Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.111
Filtrar
1.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38719752

RESUMO

Septins are cytoskeletal proteins that participate in cell adhesion, migration, and polarity establishment. The septin subunit SEPT9 directly interacts with the single LIM domain of epithelial protein lost in neoplasm (EPLIN), an actin-bundling protein. Using a human SEPT9 KO fibroblast cell line, we show that cell adhesion and migration are regulated by the interplay between both proteins. The low motility of SEPT9-depleted cells could be partly rescued by increased levels of EPLIN. The normal organization of actin-related filopodia and stress fibers was directly dependent on the expression level of SEPT9 and EPLIN. Increased levels of SEPT9 and EPLIN enhanced the size of focal adhesions in cell protrusions, correlating with stabilization of actin bundles. Conversely, decreased levels had the opposite effect. Our work thus establishes the interaction between SEPT9 and EPLIN as an important link between the septin and the actin cytoskeleton, influencing cell adhesion, motility, and migration.


Assuntos
Adesão Celular , Movimento Celular , Fibroblastos , Adesões Focais , Proteínas com Domínio LIM , Septinas , Humanos , Septinas/metabolismo , Septinas/genética , Movimento Celular/genética , Fibroblastos/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Adesões Focais/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Pseudópodes/metabolismo , Citoesqueleto de Actina/metabolismo , Linhagem Celular , Actinas/metabolismo , Fibras de Estresse/metabolismo
2.
Mol Med Rep ; 29(6)2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38695236

RESUMO

During hematopoiesis, megakaryocytic erythroid progenitors (MEPs) differentiate into megakaryocytic or erythroid lineages in response to specific transcriptional factors, yet the regulatory mechanism remains to be elucidated. Using the MEP­like cell line HEL western blotting, RT­qPCR, lentivirus­mediated downregulation, flow cytometry as well as chromatin immunoprecipitation (ChIp) assay demonstrated that the E26 transformation­specific (ETS) transcription factor friend leukemia integration factor 1 (Fli­1) inhibits erythroid differentiation. The present study using these methods showed that while FLI1­mediated downregulation of GATA binding protein 1 (GATA1) suppresses erythropoiesis, its direct transcriptional induction of GATA2 promotes megakaryocytic differentiation. GATA1 is also involved in megakaryocytic differentiation through regulation of GATA2. By contrast to FLI1, the ETS member erythroblast transformation­specific­related gene (ERG) negatively controls GATA2 and its overexpression through exogenous transfection blocks megakaryocytic differentiation. In addition, FLI1 regulates expression of LIM Domain Binding 1 (LDB1) during erythroid and megakaryocytic commitment, whereas shRNA­mediated depletion of LDB1 downregulates FLI1 and GATA2 but increases GATA1 expression. In agreement, LDB1 ablation using shRNA lentivirus expression blocks megakaryocytic differentiation and modestly suppresses erythroid maturation. These results suggested that a certain threshold level of LDB1 expression enables FLI1 to block erythroid differentiation. Overall, FLI1 controlled the commitment of MEP to either erythroid or megakaryocytic lineage through an intricate regulation of GATA1/GATA2, LDB1 and ERG, exposing multiple targets for cell fate commitment and therapeutic intervention.


Assuntos
Diferenciação Celular , Células Eritroides , Megacariócitos , Humanos , Diferenciação Celular/genética , Linhagem Celular , Células Eritroides/metabolismo , Células Eritroides/citologia , Fator de Transcrição GATA1/metabolismo , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA2/genética , Regulação da Expressão Gênica , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Megacariócitos/metabolismo , Megacariócitos/citologia , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Regulador Transcricional ERG/metabolismo , Regulador Transcricional ERG/genética
3.
J Agric Food Chem ; 72(21): 12240-12250, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38764183

