Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Arch Pharm Res ; 38(5): 849-56, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25359200

RESUMO

Berberine, the main active component of the herbal medicine Rhizoma Coptidis, has been reported to have hypoglycemic and insulin-sensitizing effects and, therefore, could be combined with metformin therapy. Thus, we assessed the potential drug-drug interactions between berberine and metformin. We investigated the in vitro inhibitory potency of berberine on metformin uptake in HEK293 cells overexpressing organic cation transporter (OCT) 1 and 2. To investigate whether this inhibitory effect of berberine on OCT1 and OCT2 could change the pharmacokinetics of metformin in vivo, we measured the effect of berberine co-administration on the pharmacokinetics of metformin at a single intravenous dose of 2 mg/kg metformin and 10 mg/kg berberine. In HEK293 cells, berberine inhibited OCT1- and OCT2-mediated metformin uptake in a concentration dependent manner and IC50 values for OCT1 and OCT2 were 7.28 and 11.3 µM, respectively. Co-administration of berberine increased the initial plasma concentration and AUC of metformin and decreased systemic clearance and volume of distribution of metformin in rats, suggesting that berberine inhibited disposition of metformin, which is governed by OCT1 and OCT2. Berberine inhibited the transport activity of OCT1 and OCT2 and showed significant potential drug-drug interactions with metformin in in vivo rats.


Assuntos
Berberina/sangue , Proteínas da Membrana Plasmática de Transporte de Catecolaminas/fisiologia , Metformina/sangue , Proteínas de Transporte de Cátions Orgânicos/fisiologia , Administração Intravenosa , Animais , Berberina/administração & dosagem , Interações Medicamentosas/fisiologia , Células HEK293 , Humanos , Masculino , Metformina/administração & dosagem , Transportador 2 de Cátion Orgânico , Ratos , Ratos Sprague-Dawley
2.
Biochem Pharmacol ; 70(12): 1823-31, 2005 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-16242669

RESUMO

Cisplatin is an effective anticancer drug, but has its severe adverse effects, especially nephrotoxicity. The molecular mechanism of cisplatin-induced nephrotoxicity is still not clear. In the present study, we examined the role of rat (r)OCT2, an organic cation transporter predominantly expressed in the kidney, in the tubular toxicity of cisplatin. Using HEK293 cells stably expressing rOCT2 (HEK-rOCT2), we evaluated the cisplatin-induced release of lactate dehydrogenase and the uptake of cisplatin. The release of lactate dehydrogenase and the accumulation of platinum were greater in HEK-rOCT2 cells treated with cisplatin than in mock-transfected cells. Moreover, cimetidine and corticosterone, OCT2 inhibitors, inhibited the cytotoxicity and the transport of cisplatin in HEK-rOCT2 cells. Pharmacokinetics of cisplatin was investigated in male and female rats because the renal expression level of rOCT2 was higher in male than female rats. The renal uptake clearance of cisplatin was greater in male than female rats, while the hepatic uptake clearance was similar between the sexes. In addition, glomerular filtration rate and liver function were unchanged, but N-acetyl-beta-D-glucosaminidase activity in the bladder urine and the urine volume were markedly increased 2 days after the administration of 2 mg/kg of cisplatin in male rats. Moreover, cisplatin did not induce the elevation of urinary N-acetyl-beta-D-glucosaminidase activity in the castrated male rats whose renal rOCT2 level was lower than that of the sham-operated rats. In conclusion, the present results indicated that renal rOCT2 expression was the major determinant of cisplatin-induced tubular toxicity.


Assuntos
Cisplatino/toxicidade , Túbulos Renais Proximais/efeitos dos fármacos , Proteínas de Transporte de Cátions Orgânicos/fisiologia , Animais , Proteínas da Membrana Plasmática de Transporte de Catecolaminas/genética , Proteínas da Membrana Plasmática de Transporte de Catecolaminas/fisiologia , Humanos , Túbulos Renais Proximais/metabolismo , Masculino , Proteínas de Transporte de Cátions Orgânicos/genética , Transportador 2 de Cátion Orgânico , Ratos , Ratos Wistar , Fatores Sexuais , Compostos de Tetraetilamônio/farmacocinética
3.
J Pharmacol Exp Ther ; 315(1): 337-45, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16006492

RESUMO

A clinical drug-drug interaction between famotidine (a H2 receptor antagonist) and probenecid has not been reproduced in rats. The present study hypothesized that the species-dependent probenecid sensitivity is due to a species difference in the contribution of renal organic anion and cation transporters. The transport activities of the H2 receptor antagonists (cimetidine, famotidine, and ranitidine) by rat and human basolateral organic anion and cation transporters [human organic anion transporter (hOAT) 1, hOAT2, r/hOAT3, rat organic cation transporter (rOct) 1, and r/hOCT2] were compared using their cDNA transfectants. The transport activities (Vmax/Km) of famotidine (Km, 345 microM) by rOat3 were 8- and 15-fold lower than those of cimetidine (Km, 91 microM) and ranitidine (Km, 155 microM), respectively, whereas the activity by hOAT3 (Km, 124 microM) was 3-fold lower than that of cimetidine (Km, 149 microM) but similar to that of ranitidine (Km, 234 microM). Comparison of the relative transport activity with regard to that of cimetidine suggests that famotidine was more efficiently transported by hOAT3 than rOat3, and vice versa, for ranitidine. Only ranitidine was efficiently transported by hOAT2 (Km, 396 microM). rOct1 accepts all of the H2 receptor antagonists with a similar activity, whereas the transport activities of ranitidine and famotidine (Km, 61/56 microM) by r/hOCT2 were markedly lower than that of cimetidine (Km, 69/73 microM). Probenecid was a potent inhibitor of r/OAT3 (Ki, 2.6-5.8 microM), whereas it did not interact with OCTs. These results suggest that, in addition to the absence of OCT1 in human kidney, a species difference in the transport activity by hOAT3 and rOat3 accounts, at least in part, for the species difference in the drug-drug interaction between famotidine and probenecid.


Assuntos
Antagonistas dos Receptores H2 da Histamina/farmacocinética , Rim/metabolismo , Transportadores de Ânions Orgânicos/fisiologia , Proteínas de Transporte de Cátions Orgânicos/fisiologia , Animais , Proteínas da Membrana Plasmática de Transporte de Catecolaminas/fisiologia , Humanos , Proteína 1 Transportadora de Ânions Orgânicos/fisiologia , Transportadores de Ânions Orgânicos Sódio-Independentes/fisiologia , Transportador 2 de Cátion Orgânico , Probenecid/farmacologia , Ratos , Especificidade da Espécie , Compostos de Tetraetilamônio/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...