Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 434(9): 167516, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35240128

RESUMO

Stress granule (SG) formation mediated by Ras GTPase-activating protein-binding protein 1 (G3BP1) constitutes a key obstacle for viral replication, which makes G3BP1 a frequent target for viruses. For instance, the SARS-CoV-2 nucleocapsid (N) protein interacts with G3BP1 directly to suppress SG assembly and promote viral production. However, the molecular basis for the SARS-CoV-2 N - G3BP1 interaction remains elusive. Here we report biochemical and structural analyses of the SARS-CoV-2 N - G3BP1 interaction, revealing differential contributions of various regions of SARS-CoV-2 N to G3BP1 binding. The crystal structure of the NTF2-like domain of G3BP1 (G3BP1NTF2) in complex with a peptide derived from SARS-CoV-2 N (residues 1-25, N1-25) reveals that SARS-CoV-2 N1-25 occupies a conserved surface groove of G3BP1NTF2 via surface complementarity. We show that a φ-x-F (φ, hydrophobic residue) motif constitutes the primary determinant for G3BP1NTF2-targeting proteins, while the flanking sequence underpins diverse secondary interactions. We demonstrate that mutation of key interaction residues of the SARS-CoV-2 N1-25 - G3BP1NTF2 complex leads to disruption of the SARS-CoV-2 N - G3BP1 interaction in vitro. Together, these results provide a molecular basis of the strain-specific interaction between SARS-CoV-2 N and G3BP1, which has important implications for the development of novel therapeutic strategies against SARS-CoV-2 infection.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus , DNA Helicases , Proteínas de Ligação a Poli-ADP-Ribose , Domínios e Motivos de Interação entre Proteínas , RNA Helicases , SARS-CoV-2 , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/genética , Cristalografia , DNA Helicases/química , Humanos , Mutação , Fosfoproteínas/química , Fosfoproteínas/genética , Proteínas de Ligação a Poli-ADP-Ribose/química , RNA Helicases/química , Proteínas com Motivo de Reconhecimento de RNA/química
2.
Science ; 372(6549): eabf6548, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34739333

RESUMO

Stress granules are dynamic, reversible condensates composed of RNA and protein that assemble in eukaryotic cells in response to a variety of stressors and are normally disassembled after stress is removed. The composition and assembly of stress granules is well understood, but little is known about the mechanisms that govern disassembly. Impaired disassembly has been implicated in some diseases including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Using cultured human cells, we found that stress granule disassembly was context-dependent: Specifically in the setting of heat shock, disassembly required ubiquitination of G3BP1, the central protein within the stress granule RNA-protein network. We found that ubiquitinated G3BP1 interacted with the endoplasmic reticulum­associated protein FAF2, which engaged the ubiquitin-dependent segregase p97/VCP (valosin-containing protein). Thus, targeting of G3BP1 weakened the stress granule­specific interaction network, resulting in granule disassembly.


Assuntos
Proteínas Sanguíneas/metabolismo , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Resposta ao Choque Térmico , Proteínas de Membrana/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas Ubiquitinadas/metabolismo , Proteína com Valosina/metabolismo , Autofagia , Linhagem Celular Tumoral , DNA Helicases/química , DNA Helicases/genética , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , Mutação , Proteínas de Ligação a Poli-ADP-Ribose/química , Proteínas de Ligação a Poli-ADP-Ribose/genética , Poliubiquitina/metabolismo , Domínios Proteicos , Proteólise , RNA Helicases/química , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/química , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas Ubiquitinadas/química , Ubiquitinação
3.
Front Immunol ; 12: 718548, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34526993