RESUMO

LIM domain binding 3 (LDB3) serves as a striated muscle-specific Z-band alternatively spliced protein that plays an important role in mammalian skeletal muscle development, but its regulatory role and molecular mechanism in avian muscle development are still unclear. In this study, we reanalyzed RNA sequencing data sets of 1415 samples from 21 chicken tissues published in the NCBI GEO database. First, three variants (LDB3-X, LDB3-XN1, and LDB3-XN2) generated by alternative splicing of the LDB3 gene were identified in chicken skeletal muscle, among which LDB3-XN1 and LDB3-XN2 are novel variants. LDB3-X and LDB3-XN1 are derived from exon skipping in chicken skeletal muscle at the E18-D7 stage and share three LIM domains, but LDB3-XN2 lacks a LIM domain. Our results preliminarily suggest that the formation of three variants of LDB3 is regulated by RBM20. The three splice isomers have divergent functions in skeletal muscle according to in vitro and in vivo assays. Finally, we identified the mechanism by which different variants play different roles through interactions with IGF2BP1 and MYHC, which promote the proliferation and differentiation of chicken myoblasts, in turn regulating chicken myogenesis. In conclusion, this study revealed the divergent roles of three LDB3 variants in chicken myogenesis and muscle remodeling and demonstrated their regulatory mechanism through protein-protein interactions.


Assuntos
Processamento Alternativo , Galinhas , Proteínas com Domínio LIM , Desenvolvimento Muscular , Músculo Esquelético , Animais , Galinhas/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/química , Músculo Esquelético/crescimento & desenvolvimento , Desenvolvimento Muscular/genética , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Mioblastos/metabolismo , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Proteínas Aviárias/química , Diferenciação Celular , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química
4.
Invest Ophthalmol Vis Sci ; 65(4): 43, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38683564

RESUMO

Purpose: Complement dysregulation is a key component in the pathogenesis of age-related macular degeneration (AMD) and related diseases such as early-onset macular drusen (EOMD). Although genetic variants of complement factor H (CFH) are associated with AMD risk, the impact of CFH and factor H-like protein 1 (FHL-1) expression on local complement activity in human retinal pigment epithelium (RPE) remains unclear. Methods: We identified a novel CFH variant in a family with EOMD and generated patient induced pluripotent stem cell (iPSC)-derived RPE cells. We assessed CFH and FHL-1 co-factor activity through C3b breakdown assays and measured complement activation by immunostaining for membrane attack complex (MAC) formation. Expression of CFH, FHL-1, local alternative pathway (AP) components, and regulators of complement activation (RCA) in EOMD RPE cells was determined by quantitative PCR, western blot, and immunostaining. Isogenic EOMD (cEOMD) RPE was generated using CRISPR/Cas9 gene editing. Results: The CFH variant (c.351-2A>G) resulted in loss of CFH and FHL-1 expression and significantly reduced CFH and FHL-1 protein expression (∼50%) in EOMD iPSC RPE cells. These cells exhibited increased MAC deposition upon exposure to normal human serum. Under inflammatory or oxidative stress conditions, CFH and FHL-1 expression in EOMD RPE cells paralleled that of controls, whereas RCA expression, including MAC formation inhibitors, was elevated. CRISPR/Cas9 correction restored CFH/FHL-1 expression and mitigated alternative pathway complement activity in cEOMD RPE cells. Conclusions: Identification of a novel CFH variant in patients with EOMD resulting in reduced CFH and FHL-1 and increased local complement activity in EOMD iPSC RPE supports the involvement of CFH haploinsufficiency in EOMD pathogenesis.


Assuntos
Fator H do Complemento , Haploinsuficiência , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM , Degeneração Macular , Proteínas Musculares , Epitélio Pigmentado da Retina , Humanos , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Degeneração Macular/genética , Degeneração Macular/metabolismo , Masculino , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Inativadoras do Complemento C3b/genética , Proteínas Inativadoras do Complemento C3b/metabolismo , Ativação do Complemento/genética , Linhagem , Western Blotting , Proteínas do Sistema Complemento/metabolismo , Proteínas do Sistema Complemento/genética , Drusas Retinianas/genética , Drusas Retinianas/metabolismo , Pessoa de Meia-Idade
5.
Cells ; 13(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38667334

