Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Top Dev Biol ; 122: 1-26, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28057261

RESUMO

T-box proteins are key developmental transcription factors in Metazoa. Until recently they were thought to be animal specific and many T-box classes were considered bilaterian specific. Recent genome data from both early-branching animals and their closest unicellular relatives have radically changed this scenario. Thus, we now know that T-box genes originated in premetazoans, being present in the genomes of some extant early-branching fungi and unicellular holozoans. Here, we update the evolutionary classification of T-box families and review the evolution of T-box function in early-branching animals (sponges, ctenophores, placozoans, and cnidarians) and nonmodel bilaterians. We show that concomitant with the origin of Metazoa, the T-box family radiated into the major known T-box classes. On the other hand, while functional studies are still missing for many T-box classes, the emerging picture is that T-box genes have key roles in multiple aspects of development and in adult terminal cell-type differentiation in different animal lineages. A paradigmatic example is that of Brachyury, the founding member of the T-box family, for which several studies indicate a widely conserved role in regulating cell motility in different animal lineages and probably even before the advent of animal multicellularity. Overall, we here review the evolutionary history of T-box genes from holozoans to animals and discuss both their functional diversity and conservation.


Assuntos
Evolução Molecular , Proteínas com Domínio T/classificação , Proteínas com Domínio T/genética , Animais , Sequência de Bases , Sequência Conservada , Proteínas Fetais/química , Proteínas Fetais/genética , Humanos , Morfogênese , Filogenia , Proteínas com Domínio T/química
2.
Cardiol Young ; 25(6): 1093-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25216260

RESUMO

BACKGROUND: Holt-Oram syndrome is characterised by CHD and limb anomalies. Mutations in TBX5 gene, encoding the T-box transcription factor, are responsible for the development of Holt-Oram syndrome, but such mutations are variably detected in 30-75% of patients. METHODS: Clinically diagnosed eight Holt-Oram syndrome patients from six families were evaluated the clinical characteristics, focusing on the cardiac manifestations, in particular, and molecular aetiologies. In addition to the investigation of the mutation of TBX5, SALL4, NKX2.5, and GATA4 genes, which are known to regulate cardiac development by physically and functionally interacting with TBX5, were also analyzed. Multiple ligation-dependent probe amplification analysis was performed to detect exonic deletion and duplication mutations in these genes. RESULTS: All included patients showed cardiac septal defects and upper-limb anomalies. Of the eight patients, seven underwent cardiac surgery, and four suffered from conduction abnormalities such as severe sinus bradycardia and complete atrioventricular block. Although our patients showed typical clinical findings of Holt-Oram syndrome, only three distinct TBX5 mutations were detected in three families: one nonsense, one splicing, and one missense mutation. No new mutations were identified by testing SALL4, NKX2.5, and GATA4 genes. CONCLUSIONS: All Holt-Oram syndrome patients in this study showed cardiac septal anomalies. Half of them showed TBX5 gene mutations. To understand the genetic causes for inherited CHD such as Holt-Oram syndrome is helpful to take care of the patients and their families. Further efforts with large-scale genomic research are required to identify genes responsible for cardiac manifestations or genotype-phenotype relation in Holt-Oram syndrome.


Assuntos
Anormalidades Múltiplas/genética , Cardiopatias Congênitas/genética , Comunicação Interatrial/genética , Deformidades Congênitas das Extremidades Inferiores/genética , Proteínas com Domínio T/classificação , Proteínas com Domínio T/genética , Deformidades Congênitas das Extremidades Superiores/genética , Anormalidades Múltiplas/cirurgia , Criança , Pré-Escolar , Feminino , Fator de Transcrição GATA4/genética , Cardiopatias Congênitas/cirurgia , Comunicação Interatrial/cirurgia , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Humanos , Lactente , Recém-Nascido , Deformidades Congênitas das Extremidades Inferiores/cirurgia , Masculino , Mutação , Linhagem , Fatores de Transcrição/genética , Deformidades Congênitas das Extremidades Superiores/cirurgia
3.
Dev Dyn ; 238(6): 1605-12, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19418442

