore, FSTL1 may be employed as a novel biomarker to determine the extent of disease progression in patients with cervical cancer.


Assuntos
Proteínas Relacionadas à Folistatina , Neoplasias do Colo do Útero , Animais , Feminino , Camundongos , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias do Colo do Útero/patologia , Proteínas Relacionadas à Folistatina/genética , Proteínas Relacionadas à Folistatina/metabolismo , Proliferação de Células/genética , Camundongos Nus , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética
6.
Cardiovasc Diabetol ; 22(1): 297, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904173

RESUMO

BACKGROUND: The study aimed to investigate an association of increased liver fibrosis with acute myocardial infarction (AMI), and to investigate the mediating effect of serum follistatin-like protein 3 (FSTL3) on the association in patients with type 2 diabetes mellitus (T2DM). METHOD: A total of 1424 participants were included in this study, and were firstly divided into two groups: 429 T2DM patients and 995 T2DM patients with NAFLD to assess the association of NAFLD and AMI. Then 995 T2DM co-existent NAFLD patients were categorized by NAFLD fibrosis risk to explore the association between NAFLD fibrosis risk and AMI. Immunohistochemistry staining and semi-quantitative analysis of liver FSTL3 were performed in 60 patients with NAFLD. There were 323 individuals (191 without AMI and 132 with AMI) in T2DM co-existent NAFLD patients who had serum samples, and serum FSTL3 was tested and mediation effect of FSTL3 in association of NAFLD fibrosis and AMI was performed. RESULTS: First, increased NAFLD fibrosis risk was an independent risk factor for AMI in patients with T2DM and co-existent NAFLD. In addition, analysis of Gene Expression Omnibus (GEO) database and immunohistochemical staining confirmed the increased expression of FSTL3 in the liver of NAFLD patients with fibrosis. Serum FSTL3 significantly increased in patients with high NAFLD fibrosis risk and AMI, and closely associated with NAFLD fibrosis and AMI severity in T2DM patients with co-existent NAFLD. Most importantly, analysis of the level of mediation revealed that increased serum FSTL3 partially mediated the association of increased NAFLD fibrosis risk with AMI in T2DM patients with co-existent NAFLD. CONCLUSIONS: NAFLD fibrosis was closely associated with AMI in T2DM patients. FSTL3 expression was enriched in the liver of NAFLD patients with significant and advanced fibrosis, and serum FSTL3 partially mediated the association of increased liver fibrosis risk with AMI in T2DM patients.


Assuntos
Diabetes Mellitus Tipo 2 , Proteínas Relacionadas à Folistatina , Infarto do Miocárdio , Hepatopatia Gordurosa não Alcoólica , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Proteínas Relacionadas à Folistatina/genética , Cirrose Hepática/diagnóstico , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/epidemiologia , Infarto do Miocárdio/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/complicações
7.
Nat Commun ; 14(1): 6047, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770480

RESUMO

Inter-organ crosstalk has gained increasing attention in recent times; however, the underlying mechanisms remain unclear. In this study, we elucidate an endocrine pathway that is regulated by skeletal muscle interferon regulatory factor (IRF) 4, which manipulates liver pathology. Skeletal muscle specific IRF4 knockout (F4MKO) mice exhibited ameliorated hepatic steatosis, inflammation, and fibrosis, without changes in body weight, when put on a nonalcoholic steatohepatitis (NASH) diet. Proteomics analysis results suggested that follistatin-like protein 1 (FSTL1) may constitute a link between muscles and the liver. Dual luciferase assays showed that IRF4 can transcriptionally regulate FSTL1. Further, inducing FSTL1 expression in the muscles of F4MKO mice is sufficient to restore liver pathology. In addition, co-culture experiments confirmed that FSTL1 plays a distinct role in various liver cell types via different receptors. Finally, we observed that the serum FSTL1 level is positively correlated with NASH progression in humans. These data indicate a signaling pathway involving IRF4-FSTL1-DIP2A/CD14, that links skeletal muscle cells to the liver in the pathogenesis of NASH.