RESUMO

Ras-GTPase-activating protein (SH3 domain)-binding protein (G3BP) is an RNA binding protein. G3BP is a key component of stress granules (SGs) and can interact with many host proteins to regulate the expression of SGs. As an antiviral factor, G3BP can interact with viral proteins to regulate the assembly of SGs and thus exert antiviral effects. However, many viruses can also use G3BP as a proximal factor and recruit translation initiation factors to promote viral proliferation. G3BP regulates mRNA translation and attenuation to regulate gene expression; therefore, it is closely related to diseases, such as cancer, embryonic death, arteriosclerosis, and neurodevelopmental disorders. This review discusses the important discoveries and developments related G3BP in the biological field over the past 20 years, which includes the formation of SGs, interaction with viruses, stability of RNA, and disease progression.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/química , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/química , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/química , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Animais , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , Vírus de RNA/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pesquisa , Estresse Fisiológico , Relação Estrutura-Atividade , Replicação Viral
4.
Int J Biol Macromol ; 190: 636-648, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517025

RESUMO

SARS-CoV-2 nucleocapsid (N) protein undergoes RNA-induced phase separation (LLPS) and sequesters the host key stress granule (SG) proteins, Ras-GTPase-activating protein SH3-domain-binding protein 1 and 2 (G3BP1 and G3BP2) to inhibit SG formation. This will allow viral packaging and propagation in host cells. Based on a genomic-guided meta-analysis, here we identify upstream regulatory elements modulating the expression of G3BP1 and G3BP2 (collectively called G3BP1/2). Using this strategy, we have identified FOXA1, YY1, SYK, E2F-1, and TGFBR2 as activators and SIN3A, SRF, and AKT-1 as repressors of G3BP1/2 genes. Panels of the activators and repressors were then used to identify drugs that change their gene expression signatures. Two drugs, imatinib, and decitabine have been identified as putative modulators of G3BP1/2 genes and their regulators, suggesting their role as COVID-19 mitigation agents. Molecular docking analysis suggests that both drugs bind to G3BP1/2 with a much higher affinity than the SARS-CoV-2 N protein. This study reports imatinib and decitabine as candidate drugs against N protein and G3BP1/2 protein.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Tratamento Farmacológico da COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus/química , DNA Helicases/química , Decitabina/química , Mesilato de Imatinib/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Ligação a Poli-ADP-Ribose/química , RNA Helicases/química , Proteínas com Motivo de Reconhecimento de RNA/química , Proteínas de Ligação a RNA/química , SARS-CoV-2/química , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , COVID-19/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , DNA Helicases/antagonistas & inibidores , DNA Helicases/metabolismo , Decitabina/farmacologia , Sistemas de Liberação de Medicamentos , Genômica , Mesilato de Imatinib/farmacologia , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/antagonistas & inibidores , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/metabolismo
5.
J Virol ; 95(19): e0015321, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34287041

RESUMO

Orf virus (ORFV) is a highly epitheliotropic parapoxvirus with zoonotic significance that induces proliferative lesions in the skin of sheep, goats, and humans. Several viral proteins carried by ORFV, including nuclear factor-κB (NF-κB) inhibitors, play important roles in hijacking host-associated proteins for viral evasion of the host innate immune response. However, the roles of proteins with unknown functions in viral replication and latent infection remain to be explored. Here, we present data demonstrating that the ORF120, an early-late ORFV-encoded protein, activates the NF-κB pathway in the early phase of infection, which implies that ORFV may regulate NF-κB through a biphasic mechanism. A DUAL membrane yeast two-hybrid system and coimmunoprecipitation experiments revealed that the ORF120 protein interacts with Ras-GTPase-activating protein (SH3 domain) binding protein 1 (G3BP1). The overexpression of the ORF120 protein can efficiently increase the expression of G3BP1 and nuclear translocation of NF-κB-p65 in primary ovine fetal turbinate (OFTu) and HeLa cells. The knockdown of G3BP1 significantly decreased ORF120-induced NF-κB activation, indicating that G3BP1 is involved in ORF120-induced NF-κB pathway activation. A dual-luciferase reporter assay revealed that ORF120 could positively regulate the NF-κB pathway through the full-length G3BP1 or the domain of G3BP1RRM+RGG. In conclusion, we demonstrate, for the first time, that the ORF120 protein is capable of positively regulating NF-κB signaling by interacting with G3BP1, providing new insights into ORFV pathogenesis and a theoretical basis for antiviral drug design. IMPORTANCE As part of the host innate response, the nuclear factor-κB (NF-κB) pathway plays a partial antiviral role in nature by regulating the innate immune response. Thus, the NF-κB pathway is probably the most frequently targeted intracellular pathway for subversion by anti-immune modulators that are carried by a wide range of pathogens. Various viruses, including poxviruses, carry several proteins that prepare the host cell for viral replication by inhibiting cytoplasmic events, leading to the initiation of NF-κB transcriptional activity. However, NF-κB activity is hypothesized to facilitate viral replication to a great extent. The significance of our research is in the exploration of the activation mechanism of NF-κB induced by the Orf virus (ORFV) ORF120 protein interacting with G3BP1, which helps not only to explain the ability of ORFV to modulate the immune response through the positive regulation of NF-κB but also to show the mechanism by which the virus evades the host innate immune response.


