Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 434(22): 167841, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36167183

RESUMO

Apg2, one of the three cytosolic Hsp110 chaperones in humans, supports reactivation of unordered and ordered protein aggregates by Hsc70 (HspA8). Together with DnaJB1, Apg2 serves to nucleate Hsc70 molecules into sites where productive entropic pulling forces can be developed. During aggregate reactivation, Apg2 performs as a specialized nucleotide exchange factor, but the origin of its specialization is poorly defined. Here we report on the role of the distinctive C-terminal extension present in Apg2 and other metazoan homologs. We found that the first part of this Apg2 subdomain, with propensity to adopt α-helical structure, interacts with the nucleotide binding domain of Hsc70 in a nucleotide-dependent manner, contributing significantly to the stability of the Hsc70:Apg2 complex. Moreover, the second intrinsically disordered segment of Apg2 C-terminal extension plays an important role as a downregulator of nucleotide exchange. An NMR analysis showed that the interaction with Hsc70 nucleotide binding domain modifies the chemical environment of residues located in important functional sites such as the interface between lobe I and II and the nucleotide binding site. Our data indicate that Apg2 C-terminal extension is a fine-tuner of human Hsc70 activity that optimizes the substrate remodeling ability of the chaperone system.


Assuntos
Proteínas de Choque Térmico HSC70 , Proteínas de Choque Térmico HSP110 , Humanos , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Nucleotídeos/metabolismo , Agregados Proteicos , Ligação Proteica
2.
Exp Cell Res ; 411(1): 112986, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942188

RESUMO

Chaperone-mediated autophagy (CMA) is a unique proteolytic pathway, in which cytoplasmic proteins recognized by heat shock cognate protein 70 (Hsc70/HSPA8) are transported into lysosomes for degradation. The substrate/chaperone complex binds to the cytosolic tail of the lysosomal-associated membrane protein type 2A (LAMP2A), but whether the interaction between Hsc70 and LAMP2A is direct or mediated by other molecules has remained to be elucidated. The structure of LAMP2A comprises a large lumenal domain composed of two domains, both with the ß-prism fold, a transmembrane domain and a short cytoplasmic tail. We previously reported the structural basis for the homophilic interaction of the lumenal domains of LAMP2A, using site-specific photo-crosslinking and/or steric hindrance within cells. In the present study, we introduced a photo-crosslinker into the cytoplasmic tail of LAMP2A and successfully detected its crosslinking with Hsc70, revealing this direct interaction for the first time. Furthermore, we demonstrated that the truncation of the membrane-distal domain within the lumenal domain of LAMP2A reduced the amount of Hsc70 that coimmunoprecipitated with LAMP2A. Our present results suggested that the two-domain architecture of the lumenal domains of LAMP2A underlies the interaction with Hsc70 at the cytoplasmic surface of the lysosome.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Citoplasma/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas de Choque Térmico HSC70/química , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/química
3.
Biochim Biophys Acta Proteins Proteom ; 1869(12): 140719, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34571256

RESUMO

Human 71 kDa heat shock cognate protein (HSPA8, also known as Hsc70, Hsp70-8, Hsc71, Hsp71 or Hsp73) is a constitutively expressed chaperone that is critical for cell proteostasis. In the cytosol, HSPA8 plays a pivotal role in folding and refolding, facilitates protein trafficking across membranes and targets proteins for degradation, among other functions. Here, we report an in solution study of recombinant HSPA8 (rHSPA8) using a variety of biophysical and biochemical approaches. rHSPA8 shares several structural and functional similarities with others human Hsp70s. It has two domains with different stabilities and interacts with adenosine nucleotides with dissociation constants in the low micromolar range, which were higher in the presence of Mg2+. rHSPA8 showed lower ATPase activity than its homolog HSPA5/hGrp78/hBiP, but it was 4-fold greater than that of recombinant HSPA1A/hHsp70-1A, with which it is 86% identical. Small angle X-ray scattering indicated that rHSPA8 behaved as an elongated monomeric protein in solution with dimensions similar to those observed for HSPA1A. In addition, rHSPA8 showed structural flexibility between its compacted and extended conformations. The data also indicated that HSPA8 has capacity in preventing the aggregation of model client proteins. The present study expands the understanding of the structure and activity of this chaperone and aligns with the idea that human homologous Hsp70s have divergent functions.