Assuntos
Proteínas Relacionadas à Folistatina , Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Relacionadas à Folistatina/genética , Proteínas Relacionadas à Folistatina/metabolismo , Fígado/metabolismo , Transdução de Sinais/fisiologia , Músculo Esquelético/metabolismo , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL
8.
Genomics ; 115(5): 110677, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37406975

RESUMO

The matricellular protein, follistatin-like 1 (FSTL1), regulates lung development and saccular formation. Here, we employed single-cell RNA sequencing (scRNA-seq) to construct a transcriptomic atlas of 22,774 individual cells from wild-type (WT) and Fstl1-/- lung (E18.5) samples and identified 27 cell subtypes. We observed abnormal population sizes and gene expression profiles in diverse cell subtypes in Fstl1-/- lung samples. We identified Pdgfra and Tgfbi as genetic markers specifically expressed in postnatal myofibroblasts (MyoFBs). Fstl1 deletion decreased the number of MyoFB cells and downregulated their roles in ECM organization and muscle tissue/vasculature development, partly through the TGF-ß1/BMP4 signaling pathway. Our data provide a single-cell view of the cellular heterogeneity and the molecular mechanisms underlying abnormal saccular formation and atelectatic lungs in Fstl1-/- mice.


Assuntos
Proteínas Relacionadas à Folistatina , Pulmão , Miofibroblastos , Animais , Camundongos , Proteínas Relacionadas à Folistatina/genética , Proteínas Relacionadas à Folistatina/metabolismo , Pulmão/metabolismo , Miofibroblastos/metabolismo , Transdução de Sinais , Análise da Expressão Gênica de Célula Única
9.
Adv Sci (Weinh) ; 10(21): e2206758, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37282819

RESUMO

Bone marrow mesenchymal stromal cells (BMSCs) have a protective effect against liver cirrhosis. Long noncoding RNAs (lncRNAs) play crucial roles in the progression of liver cirrhosis. Therefore, it is aimed to clarify the lncRNA Kcnq1ot1 involved protective mechanism of BMSCs in liver cirrhosis. This study found that BMSCs treatment attenuates CCl4 -induced liver cirrhosis in mice. Additionally, the expression of lncRNA Kcnq1ot1 is upregulated in human and mouse liver cirrhosis tissues, in addition to TGF-ß1-treated LX2 cells and JS1 cells. The expression of Kcnq1ot1 in liver cirrhosis is reversed with BMSCs treatment. The knockdown of Kcnq1ot1 alleviated liver cirrhosis both in vivo and in vitro. Fluorescence in situ hybridization (FISH) confirms that Kcnq1ot1 is mainly distributed in the cytoplasm of JS1 cells. It is predicted that miR-374-3p can directly bind with lncRNA Kcnq1ot1 and Fstl1, which is verified via luciferase activity assay. The inhibition of miR-374-3p or the overexpression of Fstl1 can attenuate the effect of Kcnq1ot1 knockdown. In addition, the transcription factor Creb3l1 is upregulated during JS1 cells activation. Moreover, Creb3l1 can directly bind to the Kcnq1ot1 promoter and positively regulate its transcription. In conclusion, BMSCs alleviate liver cirrhosis by modulating the Creb3l1/lncRNA Kcnq1ot1/miR-374-3p/Fstl1 signaling pathway.


Assuntos
Proteínas Relacionadas à Folistatina , Células-Tronco Mesenquimais , MicroRNAs , RNA Longo não Codificante , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Relacionadas à Folistatina/genética , Medula Óssea/metabolismo , Hibridização in Situ Fluorescente , Células-Tronco Mesenquimais/metabolismo , Cirrose Hepática/genética
10.
Cancer Med ; 12(10): 11611-11623, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37017587