Assuntos
DNA Helicases/metabolismo , Ectima Contagioso/virologia , NF-kappa B/metabolismo , Vírus do Orf/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas Virais/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , DNA Helicases/química , Células HeLa , Humanos , Vírus do Orf/genética , Vírus do Orf/crescimento & desenvolvimento , Vírus do Orf/patogenicidade , Proteínas de Ligação a Poli-ADP-Ribose/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Helicases/química , Proteínas com Motivo de Reconhecimento de RNA/química , Ovinos , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Transcrição Gênica , Ativação Transcricional , Proteínas Virais/genética , Virulência
6.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619090

RESUMO

Tau protein plays an important role in the biology of stress granules and in the stress response of neurons, but the nature of these biochemical interactions is not known. Here we show that the interaction of tau with RNA and the RNA binding protein TIA1 is sufficient to drive phase separation of tau at physiological concentrations, without the requirement for artificial crowding agents such as polyethylene glycol (PEG). We further show that phase separation of tau in the presence of RNA and TIA1 generates abundant tau oligomers. Prior studies indicate that recombinant tau readily forms oligomers and fibrils in vitro in the presence of polyanionic agents, including RNA, but the resulting tau aggregates are not particularly toxic. We discover that tau oligomers generated during copartitioning with TIA1 are significantly more toxic than tau aggregates generated by incubation with RNA alone or phase-separated tau complexes generated by incubation with artificial crowding agents. This pathway identifies a potentially important source for generation of toxic tau oligomers in tau-related neurodegenerative diseases. Our results also reveal a general principle that phase-separated RBP droplets provide a vehicle for coassortment of selected proteins. Tau selectively copartitions with TIA1 under physiological conditions, emphasizing the importance of TIA1 for tau biology. Other RBPs, such as G3BP1, are able to copartition with tau, but this happens only in the presence of crowding agents. This type of selective mixing might provide a basis through which membraneless organelles bring together functionally relevant proteins to promote particular biological activities.


Assuntos
Agregados Proteicos , Agregação Patológica de Proteínas , Multimerização Proteica , Antígeno-1 Intracelular de Células T/metabolismo , Proteínas tau/metabolismo , Amiloide/química , Amiloide/metabolismo , Humanos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas com Motivo de Reconhecimento de RNA/química , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas Recombinantes , Proteínas tau/química
7.
Cell ; 184(3): 655-674.e27, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497611

RESUMO

Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , DNA Helicases/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Esclerose Tuberosa/metabolismo , Sequência de Aminoácidos , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/química , Evolução Molecular , Feminino , Humanos , Insulina/farmacologia , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Proteínas de Ligação a Poli-ADP-Ribose/química , RNA Helicases/química , Proteínas com Motivo de Reconhecimento de RNA/química , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/metabolismo
8.
RNA Biol ; 18(8): 1181-1192, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33131423