Assuntos
Proteínas de Choque Térmico HSC70/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Humanos , Magnésio/química , Magnésio/metabolismo , Simulação de Dinâmica Molecular , Domínios Proteicos , Dobramento de Proteína
4.
Cancer Lett ; 501: 247-262, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33186656

RESUMO

Autophagy is a critical survival factor for cancer cells, whereby it maintains cellular homeostasis by degrading damaged organelles and unwanted proteins and supports cellular biosynthesis in response to stress. Cancer cells, including hepatocellular carcinoma (HCC), are often situated in a hypoxic, nutrient-deprived and stressful microenvironment where tumor cells are yet still able to adapt and survive. However, the mechanism underlying this adaptation and survival is not well-defined. We report deficiency of the post-translational modification enzyme protein arginine N-methyltransferase 6 (PRMT6) in HCC to promote the induction of autophagy under oxygen/nutrient-derived and sorafenib drug-induced stress conditions. Enhanced autophagic flux in HCC cells negatively correlated with PRMT6 expression, with the catalytic domain of PRMT6 critically important in mediating these autophagic activities. Mechanistically, PRMT6 physically interacts and methylates BAG5 to enhance the degradation of its interacting partner HSC70, a well-known autophagy player. The therapeutic potential of targeting BAG5 using genetic approach to reverse tumorigenicity and sorafenib resistance mediated by PRMT6 deficiency in HCC is also demonstrated in an in vivo model. The clinical implications of these findings are highlighted by the inverse correlative expressions of PRMT6 and HSC70 in HCC tissues. Collectively, deficiency of PRMT6 induces autophagy to promote tumorigenicity and cell survival in hostile microenvironments of HCC tumors by regulating BAG5-associated HSC70 stability through post-translational methylation of BAG5. Targeting BAG5 may therefore be an attractive strategy in HCC treatment by suppressing autophagy and inducing HCC cell sensitivity to sorafenib for treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/patologia , Resistencia a Medicamentos Antineoplásicos , Proteínas de Choque Térmico HSC70/química , Neoplasias Hepáticas/patologia , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Autofagia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Metilação , Camundongos , Transplante de Neoplasias , Estabilidade Proteica , Genética Reversa , Sorafenibe/farmacologia
5.
Elife ; 92020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32955441

RESUMO

Spinocerebellar ataxia type 3 (SCA3) belongs to the family of polyglutamine neurodegenerations. Each disorder stems from the abnormal lengthening of a glutamine repeat in a different protein. Although caused by a similar mutation, polyglutamine disorders are distinct, implicating non-polyglutamine regions of disease proteins as regulators of pathogenesis. SCA3 is caused by polyglutamine expansion in ataxin-3. To determine the role of ataxin-3's non-polyglutamine domains in disease, we utilized a new, allelic series of Drosophila melanogaster. We found that ataxin-3 pathogenicity is saliently controlled by polyglutamine-adjacent ubiquitin-interacting motifs (UIMs) that enhance aggregation and toxicity. UIMs function by interacting with the heat shock protein, Hsc70-4, whose reduction diminishes ataxin-3 toxicity in a UIM-dependent manner. Hsc70-4 also enhances pathogenicity of other polyglutamine proteins. Our studies provide a unique insight into the impact of ataxin-3 domains in SCA3, identify Hsc70-4 as a SCA3 enhancer, and indicate pleiotropic effects from HSP70 chaperones, which are generally thought to suppress polyglutamine degeneration.