RESUMO

Mutations in human TBX22 cause X-linked cleft palate with ankyloglossia syndrome (CPX; OMIM 303400). Since the secondary palate was an adaptation to breathing on land, we characterized zebrafish tbx22 to study molecular mechanisms regulating early vertebrate craniofacial patterning. Rapid Amplification of cDNA Ends (RACE) analyses revealed two zebrafish tbx22 splice isoforms, tbx22-1 and tbx22-2, encoding proteins of 444 and 400 amino acids, respectively. tbx22-1 resembles canonical Tbx22 orthologs, while tbx22-2 lacks conserved N-terminal sequence. Developmental RT-PCR revealed that tbx22-1 is maternally and zygotically expressed, while tbx22-2 is expressed zygotically. WISH analyses revealed strong tbx22 mRNA expression in ectomesenchyme underlying the stomodeum, a bilaminar epithelial structure demarcating early mouth formation, and in early presumptive jaw joints. Zebrafish tbx22 expression mirrored some aspects of mammalian Tbx22, consistent with roles in early vertebrate face patterning. These studies identify an early transcription factor governing vertebrate facial development, which may underlie common craniofacial birth disorders. Developmental Dynamics 238:1605-1612, 2009. (c) 2009 Wiley-Liss, Inc.


Assuntos
Processamento Alternativo , Ossos Faciais/embriologia , Crânio/embriologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Padronização Corporal/genética , Anormalidades Craniofaciais/genética , Ossos Faciais/anatomia & histologia , Ossos Faciais/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Dados de Sequência Molecular , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência , Crânio/anatomia & histologia , Crânio/fisiologia , Proteínas com Domínio T/química , Proteínas com Domínio T/classificação , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/química
4.
FEBS Lett ; 579(22): 5024-8, 2005 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-16122738

RESUMO

Most animals are classified as Bilateria and only four phyla are still extant as outgroups, namely Porifera, Placozoa, Cnidaria and Ctenophora. These non-bilaterians were not considered to have a mesoderm and hence mesoderm-specific genes. However, the T-box gene Brachyury could be isolated from sponges, placozoans and cnidarians. Here, we describe the first Brachyury and a Tbx2/3 homologue from a ctenophore. In addition, analysing T-box and homeobox genes under comparable conditions in all four basal phyla lead to the discovery of novel T-box genes in sponges and cnidarians and a Tlx homeobox gene in the ctenophore Pleurobrachia pileus. The conservation of the T-box and the homeobox genes suggest that distinct subfamilies with different roles in bilaterians were already split in non-bilaterians.


Assuntos
Ctenóforos/genética , Proteínas Fetais/genética , Genes Homeobox , Proteínas com Domínio T/genética , Sequência de Aminoácidos , Animais , Evolução Molecular , Humanos , Dados de Sequência Molecular , Família Multigênica , Filogenia , Alinhamento de Sequência , Proteínas com Domínio T/classificação
5.
Dev Biol ; 264(1): 119-40, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14623236

RESUMO

Leg development in Drosophila has been studied in much detail. However, Drosophila limbs form in the larva as imaginal discs and not during embryogenesis as in most other arthropods. Here, we analyze appendage genes in the spider Cupiennius salei and the beetle Tribolium castaneum. Differences in decapentaplegic (dpp) expression suggest a different mode of distal morphogen signaling suitable for the specific geometry of growing limb buds. Also, expression of the proximal genes homothorax (hth) and extradenticle (exd) is significantly altered: in the spider, exd is restricted to the proximal leg and hth expression extends distally, while in insects, exd is expressed in the entire leg and hth is restricted to proximal parts. This reversal of spatial specificity demonstrates an evolutionary shift, which is nevertheless compatible with a conserved role of this gene pair as instructor of proximal fate. Different expression dynamics of dachshund and Distal-less point to modifications in the regulation of the leg gap gene system. We comment on the significance of this finding for attempts to homologize leg segments in different arthropod classes. Comparison of the expression profiles of H15 and optomotor-blind to the Drosophila patterns suggests modifications also in the dorsal-ventral patterning system of the legs. Together, our results suggest alterations in many components of the leg developmental system, namely proximal-distal and dorsal-ventral patterning, and leg segmentation. Thus, the leg developmental system exhibits a propensity to evolutionary change, which probably forms the basis for the impressive diversity of arthropod leg morphologies.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Aranhas/genética , Tribolium/genética , Sequência de Aminoácidos , Animais , Padronização Corporal , Proteínas de Drosophila/classificação , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Extremidades/anatomia & histologia , Extremidades/crescimento & desenvolvimento , Proteínas de Homeodomínio/classificação , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Dados de Sequência Molecular , Proteínas Nucleares/classificação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Filogenia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Alinhamento de Sequência , Aranhas/anatomia & histologia , Aranhas/crescimento & desenvolvimento , Aranhas/metabolismo , Proteínas com Domínio T/classificação , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Tribolium/anatomia & histologia , Tribolium/crescimento & desenvolvimento , Tribolium/metabolismo , Proteína Wnt1
6.
Birth Defects Res C Embryo Today ; 69(1): 25-37, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12768655