RESUMO

La-related proteins 7 (LARP7) are a class of RNA chaperones that bind the 3' ends of RNA and are constitutively associated with their specific target RNAs. In metazoa, Larp7 binds to the long non-coding 7SK RNA as a core component of the 7SK RNP, a major regulator of eukaryotic transcription. In the ciliate Tetrahymena the LARP7 protein p65 is a component of telomerase, an essential ribonucleoprotein complex that maintains the telomeric DNA at eukaryotic chromosome ends. p65 is important for the ordered assembly of telomerase RNA (TER) with telomerase reverse transcriptase. Unexpectedly, Schizosaccharomyces pombe Pof8 was recently identified as a LARP7 protein and a core component of fission yeast telomerase essential for biogenesis. LARP7 proteins have a conserved N-terminal La motif and RRM1 (La module) and C-terminal RRM2 with specific RNA substrate recognition attributed to RRM2, first structurally characterized in p65 as an atypical RRM named xRRM. Here we present the X-ray crystal structure and NMR studies of S. pombe Pof8 RRM2. Sequence and structure comparison of Pof8 RRM2 to p65 and human Larp7 xRRMs reveals conserved features for RNA binding with the main variability in the length of the non-canonical helix α3. This study shows that Pof8 has conserved xRRM features, providing insight into TER recognition and the defining characteristics of the xRRM.


Assuntos
Proteínas com Motivo de Reconhecimento de RNA/química , RNA/química , Ribonucleoproteínas/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/química , Tetrahymena thermophila/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Sequência Conservada , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA/genética , RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo
9.
Cell Rep ; 33(13): 108568, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33378677

RESUMO

Long non-coding RNAs can often fold into different conformations. Telomerase RNA, an essential component of the telomerase ribonucleoprotein (RNP) enzyme, must fold into a defined structure to fulfill its function with the protein catalytic subunit (TERT) and other accessory factors. However, the mechanism by which the correct folding of telomerase RNA is warranted in a cell is still unknown. Here we show that La-related protein Pof8 specifically recognizes the conserved pseudoknot region of telomerase RNA and instructs the binding of the Lsm2-8 complex to its mature 3' end, thus selectively protecting the correctly folded RNA from exonucleolytic degradation. In the absence of Pof8, TERT assembles with misfolded RNA and produces little telomerase activity. Therefore, Pof8 plays a key role in telomerase RNA folding quality control, ensuring that TERT only assembles with functional telomerase RNA to form active telomerase. Our finding reveals a mechanism for non-coding RNA folding quality control.


Assuntos
Dobramento de RNA , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA/genética , RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiologia , Telomerase/biossíntese , Domínio Catalítico , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Controle de Qualidade , RNA/química , Proteínas com Motivo de Reconhecimento de RNA/química , Proteínas com Motivo de Reconhecimento de RNA/genética , RNA Fúngico , RNA Longo não Codificante/química , RNA Longo não Codificante/metabolismo , Motivos de Ligação ao RNA , Ribonucleoproteínas Nucleares Pequenas/química , Schizosaccharomyces/química , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Telomerase/química , Telomerase/genética , Telomerase/metabolismo
10.
Environ Microbiol ; 22(12): 5387-5401, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33000558

RESUMO

Previous studies have reported the ability of fungi to overwinter in soil or on crop debris under different environmental conditions, but how fungi adapt to chilling is still largely unknown. In this study, we have identified and characterized the RNA binding protein (RBP) (VdNop12) by screening an Agrobacterium tumefaciens-mediated transformation-mediated insertional mutational library of Verticillium dahliae. We determined that this protein was essential to the pathogen for virulence on cotton plants. VdNop12 contains two tandem RNA recognition motif domains, and its orthologs are widely distributed in filamentous fungi. Mutants produced by disruption of VdNop12 showed defects in vegetative growth, conidiation and cell wall integrity. The mutant also showed an increase in sensitivity to low temperature, as compared to the wildtype and complementation strains. Yeast complementation assay showed that VdNop12 could functionally restore the growth phenotype of ΔScNop12 mutant of Saccharomyces cerevisiae at 15°C. We demonstrated that the VdNop12 is localized in the nucleus, and its loss resulted in the downregulated expression of several genes related to cAMP-PKA and MAPK pathways in V. dahliae. Our results demonstrated a crucial role of RBPs in the regulation of morphology, cold adaption, and pathogenic development in V. dahliae.


Assuntos
Aclimatação/fisiologia , Ascomicetos/fisiologia , Ascomicetos/patogenicidade , Proteínas Fúngicas/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Parede Celular/metabolismo , Temperatura Baixa , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Gossypium/microbiologia , Mutação , Doenças das Plantas/microbiologia , Motivo de Reconhecimento de RNA , Proteínas com Motivo de Reconhecimento de RNA/química , Proteínas com Motivo de Reconhecimento de RNA/genética , Esporos Fúngicos/genética , Esporos Fúngicos/fisiologia , Virulência/genética
11.
Int J Mol Sci ; 21(19)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023222

RESUMO

Recognition of the non-self signature of invading pathogens is a crucial step for the initiation of the innate immune mechanisms of the host. The host response to viral and bacterial infection involves sets of pattern recognition receptors (PRRs), which bind evolutionarily conserved pathogen structures, known as pathogen-associated molecular patterns (PAMPs). Recent advances in the identification of different types of PRRs in teleost fish revealed a number of cytosolic sensors for recognition of viral and bacterial nucleic acids. These are DExD/H-box RNA helicases including a group of well-characterized retinoic acid inducible gene I (RIG-I)-like receptors (RLRs) and non-RLR DExD/H-box RNA helicases (e.g., DDX1, DDX3, DHX9, DDX21, DHX36 and DDX41) both involved in recognition of viral RNAs. Another group of PRRs includes cytosolic DNA sensors (CDSs), such as cGAS and LSm14A involved in recognition of viral and intracellular bacterial dsDNAs. Moreover, dsRNA-sensing protein kinase R (PKR), which has a role in antiviral immune responses in higher vertebrates, has been identified in fish. Additionally, fish possess a novel PKR-like protein kinase containing Z-DNA binding domain, known as PKZ. Here, we review the current knowledge concerning cytosolic sensors for recognition of viral and bacterial nucleic acids in teleosts.


Assuntos
Bactérias/isolamento & purificação , Técnicas Biossensoriais , Ácidos Nucleicos/isolamento & purificação , Vírus/isolamento & purificação , Animais , Bactérias/patogenicidade , Citosol/microbiologia , Citosol/virologia , Vírus de DNA/genética , Vírus de DNA/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Proteínas de Ligação a DNA/química , Peixes/genética , Peixes/microbiologia , Peixes/virologia , Ácidos Nucleicos/genética , Proteínas com Motivo de Reconhecimento de RNA/química , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , RNA Viral/genética , RNA Viral/isolamento & purificação , Vírus/patogenicidade
12.
Nucleic Acids Res ; 48(17): 9491-9504, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32857852

RESUMO

Proteins and RNAs assemble in membrane-less organelles that organize intracellular spaces and regulate biochemical reactions. The ability of proteins and RNAs to form condensates is encoded in their sequences, yet it is unknown which domains drive the phase separation (PS) process and what are their specific roles. Here, we systematically investigated the human and yeast proteomes to find regions promoting condensation. Using advanced computational methods to predict the PS propensity of proteins, we designed a set of experiments to investigate the contributions of Prion-Like Domains (PrLDs) and RNA-binding domains (RBDs). We found that one PrLD is sufficient to drive PS, whereas multiple RBDs are needed to modulate the dynamics of the assemblies. In the case of stress granule protein Pub1 we show that the PrLD promotes sequestration of protein partners and the RBD confers liquid-like behaviour to the condensate. Our work sheds light on the fine interplay between RBDs and PrLD to regulate formation of membrane-less organelles, opening up the avenue for their manipulation.