Assuntos
Ataxina-3 , Proteínas de Drosophila/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Peptídeos , Ubiquitina/metabolismo , Motivos de Aminoácidos , Animais , Ataxina-3/química , Ataxina-3/genética , Ataxina-3/metabolismo , Ataxina-3/toxicidade , Drosophila , Proteínas de Drosophila/química , Proteínas de Choque Térmico HSC70/química , Humanos , Larva/metabolismo , Doença de Machado-Joseph/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Peptídeos/toxicidade , Ubiquitina/química
6.
PLoS One ; 15(8): e0237328, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32790707

RESUMO

α-Synuclein (αSyn) fibrils spread from one neuronal cell to another. This prion-like phenomenon is believed to contribute to the progression of the pathology in Parkinson's disease and other synucleinopathies. The binding of αSyn fibrils originating from affected cells to the plasma membrane of naïve cells is key in their prion-like propagation propensity. To interfere with this process, we designed polypeptides derived from proteins we previously showed to interact with αSyn fibrils, namely the molecular chaperone Hsc70 and the sodium/potassium pump NaK-ATPase and assessed their capacity to bind αSyn fibrils and/or interfere with their take-up by cells of neuronal origin. We demonstrate here that polypeptides that coat αSyn fibrils surfaces in such a way that they are changed affect αSyn fibrils binding to the plasma membrane components and/or their take-up by cells. Altogether our observations suggest that the rationale design of αSyn fibrils polypeptide binders that interfere with their propagation between neuronal cells holds therapeutic potential.


Assuntos
Neurônios/efeitos dos fármacos , Peptídeos/farmacologia , Agregação Patológica de Proteínas/tratamento farmacológico , alfa-Sinucleína/metabolismo , Sequência de Aminoácidos , Amiloide/antagonistas & inibidores , Amiloide/metabolismo , Animais , Linhagem Celular , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSC70/farmacologia , Humanos , Camundongos , Modelos Moleculares , Neurônios/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Peptídeos/química , Príons/antagonistas & inibidores , Príons/metabolismo , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/farmacologia
7.
EMBO J ; 39(14): e104096, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32490574

RESUMO

The heat shock response is a universal transcriptional response to proteotoxic stress orchestrated by heat shock transcription factor Hsf1 in all eukaryotic cells. Despite over 40 years of intense research, the mechanism of Hsf1 activity regulation remains poorly understood at the molecular level. In metazoa, Hsf1 trimerizes upon heat shock through a leucine-zipper domain and binds to DNA. How Hsf1 is dislodged from DNA and monomerized remained enigmatic. Here, using purified proteins, we demonstrate that unmodified trimeric Hsf1 is dissociated from DNA in vitro by Hsc70 and DnaJB1. Hsc70 binds to multiple sites in Hsf1 with different affinities. Hsf1 trimers are monomerized by successive cycles of entropic pulling, unzipping the triple leucine-zipper. Starting this unzipping at several protomers of the Hsf1 trimer results in faster monomerization. This process directly monitors the concentration of Hsc70 and DnaJB1. During heat shock adaptation, Hsc70 first binds to a high-affinity site in the transactivation domain, leading to partial attenuation of the response, and subsequently, at higher concentrations, Hsc70 removes Hsf1 from DNA to restore the resting state.


Assuntos
DNA , Proteínas de Choque Térmico HSC70 , Fatores de Transcrição de Choque Térmico , Multimerização Proteica , Animais , Linhagem Celular , DNA/química , DNA/genética , DNA/metabolismo , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Fatores de Transcrição de Choque Térmico/química , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Humanos , Camundongos , Camundongos Knockout , Domínios Proteicos
8.
Mol Cell Biol ; 40(12)2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32205407