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a fatal malignant tumor with poor prognosis. Cancer stem cells (CSCs) can cause metastasis, recurrence and drug resistance in CRC. This research aimed to analyze stemness-related prognostic genes of CRC based on single-cell RNA-sequencing (scRNA-seq) data. METHODS: DESeq2 was applied to analyze the differentially expressed genes (DEGs). The mRNA stemness index (mRNAsi) was calculated by one-class logistic regression (OCLR). The stemness-related cells were analyzed based on scRNA-seq dataset GSE166555. Monocle 2 algorithm was used for stemness-related cells pseudotime trajectory analysis. The stemness-related prognostic genes were analyzed by clusterProfiler and survival package. The stemness of CRC cells was detected by spheroid formation assay, and the expression of stemness-related prognostic genes was verified by qRT-PCR and Western blot. RESULTS: 7916 DEGs between the CRC and normal tissues were obtained. The mRNAsi of the CRC tissues was shown to be significantly higher than that of the normal tissues. 7 and 8 cell types were annotated respectively in the normal and CRC tissues through analysis of the scRNA-seq data. Cell-cell interactions (CCIs) in the tumor tissues were revealed to be significantly enhanced than that in the normal tissues. By calculating the 'stemness score', CSCs, epithelial cells (EPCs) and cancer-associated fibroblasts (CAFs) were defined as stemness-related cells. Through pseudotime trajectory analysis, 2111 genes were identified as state 2-specific genes. Then, 41 genes were obtained by taking intersection of the up-regulated genes with state 2-specific genes and marker genes of CSCs, EPCs and CAFs. The univariate COX regression analysis revealed 5 stemness-related prognostic genes (TIMP1, PGF, FSTL3, SNAI1 and FOXC1). Kaplan-Meier curve analysis indicated that the higher the expression of 5 genes, the lower the survival rate. In vitro cell experiment confirmed that the expression of TIMP1, PGF and SNAI1 was consistent with that revealed by bioinformatics analysis. CONCLUSIONS: TIMP1, PGF and SNAI1 were identified as stemness-related prognostic genes of CRC, and possibly potential therapeutic targets for CRC.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Proteínas Relacionadas à Folistatina , Humanos , Neoplasias Colorretais/patologia , Análise da Expressão Gênica de Célula Única , Fibroblastos Associados a Câncer/metabolismo , Prognóstico , Fator de Crescimento Placentário , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Proteínas Relacionadas à Folistatina/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo
11.
J Cell Mol Med ; 27(5): 672-686, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807490

RESUMO

Follistatin-like (FSTL) family members are associated with cancer progression. However, differences between FSTL members with identical cancer types have not been systematically investigated. Among the most malignant tumours worldwide, colorectal cancer (CRC) has high metastatic potential and chemoresistance, which makes it challenging to treat. A systematic examination of the relationship between the expression of FSTL family members in CRC will provide valuable information for prognosis and therapeutic development. Based on large cohort survival analyses, we determined that FSTL3 was associated with a significantly worse prognosis in CRC at the RNA and protein levels. Immunohistochemistry staining of CRC specimens revealed that FSTL3 expression levels in the cytosol were significantly associated with a poor prognosis in terms of overall and disease-free survival. Molecular simulation analysis showed that FSTL3 participated in multiple cell motility signalling pathways via the TGF-ß1/TWIST1 axis to control CRC metastasis. The findings provide evidence of the significance of FSTL3 in the oncogenesis and metastasis of CRC. FSTL3 may be useful as a diagnostic or prognostic biomarker, and as a potential therapeutic target.


Assuntos
Neoplasias Colorretais , Proteínas Relacionadas à Folistatina , Humanos , Citosol/metabolismo , Transformação Celular Neoplásica , Transdução de Sinais , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Estudos de Coortes , Biomarcadores Tumorais/genética , Proteínas Relacionadas à Folistatina/genética , Proteínas Relacionadas à Folistatina/metabolismo
12.
Obesity (Silver Spring) ; 31(1): 171-183, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502285

RESUMO

OBJECTIVE: This study aimed to investigate the expression of follistatin-like 3 (FSTL3) in adipose tissue in individuals with overweight or obesity and to explore the role of FSTL3 in human adipocytes, as well as the relationship between serum FSTL3 levels and fat distribution and inflammation. METHODS: This study enrolled 236 individuals (171 with overweight or obesity; aged 18-67 years). Bulk transcriptome sequencing was performed on subcutaneous and visceral adipose tissue. The function of FSTL3 was studied in human adipocytes. Serum FSTL3 levels were measured using enzyme-linked immunosorbent assay. RESULTS: Adipose FTSL3 expression was higher in individuals with overweight or obesity than in individuals with normal weight. FSTL3 was mainly expressed in mature adipocytes and stimulated by tumor necrosis factor alpha (TNFα). FSTL3 suppressed inflammatory responses in human adipocytes, whereas FSTL3 knockdown promoted inflammatory responses. Serum FSTL3 levels were correlated with adipose FTSL3 expression and obesity-related indicators (all p < 0.05). Multiple linear regression analysis showed that serum FSTL3 levels were independently associated with the visceral fat area and serum TNFα levels (both p < 0.05). CONCLUSIONS: FSTL3 was highly expressed in adipose tissue in individuals with overweight or obesity and could suppress adipocyte inflammation. Serum FSTL3 levels might be considered as a biomarker of visceral obesity and inflammation.


