Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
J Immunol ; 208(4): 870-880, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35046107

RESUMO

Ribosomal proteins are thought to primarily facilitate biogenesis of the ribosome and its ability to synthesize protein. However, in this study, we show that Rpl22-like1 (Rpl22l1) regulates hematopoiesis without affecting ribosome biogenesis or bulk protein synthesis. Conditional loss of murine Rpl22l1 using stage or lineage-restricted Cre drivers impairs development of several hematopoietic lineages. Specifically, Tie2-Cre-mediated ablation of Rpl22l1 in hemogenic endothelium impairs the emergence of embryonic hematopoietic stem cells. Ablation of Rpl22l1 in late fetal liver progenitors impairs the development of B lineage progenitors at the pre-B stage and development of T cells at the CD44-CD25+ double-negative stage. In vivo labeling with O-propargyl-puromycin revealed that protein synthesis at the stages of arrest was not altered, indicating that the ribosome biogenesis and function were not generally compromised. The developmental arrest was associated with p53 activation, suggesting that the arrest may be p53-dependent. Indeed, development of both B and T lymphocytes was rescued by p53 deficiency. p53 induction was not accompanied by DNA damage as indicated by phospho-γH2AX induction or endoplasmic reticulum stress, as measured by phosphorylation of EIF2α, thereby excluding the known likely p53 inducers as causal. Finally, the developmental arrest of T cells was not rescued by elimination of the Rpl22l1 paralog, Rpl22, as we had previously found for the emergence of hematopoietic stem cells. This indicates that Rpl22 and Rpl22l1 play distinct and essential roles in supporting B and T cell development.


Assuntos
Diferenciação Celular/genética , Linfopoese/genética , Biossíntese de Proteínas , Proteínas Ribossômicas/deficiência , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Plasticidade Celular/genética , Plasticidade Celular/imunologia , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Imunofenotipagem , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos , Camundongos Knockout , Baço/citologia , Baço/imunologia , Baço/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948282

RESUMO

Protein uL5 (formerly called L11) is an integral component of the large (60S) subunit of the human ribosome, and its deficiency in cells leads to the impaired biogenesis of 60S subunits. Using RNA interference, we reduced the level of uL5 in HEK293T cells by three times, which caused an almost proportional decrease in the content of the fraction corresponding to 80S ribosomes, without a noticeable diminution in the level of polysomes. By RNA sequencing of uL5-deficient and control cell samples, which were those of total mRNA and mRNA from the polysome fraction, we identified hundreds of differentially expressed genes (DEGs) at the transcriptome and translatome levels and revealed dozens of genes with altered translational efficiency (GATEs). Transcriptionally up-regulated DEGs were mainly associated with rRNA processing, pre-mRNA splicing, translation and DNA repair, while down-regulated DEGs were genes of membrane proteins; the type of regulation depended on the GC content in the 3' untranslated regions of DEG mRNAs. The belonging of GATEs to up-regulated and down-regulated ones was determined by the coding sequence length of their mRNAs. Our findings suggest that the effects observed in uL5-deficient cells result from an insufficiency of translationally active ribosomes caused by a deficiency of 60S subunits.


Assuntos
Regulação da Expressão Gênica/genética , Proteínas Ribossômicas/deficiência , Proteínas Ribossômicas/metabolismo , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Células HEK293 , Humanos , Biossíntese de Proteínas/fisiologia , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , Transcrição Gênica/fisiologia , Transcriptoma/genética
3.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070742

RESUMO

Nephrogenesis is driven by complex signaling pathways that control cell growth and differentiation. The endoplasmic reticulum chaperone calreticulin (Calr) is well known for its function in calcium storage and in the folding of glycoproteins. Its role in kidney development is still not understood. We provide evidence for a pivotal role of Calr in nephrogenesis in this investigation. We show that Calr deficiency results in the disrupted formation of an intact nephrogenic zone and in retardation of nephrogenesis, as evidenced by the disturbance in the formation of comma-shaped and s-shaped bodies. Using proteomics and transcriptomics approaches, we demonstrated that in addition to an alteration in Wnt-signaling key proteins, embryonic kidneys from Calr-/- showed an overall impairment in expression of ribosomal proteins which reveals disturbances in protein synthesis and nephrogenesis. CRISPR/cas9 mediated knockout confirmed that Calr deficiency is associated with a deficiency of several ribosomal proteins and key proteins in ribosome biogenesis. Our data highlights a direct link between Calr expression and the ribosome biogenesis.


Assuntos
Cálcio/metabolismo , Calreticulina/genética , Rim/metabolismo , Biogênese de Organelas , Proteínas Ribossômicas/genética , Ribossomos/genética , Animais , Sinalização do Cálcio , Calreticulina/deficiência , Embrião de Mamíferos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Glicoproteínas/classificação , Glicoproteínas/genética , Glicoproteínas/metabolismo , Rim/crescimento & desenvolvimento , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organogênese/genética , Dobramento de Proteína , Proteômica/métodos , Proteínas Ribossômicas/deficiência , Ribossomos/metabolismo , Ribossomos/patologia , Via de Sinalização Wnt
4.
Exp Hematol ; 99: 44-53.e2, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34126174

RESUMO

Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by a functional haploinsufficiency of genes coding for ribosomal proteins. Among these genes, the ribosomal protein S19 (RPS19) gene is the most frequently mutated. Previously, a mouse model deficient in RPS19 was developed by our laboratory, which recapitulates the hematopoietic disease phenotype by manifesting pathologic features and clinical symptoms of DBA. Characterization of this model revealed that chronic RPS19 deficiency leads to exhaustion of hematopoietic stem cells and subsequent bone marrow (BM) failure. In this study, we evaluated a nonmyeloablative conditioning protocol for BM transplants in RPS19-deficient mice by transplanting wild-type BM cells to RPS19-deficient recipients given no conditioning or sublethal doses of irradiation before transplant. We describe full correction of the hematopoietic phenotype in mice given sublethal doses of irradiation, as well as in animals completely devoid of any preceding irradiation. In comparison, wild-type animals receiving the same preconditioning regimen and number of transplanted cells exhibited significantly lower engraftment levels. Thus, robust engraftment and repopulation of transplanted cells can be achieved in reduced-intensity conditioned RPS19-deficient recipients. As gene therapy studies with autologous gene-corrected hematopoietic stem cells are emerging, we propose the results described here can guide determination of the level of conditioning for such a protocol in RPS19-deficient DBA. On the basis of our findings, a relatively mild conditioning strategy would plausibly be sufficient to achieve sufficient levels of engraftment and clinical success.


Assuntos
Anemia de Diamond-Blackfan/metabolismo , Transplante de Medula Óssea , Aloenxertos , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/patologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Proteínas Ribossômicas/deficiência , Proteínas Ribossômicas/metabolismo , Condicionamento Pré-Transplante
5.
Genetics ; 217(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33857305

RESUMO

[URE3] is an amyloid-based prion of Ure2p, a negative regulator of poor nitrogen source catabolism in Saccharomyces cerevisiae. Overproduced Btn2p or its paralog Cur1p, in processes requiring Hsp42, cure the [URE3] prion. Btn2p cures by collecting Ure2p amyloid filaments at one place in the cell. We find that rpl4aΔ, rpl21aΔ, rpl21bΔ, rpl11bΔ, and rpl16bΔ (large ribosomal subunit proteins) or ubr2Δ (ubiquitin ligase targeting Rpn4p, an activator of proteasome genes) reduce curing by overproduced Btn2p or Cur1p. Impaired curing in ubr2Δ or rpl21bΔ is restored by an rpn4Δ mutation. No effect of rps14aΔ or rps30bΔ on curing was observed, indicating that 60S subunit deficiency specifically impairs curing. Levels of Hsp42p, Sis1p, or Btn3p are unchanged in rpl4aΔ, rpl21bΔ, or ubr2Δ mutants. Overproduction of Cur1p or Btn2p was enhanced in rpn4Δ and hsp42Δ mutants, lower in ubr2Δ strains, and restored to above wild-type levels in rpn4Δ ubr2Δ strains. As in the wild-type, Ure2N-GFP colocalizes with Btn2-RFP in rpl4aΔ, rpl21bΔ, or ubr2Δ strains, but not in hsp42Δ. Btn2p/Cur1p overproduction cures [URE3] variants with low seed number, but seed number is not increased in rpl4aΔ, rpl21bΔ or ubr2Δ mutants. Knockouts of genes required for the protein sorting function of Btn2p did not affect curing of [URE3], nor did inactivation of the Hsp104 prion-curing activity. Overactivity of the ubiquitin/proteasome system, resulting from 60S subunit deficiency or ubr2Δ, may impair Cur1p and Btn2p curing of [URE3] by degrading Cur1p, Btn2p or another component of these curing systems.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Glutationa Peroxidase/metabolismo , Chaperonas Moleculares/metabolismo , Príons/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Glutationa Peroxidase/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Imunidade Inata , Chaperonas Moleculares/genética , Príons/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Ribossômicas/deficiência , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
6.
Haematologica ; 106(3): 746-758, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32327500

RESUMO

In ribosomopathies, the Diamond-Blackfan anemia (DBA) or 5q- syndrome, ribosomal protein (RP) genes are affected by mutation or deletion, resulting in bone marrow erythroid hypoplasia. Unbalanced production of ribosomal subunits leading to a limited ribosome cellular content regulates translation at the expense of the master erythroid transcription factor GATA1. In RPS14-deficient cells mimicking 5q- syndrome erythroid defects, we show that the transcript length, codon bias of the coding sequence (CDS) and 3'UTR (untranslated region) structure are the key determinants of translation. In these cells, short transcripts with a structured 3'UTR and high codon adaptation index (CAI) showed a decreased translation efficiency. Quantitative analysis of the whole proteome confirmed that the post-transcriptional changes depended on the transcript characteristics that governed the translation efficiency in conditions of low ribosome availability. In addition, proteins involved in normal erythroid differentiation share most determinants of translation selectivity. Our findings thus indicate that impaired erythroid maturation due to 5q- syndrome may proceed from a translational selectivity at the expense of the erythroid differentiation program, and suggest that an interplay between the CDS and UTR may regulate mRNA translation.


Assuntos
Anemia de Diamond-Blackfan , Anemia Macrocítica , Proteínas Ribossômicas , Anemia de Diamond-Blackfan/genética , Humanos , Proteoma/genética , Proteínas Ribossômicas/deficiência , Proteínas Ribossômicas/genética , Ribossomos/genética
7.
FEBS J ; 287(17): 3794-3813, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32383535

RESUMO

Monocyte infiltration to the site of pathogenic invasion is critical for inflammatory response and host defence. However, this process demands precise regulation as uncontrolled migration of monocytes to the site delays resolution of inflammation and ultimately promotes chronic inflammation. C-C motif chemokine ligand 2 (CCL2) plays a key role in monocyte migration, and hence, its expression should be tightly regulated. Here, we report a post-transcriptional regulation of CCL2 involving the large ribosomal subunit protein L22 (RPL22) in LPS-activated, differentiated THP-1 cells. Early events following LPS treatment include transcriptional upregulation of RPL22 and its nuclear accumulation. The protein binds to the first 20 nt sequence of the 5'UTR of ccl2 mRNA. Simultaneous nuclear translocation of up-frameshift-1 protein and its interaction with RPL22 results in cytoplasmic degradation of the ccl2 mRNA at a later stage. Removal of RPL22 from cells results in increased expression of CCL2 in response to LPS causing disproportionate migration of monocytes. We propose that post-transcriptional regulation of CCL2 by RPL22 fine-tunes monocyte infiltration during a pathogenic insult and maintains homeostasis of the immune response critical to resolution of inflammation. DATABASES: Microarray data are available in NCBI GEO database (Accession No GSE126525).