Assuntos
Transição de Fase , Príons/metabolismo , Proteínas/metabolismo , RNA/metabolismo , Sítios de Ligação , Recuperação de Fluorescência Após Fotodegradação , Humanos , Proteínas de Ligação a Poli(A)/química , Proteínas de Ligação a Poli(A)/genética , Proteínas de Ligação a Poli(A)/metabolismo , Príons/química , Domínios Proteicos , Proteínas/química , Proteoma , RNA/química , Proteínas com Motivo de Reconhecimento de RNA/química , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Motivos de Ligação ao RNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Biomolecules ; 10(6)2020 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-32517187

RESUMO

Eukaryotic cells determine the protein output of their genetic program by regulating mRNA transcription, localization, translation and turnover rates. This regulation is accomplished by an ensemble of RNA-binding proteins (RBPs) that bind to any given mRNA, thus forming mRNPs. Poly(A) binding proteins (PABPs) are prominent members of virtually all mRNPs that possess poly(A) tails. They serve as multifunctional scaffolds, allowing the recruitment of diverse factors containing a poly(A)-interacting motif (PAM) into mRNPs. We present the crystal structure of the variant PAM motif (termed PAM2w) in the N-terminal part of the positive translation factor LARP4B, which binds to the MLLE domain of the poly(A) binding protein C1 cytoplasmic 1 (PABPC1). The structural analysis, along with mutational studies in vitro and in vivo, uncovered a new mode of interaction between PAM2 motifs and MLLE domains.


Assuntos
Proteína I de Ligação a Poli(A)/química , Proteínas com Motivo de Reconhecimento de RNA/química , Ribonucleoproteínas/química , Motivos de Aminoácidos , Células Cultivadas , Cristalografia por Raios X , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos
14.
Cells ; 9(2)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085641

RESUMO

The molecular basis of residual histone retention after the nearly genome-wide histone-to-protamine replacement during late spermatogenesis is a critical and open question. Our previous investigations showed that in postmeiotic male germ cells, the genome-scale incorporation of histone variants TH2B-H2A.L.2 allows a controlled replacement of histones by protamines to occur. Here, we highlight the intrinsic ability of H2A.L.2 to specifically target the pericentric regions of the genome and discuss why pericentric heterochromatin is a privileged site of histone retention in mature spermatozoa. We observed that the intranuclear localization of H2A.L.2 is controlled by its ability to bind RNA, as well as by an interplay between its RNA-binding activity and its tropism for pericentric heterochromatin. We identify the H2A.L.2 RNA-binding domain and demonstrate that in somatic cells, the replacement of H2A.L.2 RNA-binding motif enhances and stabilizes its pericentric localization, while the forced expression of RNA increases its homogenous nuclear distribution. Based on these data, we propose that the specific accumulation of RNA on pericentric regions combined with H2A.L.2 tropism for these regions are responsible for stabilizing H2A.L.2 on these regions in mature spermatozoa. This situation would favor histone retention on pericentric heterochromatin.


Assuntos
Histonas/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA Nuclear/metabolismo , Espermatócitos/metabolismo , Espermatogênese/genética , Animais , Núcleo Celular/metabolismo , Genoma Humano , Heterocromatina/metabolismo , Histonas/química , Histonas/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Células NIH 3T3 , Proteínas com Motivo de Reconhecimento de RNA/química , Proteínas com Motivo de Reconhecimento de RNA/genética , Motivos de Ligação ao RNA , Transfecção
15.
Nat Chem Biol ; 16(1): 7-14, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31686031

RESUMO

The investigational drugs E7820, indisulam and tasisulam (aryl-sulfonamides) promote the degradation of the splicing factor RBM39 in a proteasome-dependent mechanism. While the activity critically depends on the cullin RING ligase substrate receptor DCAF15, the molecular details remain elusive. Here we present the cryo-EM structure of the DDB1-DCAF15-DDA1 core ligase complex bound to RBM39 and E7820 at a resolution of 4.4 Å, together with crystal structures of engineered subcomplexes. We show that DCAF15 adopts a new fold stabilized by DDA1, and that extensive protein-protein contacts between the ligase and substrate mitigate low affinity interactions between aryl-sulfonamides and DCAF15. Our data demonstrate how aryl-sulfonamides neo-functionalize a shallow, non-conserved pocket on DCAF15 to selectively bind and degrade RBM39 and the closely related splicing factor RBM23 without the requirement for a high-affinity ligand, which has broad implications for the de novo discovery of molecular glue degraders.


Assuntos
Indóis/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteólise/efeitos dos fármacos , Proteínas com Motivo de Reconhecimento de RNA/química , Sulfonamidas/química , Motivos de Aminoácidos , Animais , Benzamidas/química , Benzamidas/farmacologia , Microscopia Crioeletrônica , Transferência Ressonante de Energia de Fluorescência , Humanos , Indóis/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinética , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a RNA , Spodoptera , Sulfonamidas/farmacologia , Ubiquitina-Proteína Ligases/química , Xenopus
16.
Nucleic Acids Res ; 47(9): 4736-4750, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30931478

RESUMO

1-Methyladenosine (m1A) is a modified nucleoside found at positions 9, 14, 22 and 58 of tRNAs, which arises from the transfer of a methyl group onto the N1-atom of adenosine. The yqfN gene of Bacillus subtilis encodes the methyltransferase TrmK (BsTrmK) responsible for the formation of m1A22 in tRNA. Here, we show that BsTrmK displays a broad substrate specificity, and methylates seven out of eight tRNA isoacceptor families of B. subtilis bearing an A22. In addition to a non-Watson-Crick base-pair between the target A22 and a purine at position 13, the formation of m1A22 by BsTrmK requires a full-length tRNA with intact tRNA elbow and anticodon stem. We solved the crystal structure of BsTrmK showing an N-terminal catalytic domain harbouring the typical Rossmann-like fold of Class-I methyltransferases and a C-terminal coiled-coil domain. We used NMR chemical shift mapping to drive the docking of BstRNASer to BsTrmK in complex with its methyl-donor cofactor S-adenosyl-L-methionine (SAM). In this model, validated by methyltransferase activity assays on BsTrmK mutants, both domains of BsTrmK participate in tRNA binding. BsTrmK recognises tRNA with very few structural changes in both partner, the non-Watson-Crick R13-A22 base-pair positioning the A22 N1-atom close to the SAM methyl group.


Assuntos
Bacillus subtilis/química , Proteínas com Motivo de Reconhecimento de RNA/química , S-Adenosilmetionina/química , tRNA Metiltransferases/química , Anticódon/química , Anticódon/genética , Bacillus subtilis/enzimologia , Domínio Catalítico/genética , Cristalografia por Raios X , Metilação , Conformação Proteica , Proteínas com Motivo de Reconhecimento de RNA/genética , RNA de Transferência/química , RNA de Transferência/genética , Especificidade por Substrato , tRNA Metiltransferases/genética
17.
Mol Biol Cell ; 29(20): 2481-2493, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30091651

RESUMO

Flightless I (FliI) is a calcium-dependent, actin severing and capping protein that localizes to cell matrix adhesions, contributes to the generation of cell extensions, and colocalizes with Ras. Currently, the mechanism by which FliI interacts with Ras to enable assembly of actin-based cell protrusions is not defined. R-Ras, but not K-ras, H-ras, or N-ras, associated with the leucine-rich region (LRR) of FliI. Mutations of the proline-rich region of R-ras (P202A, P203A) prevented this association. Knockdown of Ras GTPase-activating SH3 domain-binding protein (G3BP1) or Rasgap120 by small interfering RNA inhibited the formation of cell extensions and prevented interaction of R-ras and G3BP1 in FliI wild-type (WT) cells. Pull-down assays using G3BP1 fusion proteins showed a strong association of R-ras with the C-terminus of G3BP1 (amino acids 236-466), which also required the LRR of FliI. In cells that expressed the truncated N-terminus or C-terminus of G3BP1, the formation of cell extensions was blocked. Endogenous Rasgap120 interacted with the N-terminus of G3BP1 (amino acids 1-230). We conclude that in cells plated on collagen FliI-LRR interacts with R-ras to promote cell extension formation and that FliI is required for the interaction of Rasgap120 with G3BP1 to regulate R-ras activity and growth of cell extensions.