RESUMO

Meat yield, determined by muscle growth and development, is an important economic trait for the swine industry and a focus of research in animal genetics and breeding. PDZ and LIM domain 5 (PDLIM5) are cytoskeleton-related proteins that play key roles in various tissues and cells. These proteins have multiple isoforms, primarily categorized as short (PDLIM5-short) and long (PDLIM5-long) types, distinguished by the absence and presence of an LIM domain, respectively. However, the expression patterns of swine PDLIM5 isoforms and their regulation during porcine skeletal muscle development remain largely unexplored. We observed that PDLIM5-long was expressed at very low levels in pig muscles and that PDLIM5-short and total PDLIM5 were highly expressed in the muscles of slow-growing pigs, suggesting that PDLIM5-short, the dominant transcript in pigs, is associated with a slow rate of muscle growth. PDLIM5-short suppressed myoblast proliferation and myogenic differentiation in vitro. We also identified two single nucleotide polymorphisms (-258 A > T and -191 T > G) in the 5' flanking region of PDLIM5, which influenced the activity of the promoter and were associated with muscle growth rate in pigs. In summary, we demonstrated that PDLIM5-short negatively regulates myoblast proliferation and differentiation, providing a theoretical basis for improving pig breeding programs.


Assuntos
Proteínas com Domínio LIM , Desenvolvimento Muscular , Animais , Desenvolvimento Muscular/genética , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Suínos , Proliferação de Células/genética , Diferenciação Celular/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Mioblastos/metabolismo , Mioblastos/citologia , Regiões Promotoras Genéticas/genética
6.
Cell Signal ; 119: 111155, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38565413

RESUMO

BACKGROUND: Esophageal cancer (EC) is highly ranked among all cancers in terms of its incidence and mortality rates. MicroRNAs (miRNAs) are considered to play key regulatory parts in EC. Multiple research studies have indicated the involvement of miR-3682-3p and four and a half LIM domain protein 1 (FHL1) in the achievement of tumors. The aim of this research was to clarify the significance of these genes and their possible molecular mechanism in EC. METHODS: Data from a database and the tissue microarray were made to analyze the expression and clinical significance of miR-3682-3p or FHL1 in EC. Reverse transcription quantitative PCR and Western blotting were used to detect the expression levels of miR-3682-3p and FHL1 in EC cells. CCK8, EdU, wound healing, Transwell, flow cytometry, and Western blotting assays were performed to ascertain the biological roles of miR-3682-3p and FHL1 in EC cells. To confirm the impact of miR-3682-3p in vivo, a subcutaneous tumor model was created in nude mice. The direct interaction between miR-3682-3p and FHL1 was demonstrated through a luciferase assay, and the western blotting technique was employed to assess the levels of crucial proteins within the Wnt/ß-catenin pathway. RESULTS: The noticeable increase in the expression of miR-3682-3p and the decrease in the expression of FHL1 were observed, which correlated with a negative impact on the patients' overall survival. Upregulation of miR-3682-3p expression promoted the growth and metastasis of EC, while overexpression of FHL1 partially reversed these effects. Finally, miR-3682-3p motivates the Wnt/ß-catenin signal transduction by directly targeting FHL1. CONCLUSION: MiR-3682-3p along the FHL1 axis activated the Wnt/ß-catenin signaling pathway and thus promoted EC malignancy.


Assuntos
Proliferação de Células , Neoplasias Esofágicas , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM , Camundongos Nus , MicroRNAs , Proteínas Musculares , Via de Sinalização Wnt , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Animais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Linhagem Celular Tumoral , Camundongos , Masculino , Feminino , Progressão da Doença , Pessoa de Meia-Idade , beta Catenina/metabolismo , Camundongos Endogâmicos BALB C , Movimento Celular/genética
7.
J Biol Chem ; 300(5): 107254, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569934

RESUMO

Nesprins comprise a family of multi-isomeric scaffolding proteins, forming the linker of nucleoskeleton-and-cytoskeleton complex with lamin A/C, emerin and SUN1/2 at the nuclear envelope. Mutations in nesprin-1/-2 are associated with Emery-Dreifuss muscular dystrophy (EDMD) with conduction defects and dilated cardiomyopathy (DCM). We have previously observed sarcomeric staining of nesprin-1/-2 in cardiac and skeletal muscle, but nesprin function in this compartment remains unknown. In this study, we show that specific nesprin-2 isoforms are highly expressed in cardiac muscle and localize to the Z-disc and I band of the sarcomere. Expression of GFP-tagged nesprin-2 giant spectrin repeats 52 to 53, localized to the sarcomere of neonatal rat cardiomyocytes. Yeast two-hybrid screening of a cardiac muscle cDNA library identified telethonin and four-and-half LIM domain (FHL)-2 as potential nesprin-2 binding partners. GST pull-down and immunoprecipitation confirmed the individual interactions between nesprin-2/telethonin and nesprin-2/FHL-2, and showed that nesprin-2 and telethonin binding was dependent on telethonin phosphorylation status. Importantly, the interactions between these binding partners were impaired by mutations in nesprin-2, telethonin, and FHL-2 identified in EDMD with DCM and hypertrophic cardiomyopathy patients. These data suggest that nesprin-2 is a novel sarcomeric scaffold protein that may potentially participate in the maintenance and/or regulation of sarcomeric organization and function.


Assuntos
Conectina , Proteínas com Domínio LIM , Proteínas Musculares , Miócitos Cardíacos , Proteínas do Tecido Nervoso , Proteínas Nucleares , Sarcômeros , Miócitos Cardíacos/metabolismo , Animais , Sarcômeros/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Ratos , Humanos , Conectina/metabolismo , Conectina/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ligação Proteica , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Fatores de Transcrição , Proteínas com Homeodomínio LIM
8.
J Mol Cell Cardiol ; 191: 40-49, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604403

RESUMO

The heart has the ability to detect and respond to changes in mechanical load through a process called mechanotransduction. In this study, we focused on investigating the role of the cardiac-specific N2B element within the spring region of titin, which has been proposed to function as a mechanosensor. To assess its significance, we conducted experiments using N2B knockout (KO) mice and wildtype (WT) mice, subjecting them to three different conditions: 1) cardiac pressure overload induced by transverse aortic constriction (TAC), 2) volume overload caused by aortocaval fistula (ACF), and 3) exercise-induced hypertrophy through swimming. Under conditions of pressure overload (TAC), both genotypes exhibited similar hypertrophic responses. In contrast, WT mice displayed robust left ventricular hypertrophy after one week of volume overload (ACF), while the KO mice failed to undergo hypertrophy and experienced a high mortality rate. Similarly, swim exercise-induced hypertrophy was significantly reduced in the KO mice. RNA-Seq analysis revealed an abnormal ß-adrenergic response to volume overload in the KO mice, as well as a diminished response to isoproterenol-induced hypertrophy. Because it is known that the N2B element interacts with the four-and-a-half LIM domains 1 and 2 (FHL1 and FHL2) proteins, both of which have been associated with mechanotransduction, we evaluated these proteins. Interestingly, while volume-overload resulted in FHL1 protein expression levels that were comparable between KO and WT mice, FHL2 protein levels were reduced by over 90% in the KO mice compared to WT. This suggests that in response to volume overload, FHL2 might act as a signaling mediator between the N2B element and downstream signaling pathways. Overall, our study highlights the importance of the N2B element in mechanosensing during volume overload, both in physiological and pathological settings.


Assuntos
Conectina , Mecanotransdução Celular , Camundongos Knockout , Animais , Camundongos , Conectina/metabolismo , Conectina/genética , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/genética , Miocárdio/metabolismo , Miocárdio/patologia , Masculino , Condicionamento Físico Animal , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/genética , Modelos Animais de Doenças , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Proteínas Quinases , Peptídeos e Proteínas de Sinalização Intracelular
9.
Cancer Immunol Immunother ; 73(4): 69, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430268

RESUMO

BACKGROUND: Investigations elucidating the complex immunological mechanisms involved in colorectal cancer (CRC) and accurately predicting patient outcomes via bulk RNA-Seq analysis have been notably limited. This study aimed to identify the immune status of CRC patients, construct a prognostic model, and identify prognostic signatures via bulk RNA sequencing (RNA-seq) and single-cell RNA-seq (scRNA-seq). METHODS: The scRNA-seq data of CRC were downloaded from Gene Expression Omnibus (GEO). The UCSC Xena database was used to obtain bulk RNA-seq data. Differentially expressed gene (DEG), functional enrichment, and random forest analyses were conducted in order to identify core genes associated with colorectal cancer (CRC) that were relevant to prognosis. A molecular immune prediction model was developed using logistic regression after screening features using the least absolute shrinkage and selection operator (LASSO). The differences in immune cell infiltration, mutation, chemotherapeutic drug sensitivity, cellular senescence, and communication between patients who were at high and low risk of CRC according to the predictive model were investigated. The prognostic genes that were closely associated with CRC were identified by random survival forest (RSF) analysis. The expression levels and clinical significance of the hub genes were analyzed in vitro. The LoVo cell line was employed to ascertain the biological role of thyroid hormone receptor-interacting protein 6 (TRIP6). RESULTS: A total of seven main cell subtypes were identified by scRNA-seq analysis. A molecular immune predictive model was constructed based on the risk scores. The risk score was significantly associated with OS, stage, mutation burden, immune cell infiltration, response to immunotherapy, key pathways, and cell-cell communication. The functions of the six hub genes were determined and further utilized to establish a regulatory network. Our findings unequivocally confirmed that TRIP6 upregulation was verified in the CRC samples. After knocking down TRIP6, cell proliferation, migration, and invasion of LoVo cells were inhibited, and apoptosis was promoted. CONCLUSIONS: The molecular predictive model reliably distinguished the immune status of CRC patients. We further revealed that TRIP6 may act as an oncogene in CRC, making it a promising candidate for targeted therapy and as a prognostic marker for CRC.


Assuntos
Neoplasias Colorretais , Imunoterapia , Humanos , Proteínas Adaptadoras de Transdução de Sinal , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/terapia , Proteínas com Domínio LIM , Prognóstico , RNA-Seq , Análise de Sequência de RNA , Fatores de Transcrição
10.
Cell Mol Life Sci ; 81(1): 158, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556571

RESUMO

Mutations in cysteine and glycine-rich protein 3 (CSRP3)/muscle LIM protein (MLP), a key regulator of striated muscle function, have been linked to hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) in patients. However, the roles of CSRP3 in heart development and regeneration are not completely understood. In this study, we characterized a novel zebrafish gene-trap line, gSAIzGFFM218A, which harbors an insertion in the csrp3 genomic locus, heterozygous fish served as a csrp3 expression reporter line and homozygous fish served as a csrp3 mutant line. We discovered that csrp3 is specifically expressed in larval ventricular cardiomyocytes (CMs) and that csrp3 deficiency leads to excessive trabeculation, a common feature of CSRP3-related HCM and DCM. We further revealed that csrp3 expression increased in response to different cardiac injuries and was regulated by several signaling pathways vital for heart regeneration. Csrp3 deficiency impeded zebrafish heart regeneration by impairing CM dedifferentiation, hindering sarcomere reassembly, and reducing CM proliferation while aggravating apoptosis. Csrp3 overexpression promoted CM proliferation after injury and ameliorated the impairment of ventricle regeneration caused by pharmacological inhibition of multiple signaling pathways. Our study highlights the critical role of Csrp3 in both zebrafish heart development and regeneration, and provides a valuable animal model for further functional exploration that will shed light on the molecular pathogenesis of CSRP3-related human cardiac diseases.


Assuntos
Cardiomiopatia Hipertrófica , Proteínas com Domínio LIM , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Cisteína/genética , Cisteína/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Miócitos Cardíacos/metabolismo
13.
Viruses ; 16(3)2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38543725