Assuntos
Quimiocina CCL2/biossíntese , Inflamação/genética , Lipopolissacarídeos/toxicidade , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/fisiologia , Proteínas Ribossômicas/fisiologia , Regiões 5' não Traduzidas , Transporte Ativo do Núcleo Celular , Sequência de Bases , Sistemas CRISPR-Cas , Movimento Celular , Quimiocina CCL2/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Células MCF-7 , Modelos Moleculares , Proteínas de Neoplasias/metabolismo , Conformação Proteica , Mapeamento de Interação de Proteínas , RNA Helicases/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/deficiência , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Células THP-1 , Transativadores/metabolismo
8.
Nucleic Acids Res ; 48(11): 6265-6279, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32396167

RESUMO

P-bodies (PBs) are cytoplasmic mRNA-protein (mRNP) granules conserved throughout eukaryotes which are implicated in the repression, storage and degradation of mRNAs. PB assembly is driven by proteins with self-interacting and low-complexity domains. Non-translating mRNA also stimulates PB assembly, however no studies to date have explored whether particular mRNA transcripts are more critical than others in facilitating PB assembly. Previous work revealed that rps28bΔ (small ribosomal subunit-28B) mutants do not form PBs under normal growth conditions. Here, we demonstrate that the RPS28B 3'UTR is important for PB assembly, consistent with it harboring a binding site for the PB assembly protein Edc3. However, expression of the RPS28B 3'UTR alone is insufficient to drive PB assembly. Intriguingly, chimeric mRNA studies revealed that Rps28 protein, translated in cis from an mRNA bearing the RPS28B 3'UTR, physically interacts more strongly with Edc3 than Rps28 protein synthesized in trans. This Edc3-Rps28 interaction in turn facilitates PB assembly. Our work indicates that PB assembly may be nucleated by specific RNA 'scaffolds'. Furthermore, this is the first description in yeast to our knowledge of a cis-translated protein interacting with another protein in the 3'UTR of the mRNA which encoded it, which in turn stimulates assembly of cellular structures.


Assuntos
Estruturas Citoplasmáticas/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regiões 3' não Traduzidas/genética , Deleção de Genes , Ligação Proteica , Estabilidade de RNA , Proteínas Ribossômicas/deficiência , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
FASEB J ; 34(5): 6888-6906, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32232901

RESUMO

Previously, we identified a mechanism of inflammation control directed by ribosomal protein L13a and "GAIT" (Gamma Activated Inhibitor of Translation) elements in target mRNAs and showed that its elimination in myeloid cell-specific L13a knockout mice (L13a KO) increased atherosclerosis susceptibility and severity. Here, we investigated the mechanistic basis of this endogenous defense against atherosclerosis. We compared molecular and cellular aspects of atherosclerosis in high-fat diet (HFD)-fed L13a KO and intact (control) mice. HFD treatment of control mice induced release of L13a from 60S ribosome, formation of RNA-binding complex, and subsequent GAIT element-mediated translational silencing. Atherosclerotic plaques from HFD-treated KO mice showed increased infiltration of M1 type inflammatory macrophages. Macrophages from KO mice showed increased phagocytic activity and elevated expression of LDL receptor and pro-inflammatory mediators. NanoString analysis of the plaques from KO mice showed upregulation of a number of mRNAs encoding inflammatory proteins. Bioinformatics analysis suggests the presence of the potential GAIT elements in the 3'UTRs of several of these mRNAs. Macrophage induces L13a/GAIT-dependent translational silencing of inflammatory genes in response to HFD as an endogenous defense against atherosclerosis in ApoE-/- model.


Assuntos
Aterosclerose/prevenção & controle , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Proteínas Ribossômicas/deficiência , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Diferenciação Celular , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Feminino , Macrófagos/classificação , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Knockout para ApoE , Células Mieloides/metabolismo , Células Mieloides/patologia , Fagocitose , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de LDL/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
10.
Plant Sci ; 292: 110394, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32005399

RESUMO

Plant cytoplasmic ribosomal proteins not only participate in protein synthesis, but also have specific roles in developmental regulation. However, the high heterogeneity of plant ribosome makes our understanding of these proteins very limited. Here we reported that RPL14B, a component of the ribosome large subunit, is critical for fertilization in Arabidopsis. RPL14B is existed in a majority of organs and tissues. No homozygous rpl14b mutant is available, indicating that RPL14B is irreplaceable for sexual reproduction. Smaller-sized rpl14b pollens could germinate normally, but pollen tube competitiveness is grievously weakened. Beside, cell fate specification is impaired in female gametophytes from heterozygous rpl14b/RPL14B ovules, resulting in defect of micropylar pollen tube attraction. However, this defect could be restored by restricted expression of RPL14B in synergid cells. Successful fertilization requires normal pollen tube growth and precise pollen tube guidance. Thus our results show a novel role of RPL14B in fertilization and shed new light on regulatory mechanism of pollen tube growth and precise pollen tube guidance.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Fertilização , Tubo Polínico/fisiologia , Pólen/anatomia & histologia , Proteínas Ribossômicas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citoplasma , Pólen/genética , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Proteínas Ribossômicas/deficiência , Proteínas Ribossômicas/metabolismo
11.
Nucleic Acids Res ; 47(22): 11790-11806, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31732734

RESUMO

The ribosome is not only a protein-making machine, but also a regulatory element in protein synthesis. This view is supported by our earlier data showing that Arabidopsis mitoribosomes altered due to the silencing of the nuclear RPS10 gene encoding mitochondrial ribosomal protein S10 differentially translate mitochondrial transcripts compared with the wild-type. Here, we used ribosome profiling to determine the contribution of transcriptional and translational control in the regulation of protein synthesis in rps10 mitochondria compared with the wild-type ones. Oxidative phosphorylation system proteins are preferentially synthesized in wild-type mitochondria but this feature is lost in the mutant. The rps10 mitoribosomes show slightly reduced translation efficiency of most respiration-related proteins and at the same time markedly more efficiently synthesize ribosomal proteins and MatR and TatC proteins. The mitoribosomes deficient in S10 protein protect shorter transcript fragments which exhibit a weaker 3-nt periodicity compared with the wild-type. The decrease in the triplet periodicity is particularly drastic for genes containing introns. Notably, splicing is considerably less effective in the mutant, indicating an unexpected link between the deficiency of S10 and mitochondrial splicing. Thus, a shortage of the mitoribosomal S10 protein has wide-ranging consequences on mitochondrial gene expression.


Assuntos
Proteínas de Arabidopsis/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas/genética , Splicing de RNA/genética , Proteínas Ribossômicas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Deleção de Genes , Regulação da Expressão Gênica de Plantas , Proteínas Mitocondriais/genética , Plantas Geneticamente Modificadas , Proteínas Ribossômicas/deficiência
12.
Protein Eng Des Sel ; 32(10): 433-441, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32328658

RESUMO

The phenotypes conferred by recombinant plasmids upon host cells often exhibit variability between replicate populations. This statistical noise is mostly a consequence of adaptive evolution in response to fitness burdens imposed by the plasmids themselves. We developed a novel strategy, 'ribosome pegging', to exclude common unwanted mutations that benefit host cells at the expense of heterologous gene expression. Plasmids that constitutively co-expressed the fluorescent reporter tagRFP and ribosomal protein L23 (rplW) were used to transform Escherichia coli cells that lacked the essential chromosomal rplW gene. Cells within the population that expressed too little L23, or too much, were evidently inviable. Ribosome pegging obviates the need for antibiotics, thus facilitating the deployment of recombinant bacteria in uncontrolled environments. We show that ribosome-pegged E. coli carrying a plasmid that constitutively expresses L23 and an artificially evolved enzyme protects fruit flies from otherwise toxic doses of the insecticide malathion.


Assuntos
DNA Recombinante/genética , Deleção de Genes , Plasmídeos/genética , Proteínas Ribossômicas/deficiência , Proteínas Ribossômicas/genética , Evolução Molecular Direcionada , Fenótipo
13.
Ticks Tick Borne Dis ; 9(3): 638-644, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29444753

RESUMO

Control of ticks has been achieved primarily by the application of acaricides, which has drawbacks such as environmental contamination leading to the selection of pesticide-resistant ticks. The potential of dsRNA to suppress genes critical for tick survival due to its sequence specificity suggests that dsRNAs could be developed as tailor-made pesticides. In this study, the dsRNA of P0 gene from the tick, Rhipicephalus haemaphysaloides, was evaluated as a potential anti-tick agent. Effects of using different dsRNA delivery methods were tested by quantitative RT-PCR and tick bioassays to determine survival, feeding and reproduction. The results showed that P0 dsRNAs could be effectively delivered into ticks and silenced by incubating with liposomes. Incubation time was found to be the most important factor in dsRNA delivery and gene silencing compared with liposome types and dsRNA concentration. The effects of P0 dsRNA treatment on ticks were found to be significant on blood feeding, molting or reproduction. These data show that anti-tick agents based on dsRNAs could have potential use in tick control.


Assuntos
Técnicas de Transferência de Genes , RNA de Cadeia Dupla/genética , Rhipicephalus/genética , Proteínas Ribossômicas/deficiência , Proteínas Ribossômicas/genética , Acaricidas , Animais , Inativação Gênica , Lipossomos/farmacologia , Controle de Pragas/métodos , Praguicidas , Interferência de RNA , RNA de Cadeia Dupla/farmacologia , Reprodução , Rhipicephalus/efeitos dos fármacos , Proteínas Ribossômicas/efeitos dos fármacos , Controle de Ácaros e Carrapatos , Infestações por Carrapato/prevenção & controle
14.
Biochem Biophys Res Commun ; 495(2): 1839-1845, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29225165

RESUMO

Mutations in genes encoding ribosomal proteins have been identified in Diamond-Blackfan anemia (DBA), a rare genetic disorder that presents with a prominent erythroid phenotype. TP53 has been implicated in the pathophysiology of DBA with ribosomal protein (RP) L11 playing a crucial role in the TP53 response. Interestingly, RPL11 also controls the transcriptional activity of c-Myc, an oncoprotein that positively regulates ribosome biogenesis. In the present study, we analyzed the consequences of rpl11 depletion on erythropoiesis and ribosome biogenesis in zebrafish. As expected, Rpl11-deficient zebrafish exhibited defects in ribosome biogenesis and an anemia phenotype. However, co-inhibition of Tp53 did not alleviate the erythroid aplasia in these fish. Next, we explored the role of c-Myc in RPL11-deficient cellular and animal models. c-Myc and its target nucleolar proteins showed upregulation and increased localization in the head region of Rpl11-deficient zebrafish, where the morphological abnormalities and tp53 expression were more pronounced. Interestingly, in blood cells derived from DBA patients with mutations in RPL11, the biogenesis of ribosomes was defective, but the expression level of c-Myc and its target nucleolar proteins was unchanged. The results suggest a model whereby RPL11 deficiency activates the synthesis of c-Myc target nucleolar proteins, which subsequently triggers a p53 response. These results further demonstrate that the induction of Tp53 mediates the morphological, but not erythroid, defects associated with RPL11 deficiency.


Assuntos
Anemia de Diamond-Blackfan/fisiopatologia , Proteínas Ribossômicas/deficiência , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/patologia , Animais , Modelos Animais de Doenças , Eritropoese/genética , Proteínas de Peixes/deficiência , Proteínas de Peixes/genética , Genes myc , Genes p53 , Humanos , Mutação , Processamento Pós-Transcricional do RNA , Proteínas Ribossômicas/genética , Peixe-Zebra
15.
FEBS J ; 284(11): 1631-1643, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28342293

RESUMO

Ribosomal protein L7/L12 is associated with translation initiation, elongation, and termination by the 70S ribosome. The guanosine 5' triphosphate hydrolase (GTPase) activity of elongation factor G (EF-G) requires the presence of L7/L12, which is critical for ribosomal translocation. Here, we have developed new methods for the complete depletion of L7/L12 from Escherichia coli 70S ribosomes to analyze the effect of L7/L12 on the activities of the GTPase factors EF-G, RF3, IF2, and LepA. Upon removal of L7/L12 from ribosomes, the GTPase activities of EF-G, RF3, and IF2 decreased to basal levels, while the activity of LepA decreased marginally. Upon reconstitution of ribosomes with recombinant L12, the GTPase activities of all GTPases returned to full activity. Moreover, ribosome binding assays indicated that EF-G, RF3, and IF2 require L7/L12 for stable binding in the GTP state, and LepA retained > 50% binding. Lastly, an EF-G∆G' truncation mutant possessed ribosome-dependent GTPase activity, which was insensitive to L7/L12. Our results indicate that L7/L12 is required for stable binding of ribosome-dependent GTPases that harbor direct interactions to the L7/L12 C-terminal domains, either through a G' domain (EF-G, RF3) or a unique N-terminal domain (IF2). Furthermore, we hypothesize this interaction is concomitant with counterclockwise ribosomal intersubunit rotation, which is required for translocation, initiation, and post-termination.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Guanosina Trifosfato/metabolismo , Fator G para Elongação de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Fator de Iniciação 2 em Procariotos/metabolismo , Proteínas Ribossômicas/fisiologia , Ribossomos/metabolismo , Ativação Enzimática , Proteínas de Escherichia coli/genética , Hidrólise , Mutagênese Sítio-Dirigida , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas/deficiência , Proteínas Ribossômicas/genética
16.
Leukemia ; 31(1): 213-221, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27256803

RESUMO

Mutations resulting in constitutive activation of signaling pathways that regulate ribosome biogenesis are among the most common genetic events in acute myeloid leukemia (AML). However, whether ribosome biogenesis presents as a therapeutic target to treat AML remains unexplored. Perturbations in ribosome biogenesis trigger the 5S ribonucleoprotein particle (RNP)-Mdm2-p53 ribosomal stress pathway, and induction of this pathway has been shown to have therapeutic efficacy in Myc-driven lymphoma. In the current study we address the physiological and therapeutic role of the 5S RNP-Mdm2-p53 pathway in AML. By utilizing mice that have defective ribosome biogenesis due to downregulation of ribosomal protein S19 (Rps19), we demonstrate that induction of the 5S RNP-Mdm2-p53 pathway significantly delays the initiation of AML. However, even a severe Rps19 deficiency that normally results in acute bone marrow failure has no consistent efficacy on already established disease. Finally, by using mice that harbor a mutation in the Mdm2 gene disrupting its binding to 5S RNP, we show that loss of the 5S RNP-Mdm2-p53 pathway is dispensable for development of AML. Our study suggests that induction of the 5S RNP-Mdm2-p53 ribosomal stress pathway holds limited potential as a single-agent therapy in the treatment of AML.


Assuntos
Leucemia Mieloide Aguda/etiologia , Ribossomos/fisiologia , Transdução de Sinais/fisiologia , Animais , Camundongos , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/fisiologia , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/fisiologia , Proteínas Ribossômicas/deficiência , Ribossomos/metabolismo , Estresse Fisiológico , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/fisiologia
18.
J Immunol ; 197(6): 2280-9, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27489283

RESUMO

Although ribosomal proteins (RP) are thought to primarily facilitate biogenesis of the ribosome and its ability to synthesize protein, emerging evidence suggests that individual RP can perform critical regulatory functions that control developmental processes. We showed previously that despite the ubiquitous expression of the RP ribosomal protein L22 (Rpl22), germline ablation of Rpl22 in mice causes a selective, p53-dependent block in the development of αß, but not γδ, T cell progenitors. Nevertheless, the basis by which Rpl22 loss selectively induces p53 in αß T cell progenitors remained unclear. We show in this study that Rpl22 regulates the development of αß T cells by restraining endoplasmic reticulum (ER) stress responses. In the absence of Rpl22, ER stress is exacerbated in αß, but not γδ, T cell progenitors. The exacerbated ER stress in Rpl22-deficient αß T lineage progenitors is responsible for selective induction of p53 and their arrest, as pharmacological induction of stress is sufficient to induce p53 and replicate the selective block of αß T cells, and attenuation of ER stress signaling by knockdown of protein kinase R-like ER kinase, an ER stress sensor, blunts p53 induction and rescues development of Rpl22-deficient αß T cell progenitors. Rpl22 deficiency appears to exacerbate ER stress by interfering with the ability of ER stress signals to block new protein synthesis. Our finding that Rpl22 deficiency exacerbates ER stress responses and induces p53 in αß T cell progenitors provides insight into how a ubiquitously expressed RP can perform regulatory functions that are selectively required by some cell lineages but not others.


Assuntos
Estresse do Retículo Endoplasmático , Regulação da Expressão Gênica , Células Precursoras de Linfócitos T/fisiologia , Proteínas de Ligação a RNA/fisiologia , Receptores de Antígenos de Linfócitos T alfa-beta , Proteínas Ribossômicas/fisiologia , Transdução de Sinais , Subpopulações de Linfócitos T/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula/fisiologia , Camundongos , Proteínas Ribossômicas/deficiência , Subpopulações de Linfócitos T/imunologia , Proteína Supressora de Tumor p53/metabolismo
19.
J Genet Genomics ; 43(5): 307-18, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27216296

RESUMO

5q-syndrome is a distinct form of myelodysplastic syndrome (MDS) where a deletion on chromosome 5 is the underlying cause. MDS is characterized by bone marrow failures, including macrocytic anemia. Genetic mapping and studies using various models support the notion that ribosomal protein S14 (RPS14) is the candidate gene for the erythroid failure. Targeted disruption of RPS14 causes an increase in p53 activity and p53-mediated apoptosis, similar to what is observed with other ribosomal proteins. However, due to the higher risk for cancer development in patients with ribosome deficiency, targeting the p53 pathway is not a viable treatment option. To better understand the pathology of RPS14 deficiency in 5q-deletion, we generated a zebrafish model harboring a mutation in the RPS14 gene. This model mirrors the anemic phenotype seen in 5q-syndrome. Moreover, the anemia is due to a late-stage erythropoietic defect, where the erythropoietic defect is initially p53-independent and then becomes p53-dependent. Finally, we demonstrate the versatility of this model to test various pharmacological agents, such as RAP-011, L-leucine, and dexamethasone in order to identify molecules that can reverse the anemic phenotype.


Assuntos
Anemia Macrocítica/genética , Sistemas CRISPR-Cas/genética , Células Eritroides/metabolismo , Edição de Genes , Proteínas Ribossômicas/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra , Anemia/complicações , Anemia Macrocítica/sangue , Anemia Macrocítica/complicações , Animais , Sequência de Bases , Deleção Cromossômica , Cromossomos Humanos Par 5/genética , Modelos Animais de Doenças , Mutação , Proteínas Ribossômicas/deficiência
20.
PLoS One ; 10(11): e0141618, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26545108

RESUMO

Cancer has become a major problem worldwide due to its increasing incidence and mortality rates. Both the 37kDa/67kDa laminin receptor (LRP/LR) and telomerase are overexpressed in cancer cells. LRP/LR enhances the invasiveness of cancer cells thereby promoting metastasis, supporting angiogenesis and hampering apoptosis. An essential component of telomerase, hTERT is overexpressed in 85-90% of most cancers. hTERT expression and increased telomerase activity are associated with tumor progression. As LRP/LR and hTERT both play a role in cancer progression, we investigated a possible correlation between LRP/LR and telomerase. LRP/LR and hTERT co-localized in the perinuclear compartment of tumorigenic breast cancer (MDA_MB231) cells and non-tumorigenic human embryonic kidney (HEK293) cells. FLAG® Co-immunoprecipitation assays confirmed an interaction between LRP/LR and hTERT. In addition, flow cytometry revealed that both cell lines displayed high cell surface and intracellular LRP/LR and hTERT levels. Knock-down of LRP/LR by RNAi technology significantly reduced telomerase activity. These results suggest for the first time a novel function of LRP/LR in contributing to telomerase activity. siRNAs targeting LRP/LR may act as a potential alternative therapeutic tool for cancer treatment by (i) blocking metastasis (ii) promoting angiogenesis (iii) inducing apoptosis and (iv) impeding telomerase activity.


Assuntos
Técnicas de Silenciamento de Genes , Receptores de Laminina/deficiência , Receptores de Laminina/genética , Proteínas Ribossômicas/deficiência , Proteínas Ribossômicas/genética , Telomerase/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Transporte Proteico/genética , RNA Interferente Pequeno/genética , Receptores de Laminina/metabolismo , Proteínas Ribossômicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...