Assuntos
Proteínas de Transporte/metabolismo , Extensões da Superfície Celular/metabolismo , Leucina/metabolismo , Proteínas ras/metabolismo , Animais , Proteínas de Transporte/química , Bovinos , Colágeno/metabolismo , DNA Helicases/química , Camundongos , Proteínas dos Microfilamentos , Modelos Biológicos , Proteínas de Ligação a Poli-ADP-Ribose/química , Ligação Proteica , RNA Helicases/química , Proteínas com Motivo de Reconhecimento de RNA/química , Transdução de Sinais , Transativadores , Proteínas ras/química , Domínios de Homologia de src
18.
Mol Cell ; 70(5): 854-867.e9, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29883606

RESUMO

RNA binding proteins (RBPs) orchestrate the production, processing, and function of mRNAs. Here, we present the affinity landscapes of 78 human RBPs using an unbiased assay that determines the sequence, structure, and context preferences of these proteins in vitro by deep sequencing of bound RNAs. These data enable construction of "RNA maps" of RBP activity without requiring crosslinking-based assays. We found an unexpectedly low diversity of RNA motifs, implying frequent convergence of binding specificity toward a relatively small set of RNA motifs, many with low compositional complexity. Offsetting this trend, however, we observed extensive preferences for contextual features distinct from short linear RNA motifs, including spaced "bipartite" motifs, biased flanking nucleotide composition, and bias away from or toward RNA structure. Our results emphasize the importance of contextual features in RNA recognition, which likely enable targeting of distinct subsets of transcripts by different RBPs that recognize the same linear motif.


Assuntos
Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA/metabolismo , Sequência de Bases , Sítios de Ligação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Ligação Proteica , RNA/química , RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/química , Proteínas com Motivo de Reconhecimento de RNA/genética , Relação Estrutura-Atividade
19.
Nat Commun ; 9(1): 587, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422664

RESUMO

Telomerase reverse transcriptase (TERT) and the non-coding telomerase RNA subunit (TR) constitute the core of telomerase. Here we now report that the putative F-box protein Pof8 is also a constitutive component of active telomerase in fission yeast. Pof8 functions in a hierarchical assembly pathway by promoting the binding of the Lsm2-8 complex to telomerase RNA, which in turn promotes binding of the catalytic subunit. Loss of Pof8 reduces TER1 stability, causes a severe assembly defect, and results in critically short telomeres. Structure profile searches identified similarities between Pof8 and telomerase subunits from ciliated protozoa, making Pof8 next to TERT the most widely conserved telomerase subunits identified to date.


Assuntos
Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Telomerase/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular , Ligação Proteica , RNA/genética , RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/química , RNA Fúngico/genética , RNA Fúngico/metabolismo , Schizosaccharomyces/química , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Alinhamento de Sequência , Telomerase/química , Telomerase/genética , Telômero/genética , Telômero/metabolismo
20.
Angew Chem Int Ed Engl ; 56(32): 9322-9325, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28636238

RESUMO

Multi-domain proteins play critical roles in fine-tuning essential processes in cellular signaling and gene regulation. Typically, multiple globular domains that are connected by flexible linkers undergo dynamic rearrangements upon binding to protein, DNA or RNA ligands. RNA binding proteins (RBPs) represent an important class of multi-domain proteins, which regulate gene expression by recognizing linear or structured RNA sequence motifs. Here, we employ segmental perdeuteration of the three RNA recognition motif (RRM) domains in the RBP TIA-1 using Sortase A mediated protein ligation. We show that domain-selective perdeuteration combined with contrast-matched small-angle neutron scattering (SANS), SAXS and computational modeling provides valuable information to precisely define relative domain arrangements. The approach is generally applicable to study conformational arrangements of individual domains in multi-domain proteins and changes induced by ligand binding.


Assuntos
Proteínas com Motivo de Reconhecimento de RNA/química , Humanos , Difração de Nêutrons , Conformação Proteica , Espalhamento a Baixo Ângulo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...