RESUMO

Coronavirus disease 2019 (COVID-19) is an infection caused by SARS-CoV-2. Genome-wide association studies (GWASs) have suggested a strong association of genetic factors with the severity of the disease. However, many of these studies have been completed in European populations, and little is known about the genetic variability of indigenous peoples' underlying infection by SARS-CoV-2. The objective of the study is to investigate genetic variants present in the genes AQP3, ARHGAP27, ELF5L, IFNAR2, LIMD1, OAS1 and UPK1A, selected due to their association with the severity of COVID-19, in a sample of indigenous people from the Brazilian Amazon in order to describe potential new and already studied variants. We performed the complete sequencing of the exome of 64 healthy indigenous people from the Brazilian Amazon. The allele frequency data of the population were compared with data from other continental populations. A total of 66 variants present in the seven genes studied were identified, including a variant with a high impact on the ARHGAP27 gene (rs201721078) and three new variants located in the Amazon Indigenous populations (INDG) present in the AQP3, IFNAR2 and LIMD1 genes, with low, moderate and modifier impact, respectively.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/genética , SARS-CoV-2/genética , Estudo de Associação Genômica Ampla , Frequência do Gene , Povos Indígenas/genética , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM
14.
Leukemia ; 38(5): 951-962, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38553571

RESUMO

Relapse in T-cell acute lymphoblastic leukemia (T-ALL) may signify the persistence of leukemia-initiating cells (L-ICs). Ectopic TAL1/LMO expression defines the largest subset of T-ALL, but its role in leukemic transformation and its impact on relapse-driving L-ICs remain poorly understood. In TAL1/LMO mouse models, double negative-3 (DN3; CD4-CD8-CD25+CD44-) thymic progenitors harbored L-ICs. However, only a subset of DN3 leukemic cells exhibited L-IC activity, and studies linking L-ICs and chemotolerance are needed. To investigate L-IC heterogeneity, we used mouse models and applied single-cell RNA-sequencing and nucleosome labeling techniques in vivo. We identified a DN3 subpopulation with a cell cycle-restricted profile and heightened TAL1/LMO2 activity, that expressed genes associated with stemness and quiescence. This dormant DN3 subset progressively expanded throughout leukemogenesis, displaying intrinsic chemotolerance and enrichment in genes linked to minimal residual disease. Examination of TAL/LMO patient samples revealed a similar pattern in CD7+CD1a- thymic progenitors, previously recognized for their L-IC activity, demonstrating cell cycle restriction and chemotolerance. Our findings substantiate the emergence of dormant, chemotolerant L-ICs during leukemogenesis, and demonstrate that Tal1 and Lmo2 cooperate to promote DN3 quiescence during the transformation process. This study provides a deeper understanding of TAL1/LMO-induced T-ALL and its clinical implications in therapy failure.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas com Domínio LIM , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Animais , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Timo/metabolismo , Timo/patologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
15.
Nat Commun ; 15(1): 1950, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431640

RESUMO

In muscular dystrophies, muscle fibers loose integrity and die, causing significant suffering and premature death. Strikingly, the extraocular muscles (EOMs) are spared, functioning well despite the disease progression. Although EOMs have been shown to differ from body musculature, the mechanisms underlying this inherent resistance to muscle dystrophies remain unknown. Here, we demonstrate important differences in gene expression as a response to muscle dystrophies between the EOMs and trunk muscles in zebrafish via transcriptomic profiling. We show that the LIM-protein Fhl2 is increased in response to the knockout of desmin, plectin and obscurin, cytoskeletal proteins whose knockout causes different muscle dystrophies, and contributes to disease protection of the EOMs. Moreover, we show that ectopic expression of fhl2b can partially rescue the muscle phenotype in the zebrafish Duchenne muscular dystrophy model sapje, significantly improving their survival. Therefore, Fhl2 is a protective agent and a candidate target gene for therapy of muscular dystrophies.


Assuntos
Proteínas com Domínio LIM , Proteínas Musculares , Distrofia Muscular de Duchenne , Músculos Oculomotores , Animais , Proteínas do Citoesqueleto/metabolismo , Distrofina/genética , Expressão Ectópica do Gene , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Músculos Oculomotores/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas Musculares/metabolismo , Proteínas com Domínio LIM/metabolismo
16.
Int J Rheum Dis ; 27(2): e15036, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38333999