Assuntos
Proteínas Relacionadas à Folistatina , Obesidade , Sobrepeso , Humanos , Tecido Adiposo/metabolismo , Proteínas Relacionadas à Folistatina/genética , Proteínas Relacionadas à Folistatina/metabolismo , Inflamação/metabolismo , Obesidade/genética , Obesidade/metabolismo , Sobrepeso/genética , Sobrepeso/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Exp Neurol ; 359: 114231, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162512

RESUMO

Follistatin like protein 1 (FSTL1) is a famous growth regulatory protein. FSTL1 has been noticed in many diseases, including heart and lung ischemia, cerebral ischemia, glioma, schizophrenia, and Autism. The role of FSTL1 has been declared in the genetics and development of the central nervous system. Therefore, we designed this study to investigate the function and the role of FSTL1 in Alzheimer's disease. Firstly, we noticed upregulated expression level of FSTL1 among four to six-month-old 5XFAD AD mice. Accordingly, we hypothesized that FSTL1-Knockdown improved AD model mice's cognitive function and recover from Alzheimer's disease. Thus, AD model mice were made by single intracerebroventricular injections of Aß1-42 peptides in FSTL1+/- and CON mice. Next, our results concluded that FSTL1-knockdown effectively improved cognitive functions. FSTL1-knockdown enhanced the pattern of neural oscillations, and synaptic plasticity in Aß1-42 treated FSTL1-Knockdown mice compared to Aß1-42 induced AD model mice. Next, FSTL1-Knockdown inhibited the activation of microglia and binding of TLR-4 with microglia. Further, inactivated microglia stopped the formation of MyD88. Thus, our data revealed that FSTL1-Knockdown is slowing down the caspase/BAX/Bcl-2/TLR-4 regulating apoptosis pathway, and the expression of inflammatory cytokines in the hippocampus of Aß1-42 inserted FSTL1-Knockdown mice. Overall, all these data illuminate the clinical significance role of down-regulated FSTL1. FSTL1-Knockdown reduced the amyloid-beta by affecting microglia, neural-inflammation and apoptosis in AD-like model mice. Finally, down regulation of FSTL1 improved synaptic plasticity, neural oscillations, and cognitive behaviours in the Aß1-42 induced AD model mice.


Assuntos
Doença de Alzheimer , Proteínas Relacionadas à Folistatina , Animais , Camundongos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Proteínas Relacionadas à Folistatina/genética , Receptor 4 Toll-Like/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Apoptose , Inflamação/induzido quimicamente , Inflamação/metabolismo , Modelos Animais de Doenças
14.
Sleep Breath ; 27(3): 1165-1173, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36115873

RESUMO

PURPOSE: Intermittent hypoxia (IH) mimicking obstructive sleep apnea (OSA) has been confirmed to induce tumor lung metastasis via oxidative stress and inflammation responses. Follistatin-like 1 (Fstl1), as a matricellular protein, plays critical roles in inflammatory diseases and cancer. This study aimed to investigate the effect and mechanism of Fstl1 on OSA-IH-induced tumor lung metastasis. METHODS: Fstl1+/+ or Fstl1+/- mice inoculated with B16F10 melanoma cells were exposed to OSA-IH. The number and area of mouse lung metastatic colonies were assessed. Markers for tumor metastasis, oxidative stress, and inflammation in lung melanoma tissue or B16F10 melanoma cells were quantified by western blotting, qRT-PCR, and immunohistochemistry. The migration of B16F10 cells was examined by wound healing assay. RESULTS: Fstl1 levels are decreased in lung tissues from OSA-IH injured mice inoculated with melanoma cells. Fstl1-deficient mice were highly susceptible to the OSA-IH model of melanoma lung metastasis, as assessed by increased number and area of lung metastatic colonies, and by the elevated levels of HIF-1α, Vegf, N-cadherin, and E-cadherin. Lung melanoma tissue in Fstl1+/- mice provided evidence of increased oxidative stress, as determined by increased levels of NRF2 and P22phox and decreased level of Sod2, as well as increased inflammatory response, as determined by elevated levels of NF-κB P65, Tnf-α and Il-6. Conversely, stable overexpression of Fstl1 in B16F10 cells under OSA-IH exposure attenuated the migration of B16F10 cells and levels of tumor-related markers, as well as decreased oxidative stress and inflammatory responses. CONCLUSION: These results suggest that Fstl1 may protect against OSA-IH-induced tumor lung metastasis through oxidative stress and inflammatory responses. Fstl1 may serve as a promising target for OSA-related cancer.


Assuntos
Proteínas Relacionadas à Folistatina , Neoplasias Pulmonares , Melanoma , Apneia Obstrutiva do Sono , Animais , Camundongos , Folistatina , Proteínas Relacionadas à Folistatina/genética , Hipóxia/metabolismo , Inflamação/metabolismo , Neoplasias Pulmonares/patologia , Apneia Obstrutiva do Sono/metabolismo
15.
Circ Genom Precis Med ; 15(6): e003510, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36205932

RESUMO

BACKGROUND: Congenital heart disease (CHD) is a leading non-infectious cause of pediatric morbidity and mortality worldwide. Although the etiology of CHD is poorly understood, genetic factors including copy number variants (CNVs) contribute to the risk of CHD in individuals of European ancestry. The presence of rare CNVs in African CHD populations is unknown. This study aimed to identify pathogenic and likely pathogenic CNVs in South African patients with CHD. METHODS: Genotyping was performed on 90 patients with nonsyndromic CHD using the Affymetrix CytoScan HD platform. These data were used to identify large, rare CNVs in known CHD-associated genes and candidate genes. RESULTS: We identified eight CNVs overlapping known CHD-associated genes (GATA4, CRKL, TBX1, FLT4, B3GAT3, NSD1) in six patients. The analysis also revealed CNVs encompassing five candidate genes likely to play a role in the development of CHD (DGCR8, KDM2A, JARID2, FSTL1, CYFIP1) in five patients. One patient was found to have 47, XXY karyotype. We report a total discovery yield of 6.7%, with 5.6% of the cohort carrying pathogenic or likely pathogenic CNVs expected to cause the observed phenotypes. CONCLUSIONS: In this study, we show that chromosomal microarray is an effective technique for identifying CNVs in African patients diagnosed with CHD and have demonstrated results similar to previous CHD genetic studies in Europeans. Novel potential CHD genes were also identified, indicating the value of genetic studies of CHD in ancestrally diverse populations.


Assuntos
Proteínas F-Box , Proteínas Relacionadas à Folistatina , Cardiopatias Congênitas , MicroRNAs , Humanos , Variações do Número de Cópias de DNA , África do Sul , Proteínas de Ligação a RNA/genética , Cardiopatias Congênitas/diagnóstico , Proteínas Relacionadas à Folistatina/genética , Proteínas F-Box/genética , Histona Desmetilases com o Domínio Jumonji/genética
16.
J Biosci ; 472022.
Artigo em Inglês | MEDLINE | ID: mdl-36210730

RESUMO

Tuberculosis (TB) is a common disease caused by Mycobacterium tuberculosis (M.tb) infection. Our study was to explore the function and mechanism of circular RNA WD repeat domain 27 (circ-WDR27) in TB progression. Cell viability and apoptosis were detected by 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide assay and flow cytometry. Protein quantification was performed by Western blot. Inflammatory cytokines were examined using enzyme-linked immunosorbent assay. RNA levels were assayed via quantitative reverse-transcription polymerase chain reaction. M.tb survival was assessed using colony-forming unit assay. Target binding was analyzed via dual-luciferase reporter assay and RNA immunoprecipitation assay. Cell damages were induced by M.tb infection, and inflammatory cytokines were secreted in human macrophages. Circ-WDR27 was downregulated in TB patients and M.tb-infected macrophages. Circ-WDR27 overexpression reduced M.tb survival and released inflammatory cytokines in macrophages. Circ-WDR27 acted as a sponge for miR-370-3p. Circ-WDR27-mediated inhibition of TB progression was partly achieved by sponging miR-370-3p. miR-370-3p directly targeted Follistatin-like protein 1 (FSTL1). FSTL1 suppressed M.tb-induced cell damages, and reversed the protective role of miR-370-3p inhibition in TB progression. Circ- WDR27 regulated FSTL1 expression by targeting miR-370-3p. These results showed that circ-WDR27 repressed M.tb vitality and stimulated pro-inflammatory cytokines in M.tb-infected macrophages by affecting the miR-370-3p/FSTL1 axis.


Assuntos
Proteínas Relacionadas à Folistatina , MicroRNAs , Mycobacterium tuberculosis , Tuberculose , Apoptose/genética , Brometos/metabolismo , Proliferação de Células , Citocinas/genética , Citocinas/metabolismo , Proteínas Relacionadas à Folistatina/genética , Proteínas Relacionadas à Folistatina/metabolismo , Humanos , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mycobacterium tuberculosis/metabolismo , RNA Circular/genética , Tuberculose/genética , Tuberculose/metabolismo
17.
Hum Cell ; 35(6): 1824-1837, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35964260

RESUMO

Zinc-finger transcription factor odd-skipped related 1 (OSR1) is involved in the progression of certain types of cancers, via regulating the transcription of downstream genes. However, the function of OSR1 in ovarian cancer (OC) progression remains unclear. The present study aimed to explore the OSR1 expression pattern in OC tissues and cell lines. Functional assays were performed to explore the regulatory effects of OSR1 on OC cell growth, migration and invasion in vitro and in vivo. Results of the present study demonstrated that OSR1 was significantly downregulated in OC tissues compared with healthy ovarian tissues (P < 0.01). Moreover, SKOV-3 and OVCAR-3 cells with low OSR1 expression were used for functional studies, and results demonstrated that OSR1 overexpression suppressed cell growth by inhibiting cell cycle progression and inducing cell apoptosis in vitro. OC cells with higher OSR1 expression levels exhibited reduced levels of migration and invasion, when compared with the corresponding control. In addition, OSR1 expression in xenografts models resulted in diminished tumor volume and suppressed tumorigenesis. OSR1 enhanced follistatin-like protein 1 (FSTL1) expression at the transcriptional level through directly binding to the promoter of FSTL1, which was commonly reported to exert a tumor suppressor role in OC progression. Moreover, FSTL1 knockdown reversed the action of OSR1 overexpression in OC progression, including cell viability, migration, invasion, and apoptosis. In conclusion, these results indicated that OSR1 may function as a tumor suppressor through augmenting FSTL1 transcription in OC progression, suggesting that the OSR1/ FSTL1 axis may exhibit potential as a therapeutic target for OC therapy.


Assuntos
Proteínas Relacionadas à Folistatina , MicroRNAs , Neoplasias Ovarianas , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Proteínas Relacionadas à Folistatina/genética , Proteínas Relacionadas à Folistatina/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Ovarianas/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zinco/metabolismo
18.
Stem Cell Res Ther ; 13(1): 403, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35932064

RESUMO

BACKGROUND: Mesenchymal stem cell (MSC) therapy has been shown to be a promising option for liver fibrosis treatment. However, critical factors affecting the efficacy of MSC therapy for liver fibrosis remain unknown. Follistatin-like 1 (FSTL1), a TGF-ß-induced matricellular protein, is documented as an intrinsic regulator of proliferation and differentiation in MSCs. In the present study, we characterized the potential role of FSTL1 in MSC-based anti-fibrotic therapy and further elucidated the mechanisms underlying its action. METHODS: Human umbilical cord-derived MSCs were characterized by flow cytometry. FSTL1low MSCs were achieved by FSTL1 siRNA. Migration capacity was evaluated by wound-healing and transwell assay. A murine liver fibrotic model was created by carbon tetrachloride (CCl4) injection, while control MSCs or FSTL1low MSC were transplanted via intravenous injection 12 weeks post CCl4 injection. Histopathology, liver function, fibrosis degree, and inflammation were analysed thereafter. Inflammatory cell infiltration was evaluated by flow cytometry after hepatic nonparenchymal cell isolation. An MSC-macrophage co-culture system was constructed to further confirm the role of FSTL1 in the immunosuppressive capacity of MSCs. RNA sequencing was used to screen target genes of FSTL1. RESULTS: FSTL1low MSCs had comparable gene expression for surface markers to wildtype but limited differentiation and migration capacity. FSTL1low MSCs failed to alleviate CCl4-induced hepatic fibrosis in a mouse model. Our data indicated that FSTL1 is essential for the immunosuppressive action of MSCs on inflammatory macrophages during liver fibrotic therapy. FSTL1 silencing attenuated this capacity by inhibiting the downstream JAK/STAT1/IDO pathway. CONCLUSIONS: Our data suggest that FSTL1 facilitates the immunosuppression of MSCs on macrophages and that guarantee the anti-fibrotic effect of MSCs in liver fibrosis.


