RESUMO
Boron is an important micronutrient in plants and animals. The role of boron in living systems includes coordinated regulation of gene expression, growth and proliferation of higher plants and animals. There are several well-defined genes associated with boron transportation and tolerance in plants and these genes show close homology with human anion exchanger genes. Mutation of these genes also characterizes some genetic disorders. We investigated the toxic effects of boric acid on HEK293 cells and mRNA expression of anion exchanger (SLC4A1, SLC4A2 and SLC4A3) genes. Cytotoxicity of boric acid at different concentrations was tested by using the methylthiazolyldiphenyl-tetrazolium bromide assay. Gene expression profiles were examined using quantitative real-time PCR. In the HEK293 cells, the nontoxic upper concentration of boric acid was 250 µM; more than 500 µM caused cytotoxicity. The 250 µM boric acid concentration increased gene expression level of SLC4A2 up to 8.6-fold and SLC4A3 up to 2.6-fold, after 36-h incubation. There was no significant effect of boric acid on SLC4A1 mRNA expression levels.
Assuntos
Proteínas de Transporte de Ânions/genética , Antiporters/genética , Ácidos Bóricos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Sequência de Bases , Linhagem Celular , Antiportadores de Cloreto-Bicarbonato , Primers do DNA , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Proteínas SLC4ARESUMO
The effect of spironolactone (SL) administration on 17alpha-ethynylestradiol (EE)-induced cholestasis was studied, with emphasis on expression and activity of Mrps. Adult male Wistar rats were divided into the following groups: EE (5 mg/kg daily for 5 days, s.c.), SL (200 micromol/kg daily for 3 days, i.p.), EE+SL (same doses, SL administered the last 3 days of EE treatment), and controls. SL prevented the decrease in bile salt-independent fraction of bile flow induced by EE, in association with normalization of biliary excretion of glutathione. Western blot studies indicate that EE decreased the expression of multidrug resistance-associated protein 2 (Mrp2) by 41% and increased that of Mrp3 by 200%, whereas SL only affected Mrp2 expression (+60%) with respect to controls. The EE+SL group showed increased levels of Mrp2 and Mrp3 to the same extent as that registered for the individual treatments. Real-time polymerase chain reaction studies indicated that up-regulation of Mrp2 and Mrp3 by SL and EE, respectively, was at the transcriptional level. To estimate Mrp2 and Mrp3 activities, apical and basolateral excretion of acetaminophen glucuronide (APAP-glu), a common substrate for both transporters, was measured in the recirculating isolated perfused liver model. Biliary/perfusate excretion ratio was decreased in EE (-88%) and increased in SL (+36%) with respect to controls. Coadministration of rats with SL partially prevented (-53%) impairment induced by EE in this ratio. In conclusion, SL administration to EE-induced cholestatic rats counteracted the decrease in bile flow and biliary excretion of glutathione and APAP-glu, a model Mrp substrate, findings associated with up-regulation of Mrp2 expression.
Assuntos
Colestase Intra-Hepática/prevenção & controle , Etinilestradiol/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Espironolactona/farmacologia , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acetaminofen/análogos & derivados , Acetaminofen/metabolismo , Animais , Proteínas de Transporte de Ânions/metabolismo , Antiporters/metabolismo , Bile/metabolismo , Western Blotting , Colestase Intra-Hepática/induzido quimicamente , Colestase Intra-Hepática/metabolismo , Expressão Gênica/efeitos dos fármacos , Glucuronosiltransferase/metabolismo , Glutationa/metabolismo , Fígado/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Tamanho do Órgão/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas SLC4A , Espironolactona/uso terapêutico , Regulação para Cima/efeitos dos fármacosRESUMO
BACKGROUND: Recent data suggest that canalicular bile secretion involves selective expression and coordinated regulation of aquaporins (AQPs), a family of water channels proteins. In order to further characterize the role of AQPs in this process, an in vitro cell system with retained polarity and expression of AQPs and relevant solute transporters involved in bile formation is highly desirable. The WIF-B cell line is a highly differentiated and polarized rat hepatoma/human fibroblast hybrid, which forms abundant bile canalicular structures. This cell line has been reported to be a good in vitro model for studying hepatocyte polarity. RESULTS: Using RT-PCR, immunoblotting and confocal immunofluorescence, we showed that WIF-B cells express the aquaporin water channels that facilitate the osmotically driven water movements in the liver, i.e. AQP8, AQP9, and AQP0; as well as the key solute transporters involved in the generation of canalicular osmotic gradients, i.e., the bile salt export pump Bsep, the organic anion transporter Mrp2 and the chloride bicarbonate exchanger AE2. The subcellular localization of the AQPs and the solute transporters in WIF-B cells was similar to that in freshly isolated rat hepatocytes and in intact liver. Immunofluorescent costaining studies showed intracellular colocalization of AQP8 and AE2, suggesting the possibility that these transporters are expressed in the same population of pericanalicular vesicles. CONCLUSION: The hepatocyte cell line WIF-B retains the expression and subcellular localization of aquaporin water channels as well as key solute transporters for canalicular bile secretion. Thus, these cells can work as a valuable tool for regulatory and mechanistic studies of the biology of bile formation.