RESUMO

Maintenance of protein homeostasis in eukaryotes under normal growth and stress conditions requires the functions of Hsp70 chaperones and associated cochaperones. Here, we investigate an evolutionarily conserved serine phosphorylation that occurs at the site of communication between the nucleotide-binding and substrate-binding domains of Hsp70. Ser151 phosphorylation in yeast Hsp70 (Ssa1) is promoted by cyclin-dependent kinase (Cdk1) during normal growth. Phosphomimetic substitutions at this site (S151D) dramatically downregulate heat shock responses, a result conserved with HSC70 S153 in human cells. Phosphomimetic forms of Ssa1 also fail to relocalize in response to starvation conditions, do not associate in vivo with Hsp40 cochaperones Ydj1 and Sis1, and do not catalyze refolding of denatured proteins in vitro in cooperation with Ydj1 and Hsp104. Despite these negative effects on HSC70/HSP70 function, the S151D phosphomimetic allele promotes survival of heavy metal exposure and suppresses the Sup35-dependent [PSI+ ] prion phenotype, consistent with proposed roles for Ssa1 and Hsp104 in generating self-nucleating seeds of misfolded proteins. Taken together, these results suggest that Cdk1 can downregulate Hsp70 function through phosphorylation of this site, with potential costs to overall chaperone efficiency but also advantages with respect to reduction of metal-induced and prion-dependent protein aggregate production.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Príons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Sítios de Ligação , Linhagem Celular , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSP70/química , Humanos , Metais Pesados/metabolismo , Fosforilação , Agregados Proteicos , Desnaturação Proteica , Domínios Proteicos , Dobramento de Proteína , Proteostase , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Estresse Fisiológico
9.
JCI Insight ; 4(22)2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31723063

RESUMO

Mutations in B cell lymphoma 2-associated athanogene 3 (BAG3) are recurrently associated with dilated cardiomyopathy (DCM) and muscular dystrophy. Using isogenic genome-edited human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), we examined how a DCM-causing BAG3 mutation (R477H), as well as complete loss of BAG3 (KO), impacts myofibrillar organization and chaperone networks. Although unchanged at baseline, fiber length and alignment declined markedly in R477H and KO iPSC-CMs following proteasome inhibition. RNA sequencing revealed extensive baseline changes in chaperone- and stress response protein-encoding genes, and protein levels of key BAG3 binding partners were perturbed. Molecular dynamics simulations of the BAG3-HSC70 complex predicted a partial disengagement by the R477H mutation. In line with this, BAG3-R477H bound less HSC70 than BAG3-WT in coimmunoprecipitation assays. Finally, myofibrillar disarray triggered by proteasome inhibition in R477H cells was mitigated by overexpression of the stress response protein heat shock factor 1 (HSF1). These studies reveal the importance of BAG3 in coordinating protein quality control subsystem usage within the cardiomyocyte and suggest that augmenting HSF1 activity might be beneficial as a means to mitigate proteostatic stress in the context of BAG3-associated DCM.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Cardiomiopatia Dilatada/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomiopatia Dilatada/metabolismo , Edição de Genes , Técnicas de Inativação de Genes , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Humanos , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto/genética
10.
J Biol Chem ; 294(44): 16049-16061, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31506297

RESUMO

Pulmonary veins (PVs) are the major origin of atrial fibrillation. Recently, we recorded hyperpolarization-activated Cl- current (ICl, h) in rat PV cardiomyocytes. Unlike the well-known chloride channel protein 2 (CLCN2) current, the activation curve of ICl, h was hyperpolarized as the Cl- ion concentration ([Cl-] i ) increased. This current could account for spontaneous activity in PV cardiomyocytes linked to atrial fibrillation. In this study, we aimed to identify the channel underlying ICl, h Using RT-PCR amplification specific for Clcn2 or its homologs, a chloride channel was cloned from rat PV and detected in rat PV cardiomyocytes using immunocytochemistry. The gene sequence and electrophysiological functions of the protein were identical to those previously reported for Clcn2, with protein activity observed as a hyperpolarization-activated current by the patch-clamp method. However, the [Cl-] i dependence of activation was entirely different from the observed ICl, h of PV cardiomyocytes; the activation curve of the Clcn2-transfected cells shifted toward positive potential with increased [Cl-] i , whereas the ICl, h of PV and left ventricular cardiomyocytes showed a leftward shift. Therefore, we used MS to explore the possibility of additional proteins interacting with CLCN2 and identified an individual 71-kDa protein, HSPA8, that was strongly expressed in rat PV cardiomyocytes. With co-expression of HSPA8 in HEK293 and PC12 cells, the CLCN2 current showed voltage-dependent activation and shifted to negative potential with increasing [Cl-] i Molecular docking simulations further support an interaction between CLCN2 and HSPA8. These findings suggest that CLCN2 in rat heart contains HSPA8 as a unique accessory protein.