Assuntos
Proteínas Relacionadas à Folistatina , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Folistatina/efeitos adversos , Folistatina/metabolismo , Proteínas Relacionadas à Folistatina/genética , Humanos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/terapia , Células-Tronco Mesenquimais/metabolismo , Camundongos
19.
Transpl Immunol ; 75: 101685, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35933079

RESUMO

BACKGROUND: It is observed that circular RNA (circRNA) PTTG1 interacting protein (circPTTG1IP) level is notably up-regulated in rheumatoid arthritis (RA) patients by previous study. However, its precise role and working mechanism in RA pathology remain to be clarified. METHODS AND RESULTS: Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot assay were carried out to examine RNA and protein expression. Cell proliferation was analyzed by colony formation assay and 5-Ethynyl-2'-deoxyuridine (EdU) assay. Cell motility was assessed by transwell assays and wound healing assay. Flow cytometry (FCM) analysis was performed to assess cell apoptosis rate. Dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA-pull down assays were conducted to confirm the interaction between microRNA-431-5p (miR-431-5p) and circPTTG1IP or follistatin like 1 (FSTL1). CircPTTG1IP expression was up-regulated in the synovial tissues of RA patients and RA patients-derived fibroblast-like synoviocytes (RA-FLS). CircPTTG1IP absence suppressed the proliferation, migration, and invasion and induced the apoptosis of RA-FLS. CircPTTG1IP negatively regulated the expression of miR-431-5p by directly binding to it in RA-FLS. CircPTTG1IP interference-mediated effects in RA-FLS were largely counteracted by the silence of miR-431-5p. miR-431-5p directly interacted with the 3' untranslated region (3'UTR) of FSTL1. FSTL1 overexpression largely overturned miR-431-5p accumulation-mediated effects in RA-FLS. CircPTTG1IP positively regulated FSTL1 expression by sponging miR-431-5p in RA-FLS. CONCLUSION: CircPTTG1IP absence suppressed RA progression through mediating miR-431-5p/FSTL1 signaling cascade.


Assuntos
Artrite Reumatoide , Proteínas Relacionadas à Folistatina , MicroRNAs , Sinoviócitos , Humanos , Apoptose/genética , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Proliferação de Células/genética , Proteínas Relacionadas à Folistatina/genética , Proteínas Relacionadas à Folistatina/metabolismo , MicroRNAs/genética , Sinoviócitos/metabolismo , Sinoviócitos/patologia , RNA Circular/genética
20.
Heart Fail Rev ; 27(6): 2251-2265, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35867287

RESUMO

Cardiovascular diseases (CVDs) are a group of disorders affecting the heart and blood vessels and a leading cause of death worldwide. Thus, there is a need to identify new cardiokines that may protect the heart from damage as reported in GBD 2017 Causes of Death Collaborators (2018) (The Lancet 392:1736-1788). Follistatin-like 1 (FSTL1) is a cardiokine that is highly expressed in the heart and released to the serum after cardiac injury where it is associated with CVD and predicts poor outcome. The action of FSTL1 likely depends not only on the tissue source but also post-translation modifications that are target tissue- and cell-specific. Animal studies examining the effect of FSTL1 in various models of heart disease have exploded over the past 15 years and primarily report a protective effect spanning from inhibiting inflammation via transforming growth factor, preventing remodeling and fibrosis to promoting angiogenesis and hypertrophy. A better understanding of FSTL1 and its homologs is needed to determine whether this protein could be a useful novel biomarker to predict poor outcome and death and whether it has therapeutic potential. The aim of this review is to provide a comprehensive description of the literature for this family of proteins in order to better understand their role in normal physiology and CVD.


Assuntos
Doenças Cardiovasculares , Proteínas Relacionadas à Folistatina , Animais , Biomarcadores , Fibrose , Folistatina , Proteínas Relacionadas à Folistatina/genética , Proteínas Relacionadas à Folistatina/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...