RESUMO

Myofibrillar myopathies (MFMs) are a group of genetically heterogeneous diseases affecting the skeletal and cardiac muscles. Myofibrillar myopathies are characterized by focal lysis of myogenic fibers and integration of degraded myogenic fiber products into inclusion bodies, which are typically rich in desmin and many other proteins. Herein, we report a case of a 54-year-old woman who experienced bilateral thigh weakness for over three years. She was diagnosed with MFMs based on muscle biopsy findings and the presence of a novel mutation in exon 8 of the LDB3 gene. Myofibrillar myopathies caused by a mutation in the LDB3 gene are extremely uncommon and often lack distinct clinical characteristics and typically exhibit a slow disease progression. When considering a diagnosis of MFMs, particularly in complex instances of autosomal dominant myopathies where muscle biopsies do not clearly indicate MFMs, it becomes crucial for clinicians to utilize genetic test as a diagnostic tool.


Assuntos
Miofibrilas , Miopatias Congênitas Estruturais , Feminino , Humanos , Pessoa de Meia-Idade , Miofibrilas/genética , Miofibrilas/metabolismo , Miofibrilas/patologia , Miopatias Congênitas Estruturais/diagnóstico , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/metabolismo , Mutação , Éxons , Miocárdio , Músculo Esquelético/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo
17.
Am J Pathol ; 194(5): 708-720, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38320628

RESUMO

Psoriasis is a chronic inflammatory skin disease characterized by the activation of keratinocytes and the infiltration of immune cells. Overexpression of the transcription factor LIM-domain only protein 4 (LMO4) promoted by IL-23 has critical roles in regulating the proliferation and differentiation of psoriatic keratinocytes. IL-6, an autocrine cytokine in psoriatic epidermis, is a key mediator of IL-23/T helper 17-driven cutaneous inflammation. However, little is known about how IL-6 regulates the up-regulation of LMO4 expression in psoriatic lesions. In this study, human immortalized keratinocyte cells, clinical biopsy specimens, and an animal model of psoriasis induced by imiquimod cream were used to investigate the role of IL-6 in the regulation of keratinocyte proliferation and differentiation. Psoriatic epidermis showed abnormal expression of IL-6 and LMO4. IL-6 up-regulated the expression of LMO4 and promoted keratinocyte proliferation and differentiation. Furthermore, in vitro and in vivo studies showed that IL-6 up-regulates LMO4 expression by activating the mitogen-activated extracellular signal-regulated kinase (MEK)/extracellular signal-regulated kinase (ERK)/NF-κB signaling pathway. These results suggest that IL-6 can activate the NF-κB signaling pathway, up-regulate the expression of LMO4, lead to abnormal proliferation and differentiation of keratinocytes, and promote the occurrence and development of psoriasis.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Psoríase , Animais , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Interleucina-23/efeitos adversos , Interleucina-23/metabolismo , Interleucina-6/metabolismo , Queratinócitos/patologia , Proteínas com Domínio LIM/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Psoríase/patologia
18.
Sci Rep ; 14(1): 4042, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369589

RESUMO

Thyroid hormone receptor interactor 6 (TRIP6) it is an adaptor protein belonging to the zyxin family of LIM proteins, participating in signaling events through interactions with various molecules. Despite this, TRIP6's role in colorectal cancer (CRC), particularly its correlation with glucose metabolism and immune cell infiltration, remains unclear. Through the TCGA and GEO databases, we obtained RNA sequencing data to facilitate our in-depth study and analysis of TRIP6 expression. To investigate the prognostic value of TRIP6 in CRC, we also used univariate Cox regression analysis. In addition, this study also covered a series of analyses, including clinicopathological analysis, functional enrichment analysis, glycolysis correlation analysis, immunoinfiltration analysis, immune checkpoint analysis, and angiogenesis correlation analysis, to gain a comprehensive and in-depth understanding of this biological phenomenon. It has been found that TRIP6 expression is significantly upregulated in CRC and correlates with the stage of the disease. Its overexpression portends a worse survival time. Functional enrichment analysis reveals that TRIP6 is associated with focal adhesion and glycolysis. Mechanistically, TRIP6 appears to exert its tumorigenic effect by regulating the glycolysis-related gene GPI. A higher level of expression of TRIP6 is associated with an increase in the number of iDC immune cells and a decrease in the number of Th1 immune cells. Also, TRIP6 may promote angiogenesis in tumor cells by promoting the expression of JAG2. Our study uncovers the upregulation of TRIP6 in CRC, illuminating its prognostic and diagnostic value within this context. Furthermore, we examine the relationship between TRIP6 expression levels, glycolysis, angiogenesis and immune cell infiltration. This underscores its potential as a biomarker for CRC treatment and as a therapeutic target.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias Colorretais , Proteínas com Domínio LIM , Fatores de Transcrição , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Glicólise , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
J Nat Prod ; 87(4): 837-848, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38417401

RESUMO

Ovarian cancer (OVC) is one of the most aggressive gynecological malignancies worldwide. Although olaparib treatment has shown favorable outcomes against the treatment of OVC, its effectiveness remains limited in some OVC patients. Investigating new strategies to improve the therapeutic efficacy of olaparib against OVC is imperative. Our study identified tabersonine, a natural indole alkaloid, for its potential to increase the chemosensitivity of olaparib in OVC. The combined treatment of olaparib and tabersonine synergistically inhibited cell proliferation in OVC cells and suppressed tumor growth in A2780 xenografts. The combined treatment effectively suppressed epithelial-mesenchymal transition (EMT) by altering the expression of E-cadherin, N-cadherin, and vimentin and induced DNA damage responses. Integrating quantitative proteomics, FHL1 was identified as a potential regulator to modulate EMT after tabersonine treatment. Increased expression of FHL1 was induced by tabersonine treatment, while downregulation of FHL1 reversed the inhibitory effects of tabersonine on OVC cells by mediating EMT. In vivo findings further reflected that the combined treatment of tabersonine and olaparib significantly inhibited tumor growth and OVC metastasis through upregulation of FHL1. Our findings reveal the role of tabersonine in improving the sensitivity of olaparib in OVC through FHL1-mediated EMT, suggesting that tabersonine holds promise for future application in OVC treatment.


Assuntos
Transição Epitelial-Mesenquimal , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM , Proteínas Musculares , Neoplasias Ovarianas , Ftalazinas , Piperazinas , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Alcaloides Indólicos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Quinolinas/farmacologia
20.
Funct Integr Genomics ; 24(1): 25, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324167

RESUMO

Chemotherapy resistance is the main reason for the poor prognosis of ovarian cancer (OC). FHL1 is an important tumour regulator, but its relationship with the prognosis, drug resistance, and tumour microenvironment of OC is unknown. Immunohistochemistry was used to determine FHL1 expression in OC. Kaplan‒Meier plotter was used for survival analysis. The value of gene expression in predicting drug resistance was estimated using the area under the curve (AUC). Bivariate correlation was used to determine the coexpression of two genes. Functional cluster and pathway enrichment were used to uncover hidden signalling pathways. The relationship between gene levels and the tumour microenvironment was visualised through the ggstatsplot and pheatmap packages. The mRNA and protein levels of FHL1 were downregulated in 426 and 100 OC tissues, respectively. Low FHL1 expression was correlated with good progression-free survival (PFS), postprogression survival, and overall survival (OS) in 1815 OC patients, and was further confirmed to be associated with good OS by immunohistochemistry in 152 OC tissues. Furthermore, FHL1 was downregulated in drug-sensitive tissues, while its high expression predicted drug resistance (AUC > 0.65). Mechanistically, FHL1 was coexpressed with FLNC, CAV1, PPP1R12B, and FLNA at the mRNA and protein levels in 558 and 174 OC tissues, respectively, and their expression was downregulated in OC. Additionally, very strong coexpression of FHL1 with the four genes was identified in at least 23 different tumours. Low expression of the four genes was associated with good PFS, and the combination of FHL1 with the four genes provided better prognostic power. Meanwhile, the expression of all five genes was strongly and positively associated with the abundance of macrophages. Low FHL1 expression acts as a favourable factor in OC, probably via positive coexpression with FLNC, CAV1, PPP1R12B, and FLNA.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Macrófagos , RNA Mensageiro , Resistência a Medicamentos , Microambiente Tumoral , Proteínas Musculares , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...