Assuntos
Aquaporinas/metabolismo , Polaridade Celular , Hepatócitos/fisiologia , Frações Subcelulares/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Proteínas de Transporte de Ânions/metabolismo , Antiporters/metabolismo , Canalículos Biliares/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Proteínas do Olho/metabolismo , Imunofluorescência , Hepatócitos/metabolismo , Humanos , Células Híbridas , Canais Iônicos/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas SLC4A , Distribuição TecidualRESUMO
The effects of dapsone (DDS) treatment (30 mg/kg body wt, twice a day, for 4 days) on biliary secretory function, with special emphasis on bile salt independent bile flow (BSIF), were investigated in male and in female Wistar rats. Because DDS is metabolized to its N-hydroxylated parent compound only in male rats, any gender difference in DDS effect can be causally attributed to this metabolite. The two main driving forces for BSIF, the biliary secretion of HCO(3)(-) and glutathione species, were assessed. BSIF was decreased by about 20% in male but not in female rats after DDS treatment. Basal biliary HCO(3)(-) secretion was decreased also by 20% in males. This was associated with a diminished (-37%) expression of the HCO(3)(-) canalicular transporter, anion exchanger 2 (AE2), detected by western blotting. Biliary output of reduced glutathione (GSH) was not modified by DDS irrespective of gender, whereas excretion of oxidized glutathione (GSSG) was increased by 830% in males. This latter finding confirmed a gender-dependent oxidative stress associated with formation of the N-hydroxylated metabolite of DDS. The expression of multidrug resistance-associated protein 2 (Mrp2), a putative transporter of glutathione species, was decreased by 38% as detected by western blotting, clearly dissociating from preserved or increased biliary excretion of GSH and GSSG. In conclusion, our results show an impairment of BSIF by DDS mainly due to a decreased AE2-mediated biliary excretion of HCO(3)(-), formation of the N-hydroxylated metabolite of DDS being a likely mediator. The clinical relevance of these findings is discussed.
Assuntos
Anti-Infecciosos/farmacologia , Ácidos e Sais Biliares/fisiologia , Bile/fisiologia , Dapsona/farmacologia , Animais , Proteínas de Transporte de Ânions/metabolismo , Anti-Infecciosos/farmacocinética , Antiporters/metabolismo , Bicarbonatos/metabolismo , Dapsona/farmacocinética , Feminino , Hidroxilação , Masculino , Metemoglobina/metabolismo , Proteínas Mitocondriais/metabolismo , Ratos , Ratos Wistar , Proteínas Ribossômicas/metabolismo , Proteínas SLC4A , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
The mechanisms involved in spironolactone (SL, 200 micromol/kg body weight, 3 days i.p.)-induced choleresis were explored in vivo by evaluating bile salt export pump (Bsep)-, multidrug resistance-associated protein 2 (Mrp2)-, and anion exchanger 2 (AE2)-mediated secretory processes in rat liver. Hepatic bile salt metabolism was also analyzed. Total bile flow was significantly increased by SL, primarily due to an increase in bile salt-independent bile flow, whereas bile salt secretion was decreased. SL did not produce any choleresis in TR(-) rats. SL decreased the de novo bile salt synthesis rate in concordance with impaired microsomal cholesterol 7 alpha-hydroxylase activity, thus leading to a decrease in endogenous bile salt pool size. In contrast, the maximum secretory rate of tauroursodeoxycholate as well as expression of Bsep protein detected by Western blotting were not affected. Thus, decreased bile salt availability for canalicular transport rather than transport capability itself likely explains reduced biliary secretion of bile salts. Biliary secretion of glutathione, an endogenous substrate of Mrp2, and HCO(3)(-), the AE2 substrate, were increased by SL, as a main factor explaining enhanced bile salt-independent bile flow. Western blot studies revealed increased expression of Mrp2 in response to SL whereas AE2 content remained unchanged. Enhanced activity and expression of Mrp2 was confirmed by analyzing the excretion rate of dinitrophenyl S-glutathione, an exogenous substrate of Mrp2, in isolated hepatocytes and by immunofluorescence microscopy, respectively. We conclude that SL increased bile flow mainly by increasing the biliary secretion of glutathione species and HCO(3)(-); increased expression of Mrp2 is also involved.