Assuntos
Potenciais de Ação , Canais de Cloreto/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Miócitos Cardíacos/metabolismo , Veias Pulmonares/citologia , Animais , Sítios de Ligação , Canais de Cloro CLC-2 , Células Cultivadas , Canais de Cloreto/química , Células HEK293 , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSC70/genética , Ventrículos do Coração/citologia , Humanos , Masculino , Simulação de Acoplamento Molecular , Miócitos Cardíacos/fisiologia , Células PC12 , Ligação Proteica , Veias Pulmonares/metabolismo , Ratos , Ratos Wistar
11.
Cells ; 8(8)2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394830

RESUMO

HSPA8/HSC70 is a molecular chaperone involved in a wide variety of cellular processes. It plays a crucial role in protein quality control, ensuring the correct folding and re-folding of selected proteins, and controlling the elimination of abnormally-folded conformers and of proteins daily produced in excess in our cells. HSPA8 is a crucial molecular regulator of chaperone-mediated autophagy, as a detector of substrates that will be processed by this specialized autophagy pathway. In this review, we shortly summarize its structure and overall functions, dissect its implication in immune disorders, and list the known pharmacological tools that modulate its functions. We also exemplify the interest of targeting HSPA8 to regulate pathological immune dysfunctions.


Assuntos
Autofagia Mediada por Chaperonas/imunologia , Proteínas de Choque Térmico HSC70 , Doenças do Sistema Imunitário/metabolismo , Animais , Proteínas de Choque Térmico HSC70/antagonistas & inibidores , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSC70/fisiologia , Humanos , Camundongos , Ratos
12.
Molecules ; 24(1)2019 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-30621342

RESUMO

The human heat shock proteins (Hsps), predominantly Hsp72 and Hsp90, have been strongly implicated in various critical stages of oncogenesis and progression of human cancers. While drug development has extensively focused on Hsp90 as a potential anticancer target, much less effort has been put against Hsp72. This work investigated the therapeutic potential of Hsp72 and its constitutive isoform, Hsc70, via in silico-based screening against the South African Natural Compounds Database (SANCDB). A comparative modeling approach was used to obtain nearly full-length 3D structures of the closed conformation of Hsp72 and Hsc70 proteins. Molecular docking of SANCDB compounds identified one potential allosteric modulator, Discorhabdin N, binding to the allosteric ß substrate binding domain (SBDß) back pocket, with good binding affinities in both cases. This allosteric region was identified in one of our previous studies. Subsequent all-atom molecular dynamics simulations and free energy calculations exhibited promising protein⁻ligand association characteristics, indicative of strong binding qualities. Further, we utilised dynamic residue network analysis (DRN) to highlight protein regions actively involved in cross-domain communication. Most residues identified agreed with known allosteric signal regulators from literature, and were further investigated for the purpose of deducing meaningful insights into the allosteric modulation properties of Discorhabdin N.


Assuntos
Produtos Biológicos/química , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico/química , Modelos Moleculares , Regulação Alostérica , Aminoácidos/química , Antineoplásicos/química , Bases de Dados de Compostos Químicos , Desenho de Fármacos , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Termodinâmica
13.
ACS Chem Biol ; 13(11): 3142-3152, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30372610

RESUMO

Allosteric inhibitors can be more difficult to optimize without an understanding of how their binding influences the conformational motions of the target. Here, we used an integrated computational and experimental approach to probe the molecular mechanism of an allosteric inhibitor of heat shock protein 70 (Hsp70). The anticancer compound, MKT-077, is known to bind a conserved site in members of the Hsp70 family, which favors the ADP-bound state and interferes with a protein-protein interaction (PPI) at long range. However, the binding site does not overlap with either the nucleotide-binding cleft or the PPI contact surface, so its mechanism is unclear. To this end, we modeled Hsp70's internal dynamics and studied how MKT-077 alters local sampling of its allosteric states. The results pointed to a set of concerted motions between five loops in Hsp70's nucleotide-binding domain (NBD), surrounding the MKT-077 binding site. To test this prediction, we mutated key residues and monitored chaperone activities in vitro. Together, the results indicate that MKT-077 interacts with loop222 to favor a pseudo-ADP bound conformer of Hsp70's NBD, even when ATP is present. We used this knowledge to synthesize an analog of MKT-077 that would better prevent motions of loop222 and confirmed that it had improved antiproliferative activity in breast cancer cells. These results provide an example of how to unlock and leverage the complex mechanisms of allosteric inhibitors.


Assuntos
Antineoplásicos/química , Proteínas de Choque Térmico HSC70/química , Piridinas/química , Tiazóis/química , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Regulação Alostérica , Sítios de Ligação , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Domínios Proteicos
14.
J Biol Chem ; 293(27): 10796-10809, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29764935

RESUMO

Hsp70 chaperones bind to various protein substrates for folding, trafficking, and degradation. Considerable structural information is available about how prokaryotic Hsp70 (DnaK) binds substrates, but less is known about mammalian Hsp70s, of which there are 13 isoforms encoded in the human genome. Here, we report the interaction between the human Hsp70 isoform heat shock cognate 71-kDa protein (Hsc70 or HSPA8) and peptides derived from the microtubule-associated protein Tau, which is linked to Alzheimer's disease. For structural studies, we used an Hsc70 construct (called BETA) comprising the substrate-binding domain but lacking the lid. Importantly, we found that truncating the lid does not significantly impair Hsc70's chaperone activity or allostery in vitro Using NMR, we show that BETA is partially dynamically disordered in the absence of substrate and that binding of the Tau sequence GKVQIINKKG (with a KD = 500 nm) causes dramatic rigidification of BETA. NOE distance measurements revealed that Tau binds to the canonical substrate-binding cleft, similar to the binding observed with DnaK. To further develop BETA as a tool for studying Hsc70 interactions, we also measured BETA binding in NMR and fluorescent competition assays to peptides derived from huntingtin, insulin, a second Tau-recognition sequence, and a KFERQ-like sequence linked to chaperone-mediated autophagy. We found that the insulin C-peptide binds BETA with high affinity (KD < 100 nm), whereas the others do not (KD > 100 µm). Together, our findings reveal several similarities and differences in how prokaryotic and mammalian Hsp70 isoforms interact with different substrate peptides.


Assuntos
Proteínas de Choque Térmico HSC70/metabolismo , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteínas tau/metabolismo , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSC70/genética , Humanos , Ligação Proteica , Conformação Proteica , Proteínas tau/química , Proteínas tau/genética
15.
J Biol Chem ; 293(8): 2687-2700, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29298892

RESUMO

The microtubule-associated protein tau forms insoluble, amyloid-type aggregates in various dementias, most notably Alzheimer's disease. Cellular chaperone proteins play important roles in maintaining protein solubility and preventing aggregation in the crowded cellular environment. Although tau is known to interact with numerous chaperones, it remains unclear how these chaperones function mechanistically to prevent tau aggregation and how chaperones from different classes compare in terms of mechanism. Here, we focused on the small heat shock protein HspB1 (also known as Hsp27) and the constitutive chaperone Hsc70 (also known as HspA8) and report how each chaperone interacts with tau to prevent its fibril formation. Using fluorescence and NMR spectroscopy, we show that the two chaperones inhibit tau fibril formation by distinct mechanisms. HspB1 delayed tau fibril formation by weakly interacting with early species in the aggregation process, whereas Hsc70 was highly efficient at preventing tau fibril elongation, possibly by capping the ends of tau fibrils. Both chaperones recognized aggregation-prone motifs within the microtubule-binding repeat region of tau. However, HspB1 binding remained transient in both aggregation-promoting and non-aggregating conditions, whereas Hsc70 binding was significantly tighter under aggregation-promoting conditions. These differences highlight the fact that chaperones from different families play distinct but complementary roles in the prevention of pathological protein aggregation.


Assuntos
Amiloide/metabolismo , Regulação para Baixo , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Modelos Moleculares , Agregação Patológica de Proteínas/metabolismo , Proteínas tau/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Amiloide/química , Amiloide/efeitos dos fármacos , Amiloide/ultraestrutura , Anticoagulantes/farmacologia , Microscopia Crioeletrônica , Dimerização , Regulação para Baixo/efeitos dos fármacos , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/ultraestrutura , Proteínas de Choque Térmico HSP27/química , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/ultraestrutura , Proteínas de Choque Térmico , Heparina/farmacologia , Humanos , Cinética , Chaperonas Moleculares , Mutação , Agregação Patológica de Proteínas/patologia , Agregação Patológica de Proteínas/prevenção & controle , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/ultraestrutura
16.
Biochemistry ; 57(7): 1073-1086, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29300467

RESUMO

The ATPase domain of members of the 70 kDa heat shock protein (Hsp70) family shows a high degree of sequence, structural, and functional homology across species. A broadly conserved residue within the Hsp70 ATPase domain that captured our attention is an unpaired cysteine, positioned proximal to the site of nucleotide binding. Prior studies of several Hsp70 family members show this cysteine is not required for Hsp70 ATPase activity, yet select amino acid replacements of the cysteine can dramatically alter ATP hydrolysis. Moreover, post-translational modification of the cysteine has been reported to limit ATP hydrolysis for several Hsp70s. To better understand the underlying mechanism for how perturbation of this noncatalytic residue modulates Hsp70 function, we determined the structure for a cysteine-to-tryptophan mutation in the constitutively expressed, mammalian Hsp70 family member Hsc70. Our work reveals that the steric hindrance produced by a cysteine-to-tryptophan mutation disrupts the hydrogen-bond network within the active site, resulting in a loss of proper catalytic magnesium coordination. We propose that a similarly altered active site is likely observed upon post-translational oxidation. We speculate that the subtle changes we detect in the hydrogen-bonding network may relate to the previously reported observation that cysteine oxidation can influence Hsp70 interdomain communication.


Assuntos
Adenosina Trifosfatases/genética , Cisteína/genética , Proteínas de Choque Térmico HSC70/genética , Mutação Puntual , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSC70/metabolismo , Humanos , Ligação de Hidrogênio , Hidrólise , Modelos Moleculares , Alinhamento de Sequência
17.
Bioorg Med Chem ; 26(3): 630-636, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29317151

RESUMO

The tylophorine analog rac-cryptopleurine exhibited potent anti-hepatitis C virus (HCV) activity through allosteric regulation of ATPase activity of heat shock cognate protein 70 (Hsc70). We evaluated the impact of modifications on the E-ring of rac-cryptopleurine to the inhibitory activity against HCV replication and regulation of ATPase activity of Hsc70. Cryptopleurine analog YXM-110 with a 13α-hydroxyl group maintained activity against HCV and promoted ATP/ADP turnover of Hsc70; however, compounds with hydroxyl groups at other positions or with other orientations (YXM-109, YXM-139, and YXM-140) did not exhibit similar activities. Size modification or heteroatom incorporation of the E-ring led to loss of anti-HCV activity. Promotion of the chaperone activity of Hsc70 with carboxyl terminus Hsc70 interacting protein (CHIP) further enhanced the anti-HCV activity of rac-cryptopleurine and XYM-110. This structure-activity relationship (SAR) study refined structural design and optimization for developing rac-crytopleurine analogs as potent anti-HCV agents targeted against the host factor involved in HCV replication.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Antivirais/farmacologia , Hepacivirus/fisiologia , Replicação Viral/efeitos dos fármacos , Alcaloides/síntese química , Regulação Alostérica/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSC70/metabolismo , Células Hep G2 , Humanos , Relação Estrutura-Atividade , Proteínas Virais/genética , Proteínas Virais/metabolismo
18.
Cell Stress Chaperones ; 23(1): 91-100, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28702780

RESUMO

ChPur-α, a purine-rich element-binding protein, was discovered showing affinity to the ChHsc70 promoter in Crassostrea hongkongensis by DNA affinity purification and mass spectrometry analysis. Direct interaction between purified ChPur-α and the ChHsc70 promoter region was demonstrated by electrophoretic mobility shift assay in vitro. ChPur-α reduction led to clear enhancements of ChHsc70 transcription in the hemocytes of C. hongkongensis. Consistently, ChPur-α overexpression in heterologous HEK293T cells correlated with repressive phenotype in ChHsc70 promoter expression. ChHsc70 transcription was responsive to heat shock or CdCl2 stress by RT-PCR, signifying an inducible feature of ChHsc70 transcription by physical/chemical stress despite its constitutive nature. ChPur-α transcription was also induced by the two stressors. This indicates a plausible association between ChHsc70 and ChPur-α in the stress-induced genetic regulatory pathway. This study discovered a negatively regulatory role of ChPur-α in controlling ChHsc70 transcription in C. hongkongensis, and contributed to better understanding the regulatory mechanisms in control of Hsc70 transcription.


Assuntos
Crassostrea/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSC70/genética , Transcrição Gênica , Sequência de Aminoácidos , Animais , Sequência de Bases , Cloreto de Cádmio/toxicidade , Crassostrea/efeitos dos fármacos , DNA Complementar/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSC70/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Hemócitos/metabolismo , Humanos , Luciferases/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Estresse Fisiológico/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
19.
EMBO J ; 37(2): 282-299, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29212816

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded CAG trinucleotide repeat in the huntingtin gene (HTT). Molecular chaperones have been implicated in suppressing or delaying the aggregation of mutant Htt. Using in vitro and in vivo assays, we have identified a trimeric chaperone complex (Hsc70, Hsp110, and J-protein) that completely suppresses fibrilization of HttExon1Q48 The composition of this chaperone complex is variable as recruitment of different chaperone family members forms distinct functional complexes. The trimeric chaperone complex is also able to resolubilize Htt fibrils. We confirmed the biological significance of these findings in HD patient-derived neural cells and on an organismal level in Caenorhabditis elegans Among the proteins in this chaperone complex, the J-protein is the concentration-limiting factor. The single overexpression of DNAJB1 in HEK293T cells is sufficient to profoundly reduce HttExon1Q97 aggregation and represents a target of future therapeutic avenues for HD.


Assuntos
Proteínas de Choque Térmico HSC70 , Proteínas de Choque Térmico HSP110 , Proteínas de Choque Térmico HSP40 , Proteína Huntingtina , Complexos Multiproteicos , Neurônios/metabolismo , Animais , Caenorhabditis elegans , Células HEK293 , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Neurônios/patologia , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia
20.
J Mol Model ; 23(11): 320, 2017 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-29063205

RESUMO

The Hsp70 and Hsp40 chaperone machine plays critical roles in protein folding, membrane translocation, and protein degradation by binding and releasing protein substrates in a process that utilizes ATP. The activities of the Hsp70 family of chaperones are recruited and stimulated by the J domains of Hsp40 chaperones. However, structural information on the Hsp40-Hsp70 complex is lacking, and the molecular details of this interaction are yet to be elucidated. Here we used steered molecular dynamics (SMD) simulations to investigate the molecular interactions that occur during the dissociation of the auxilin J domain from the Hsc70 nucleotide-binding domain (NBD). The changes in energy observed during the SMD simulation suggest that electrostatic interactions are the dominant type of interaction. Additionally, we found that Hsp70 mainly interacts with auxilin through the surface residues Tyr866, Arg867, and Lys868 of helix II, His874, Asp876, Lys877, Thr879, and Gln881 of the HPD loop, and Phe891, Asn895, Asp896, and Asn903 of helix III. The conservative residues Tyr866, Arg867, Lys868, His874, Asp876, Lys877, and Phe891 were also found in a previous study to be indispensable to the catalytic activity of the DnaJ J domain and the binding of it with the NBD of DnaK. The in silico identification of the importance of auxilin residues Asn895, Asp896, and Asn903 agrees with previous mutagenesis and NMR data suggesting that helix III of the J domain of the T antigen interacts with Hsp70. Furthermore, our data indicate that Thr879 and Gln881 from the HPD loop are also important as they mediate the interaction between the bovine auxilin J domain and Hsc70.


Assuntos
Auxilinas/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Simulação de Dinâmica Molecular , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Animais , Auxilinas/química , Bovinos , Proteínas de Choque Térmico HSC70/química , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...