RESUMO

BACKGROUND: T-box genes play roles in vertebrate gastrulation and in later organogenesis. Their existence in all metazoans examined so far indicates that this is an evolutionarily ancient gene family. Drosophila melanogaster has eight T-box genes, whereas Caenorhabditis elegans has 22. Mammals appear to have at least 18 T-box genes, comprising five subfamilies. METHODS: A full range of cytological, developmental, molecular and genetic methodologies have recently been applied to the study of T-box genes. RESULTS: Over the last 5 years, mutations in TBX1 and TBX5 have been implicated in two human disorders with haplo-insufficient cardiovascular phenotypes, DiGeorge/velocardiofacial syndrome and Holt-Oram ("heart-hand") syndrome. Interestingly, the number of T-box gene family members discovered to have cardiac or pharyngeal arch expression domains during vertebrate embryonic development has steadily grown. In addition, various Tbx5 loss-of-function models in organisms as distant as the mouse and zebrafish do indeed phenocopy Holt-Oram syndrome. Finally, the intriguing discovery earlier this year that a T-box gene is expressed in a subset of cardioblasts in D. melanogaster suggests that members of this gene family may have fundamental, conserved roles in cardiovascular pattern formation. CONCLUSIONS: These developments prompted us to review the current understanding of the contribution of T-box genes to cardiovascular morphogenesis.


Assuntos
Proteínas Fetais , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias Congênitas/genética , Coração/embriologia , Proteínas com Domínio T/genética , Anormalidades Múltiplas/embriologia , Anormalidades Múltiplas/genética , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Movimento Celular , Embrião de Galinha , Síndrome de DiGeorge/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Evolução Molecular , Coração Fetal/crescimento & desenvolvimento , Cardiopatias Congênitas/embriologia , Humanos , Camundongos , Morfogênese , Família Multigênica , Proteínas com Domínio T/classificação , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/fisiologia , Vertebrados/embriologia , Vertebrados/genética
7.
Int Rev Cytol ; 207: 1-70, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11352264

RESUMO

The T-box gene family was uncovered less than a decade ago but has been recognized as important in controlling many and varied aspects of development in metazoans from hydra to humans. Extensive screening and database searching has revealed several subfamilies of genes with orthologs in species as diverse as Caenorhabditis elegans and humans. The defining feature of the family is a conserved sequence coding for a DNA-binding motif known as the T-box, named after the first-discovered T-box gene, T or Brachyury. Although several T-box proteins have been shown to function as transcriptional regulators, to date only a handful of downstream target genes have been discovered. Similarly, little is known about regulation of the T-box genes themselves. Although not limited to the embryo, expression of T-box genes is characteristically seen in dynamic and highly specific patterns in many tissues and organs during embryogenesis and organogenesis. The essential role of several T-box genes has been demonstrated by the developmental phenotypes of mutant animals.


Assuntos
Regulação da Expressão Gênica , Hydra/genética , Proteínas com Domínio T/classificação , Proteínas com Domínio T/genética , Sequência de Aminoácidos , Animais , Evolução Molecular , Humanos , Hydra/crescimento & desenvolvimento , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica , Filogenia , Alinhamento de Sequência , Proteínas com Domínio T/química , Proteínas com Domínio T/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA