Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 635
Filtrar
1.
Clin Biochem ; 121-122: 110682, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37926404

RESUMO

BACKGROUND: Sub-clinical inflammation in hyperglycemia is tied to the pathogenesis of diabetic kidney disease (DKD). Though well known for its immunostimulatory function, the significance of extracellular heat shock protein 72 (eHSP72) in DKD is not well studied. We aimed to determine the association of extracellular HSP72 with systemic inflammation and the progression of DKD, and explore its possible clinical significance in DKD. METHODS: 160 type 2 diabetic individuals were enrolled in the study. Their anthropometric data, routine biochemical parameters, urinary renal function parameters, and blood count parameters were estimated. Plasma from patients' blood samples were used to estimate HSP72 and interleukin 1ß (IL-1ß) using sandwich immunoassays. RESULTS: Plasma eHSP72 is elevated in DKD. Pairwise comparisons showed the drastic elevation of eHSP72 in the presence of albuminuria. A significant positive relationship was observed between plasma levels of eHSP72 and IL-1ß. eHSP72 levels did not statistically differ between micro and macro-albuminuric DKD. However, it was inversely associated with estimated glomerular filtration rate, the index of disease severity, independent of age, gender, diabetes duration and absolute monocyte count. At a cutoff of 0.52 ng/ml, with sensitivity of 64.1 % and specificity of 69.2 %, plasma eHSP72 differentiated the presence of DKD in type 2 diabetics with statistical significance. CONCLUSION: The positive relationship of eHSP72 and IL-1ß with worsening DKD likely indicates their participation in immunostimulatory pathways of renal fibrosis. eHSP72 may be closely linked to albuminuria-induced tubular injury and likely contributes to fibrotic changes in the progression of DKD. From our study, we infer the possible clinical significance of eHSP72 as a marker of sub-clinical renal damage in DKD, and the implication of IL-1ß-associated mechanisms in DKD progression.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Albuminúria , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/complicações , Progressão da Doença , Fibrose , Taxa de Filtração Glomerular , Inflamação , Proteínas de Choque Térmico HSP72/metabolismo
2.
Gut Liver ; 17(6): 905-915, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36814356

RESUMO

Background/Aims: Crohn's disease (CD) with recurrent inflammation can cause intestinal fibrostenosis due to dysregulated deposition of extracellular matrix. However, little is known about the pathogenesis of fibrostenosis. Here, we performed a differential proteomic analysis between normal, inflamed, and fibrostenotic specimens of patients with CD and investigated the roles of the candidate proteins in myofibroblast activation and fibrosis. Methods: We performed two-dimensional difference gel electrophoresis and identified candidate proteins using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and orbitrap liquid chromatography-mass spectrometry. We also verified the levels of candidate proteins in clinical specimens and examined their effects on 18Co myofibroblasts and Caco-2 intestinal epithelial cells. Results: We identified five of 30 proteins (HSP72, HSPA5, KRT8, PEPCK-M, and FABP6) differentially expressed in fibrostenotic CD. Among these proteins, the knockdown of heat shock protein 72 (HSP72) promoted the activation and wound healing of myofibroblasts. Moreover, knockdown of HSP72 induced the epithelial-mesenchymal transition of intestinal epithelial cells by reducing E-cadherin and inducing fibronectin and α-smooth muscle actin, which contribute to fibrosis. Conclusions: HSP72 is an important mediator that regulates myofibroblasts and epithelial-mesenchymal transition in fibrosis of CD, suggesting that HSP72 can serve as a target for antifibrotic therapy.


Assuntos
Doença de Crohn , Humanos , Doença de Crohn/patologia , Proteínas de Choque Térmico HSP72/metabolismo , Células CACO-2 , Proteômica , Regulação para Baixo , Fibrose
3.
Am J Physiol Regul Integr Comp Physiol ; 324(1): R1-R14, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36409025

RESUMO

Passive hyperthermia induces a range of physiological responses including augmenting skeletal muscle mRNA expression. This experiment aimed to examine gene and protein responses to prolonged passive leg hyperthermia. Seven young participants underwent 3 h of resting unilateral leg heating (HEAT) followed by a further 3 h of rest, with the contralateral leg serving as an unheated control (CONT). Muscle biopsies were taken at baseline (0 h), and at 1.5, 3, 4, and 6 h in HEAT and 0 and 6 h in CONT to assess changes in selected mRNA expression via qRT-PCR, and HSP72 and VEGFα concentration via ELISA. Muscle temperature (Tm) increased in HEAT plateauing from 1.5 to 3 h (+3.5 ± 1.5°C from 34.2 ± 1.2°C baseline value; P < 0.001), returning to baseline at 6 h. No change occurred in CONT. Endothelial nitric oxide synthase (eNOS), Forkhead box O1 (FOXO-1), Hsp72, and VEGFα mRNA increased in HEAT (P < 0.05); however, post hoc analysis identified that only Hsp72 mRNA statistically increased (at 4 h vs. baseline). When peak change during HEAT was calculated angiopoietin 2 (ANGPT-2) decreased (-0.4 ± 0.2-fold), and C-C motif chemokine ligand 2 (CCL2) (+2.9 ± 1.6-fold), FOXO-1 (+6.2 ± 4.4-fold), Hsp27 (+2.9 ± 1.7-fold), Hsp72 (+8.5 ± 3.5-fold), Hsp90α (+4.6 ± 3.7-fold), and VEGFα (+5.9 ± 3.1-fold) increased from baseline (all P < 0.05). At 6 h Tm were not different between limbs (P = 0.582; CONT = 32.5 ± 1.6°C, HEAT = 34.3 ± 1.2°C), and only ANGPT-2 (P = 0.031; -1.3 ± 1.4-fold) and VEGFα (P = 0.030; 1.1 ± 1.2-fold) differed between HEAT and CONT. No change in VEGFα or HSP72 protein concentration were observed over time; however, peak change in VEGFα did increase (P < 0.05) in HEAT (+140 ± 184 pg·mL-1) versus CONT (+7 ± 86 pg·mL-1). Passive hyperthermia transiently augmented ANGPT-2, CCL2, eNOS, FOXO-1, Hsp27, Hsp72, Hsp90α and VEGFα mRNA, and VEGFα protein.


Assuntos
Proteínas de Choque Térmico HSP72 , Hipertermia Induzida , Músculo Esquelético , Neovascularização Fisiológica , Humanos , Proteínas de Choque Térmico HSP72/genética , Proteínas de Choque Térmico HSP72/metabolismo , Extremidade Inferior/irrigação sanguínea , Extremidade Inferior/fisiologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Biomolecules ; 12(10)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36291584

RESUMO

AIMS: We hypothesized that critically ill patients with SARS-CoV-2 infection and insulin resistance would present a reduced Heat Shock Response (HSR), which is a pathway involved in proteostasis and anti-inflammation, subsequently leading to worse outcomes and higher inflammation. In this work we aimed: (i) to measure the concentration of extracellular HSP72 (eHSP72) in patients with severe COVID-19 and in comparison with noninfected patients; (ii) to compare the HSR between critically ill patients with COVID-19 (with and without diabetes); and (iii) to compare the HSR in these patients with noninfected individuals. METHODS: Sixty critically ill adults with acute respiratory failure with SARS-CoV-2, with or without diabetes, were selected. Noninfected subjects were included for comparison (healthy, n = 19 and patients with diabetes, n = 22). Blood samples were collected to measure metabolism (glucose and HbA1c); oxidative stress (lypoperoxidation and carbonyls); cytokine profile (IL-10 and TNF); eHSP72; and the HSR (in vitro). RESULTS: Patients with severe COVID-19 presented higher plasma eHSP72 compared with healthy individuals and noninfected patients with diabetes. Despite the high level of plasma cytokines, no differences were found between critically ill patients with COVID-19 with or without diabetes. Critically ill patients, when compared to noninfected, presented a blunted HSR. Oxidative stress markers followed the same pattern. No differences in the HSR (extracellular/intracellular level) were found between critically ill patients, with or without diabetes. CONCLUSIONS: We demonstrated that patients with severe COVID-19 have elevated plasma eHSP72 and that their HSR is blunted, regardless of the presence of diabetes. These results might explain the uncontrolled inflammation and also provide insights on the increased risk in developing type 2 diabetes after SARS-CoV-2 infection.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Adulto , Humanos , Interleucina-10 , SARS-CoV-2 , Estado Terminal , Proteínas de Choque Térmico HSP72/metabolismo , Hemoglobinas Glicadas , Resposta ao Choque Térmico , Citocinas , Inflamação , Chaperonas Moleculares , Glucose
5.
Exp Physiol ; 107(10): 1159-1171, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35654394

RESUMO

NEW FINDINGS: What is the topic of this review? The status and potential role of novel biological markers (biomarkers) that can help identify the patients at risk of organ injury or long-term complications following heatstroke. What advances does it highlight? Numerous biomarkers were identified related to many aspects of generalized heatstroke-induced cellular injury and tissue damage, and heatstroke-provoked cardiovascular, renal, cerebral, intestinal and skeletal muscle injury. No novel biomarkers were identified for liver or lung injury. ABSTRACT: Classic and exertional heatstroke cause acute injury and damage across numerous organ systems. Moreover, heatstroke survivors may sustain long-term neurological, cardiovascular and renal complications with a persistent risk of death. In this context, biomarkers, defined as biological samples obtained from heatstroke patients, are needed to detect early organ injury, and predict outcomes to develop novel organ preservation therapeutic strategies. This narrative review provides preliminary insights that will guide the development and future utilization of these biomarkers. To this end, we have identified numerous biomarkers of widespread heatstroke-associated cellular injury, tissue damage and repair (extracellular heat shock proteins 72 and 60, high mobility group box protein 1, histone H3, and interleukin-1α), and other organ-specific biomarkers including those related to the cardiovascular system (cardiac troponin I, endothelium-derived factors, circulation endothelial cells, adhesion molecules, thrombomodulin and von Willebrand factor antigen), the kidneys (plasma and urinary neutrophil gelatinase-associated lipocalin), the intestines (intestinal fatty acid-binding protein 2), the brain (serum S100ß and neuron-specific enolase) and skeletal muscle (creatine kinase, myoglobin). No specific biomarkers have been identified so far for liver or lung injury in heatstroke. Before translating the identified biomarkers into clinical practice, additional preclinical and clinical prospective studies are required to further understand their clinical utility, particularly for the biomarkers related to long-term post-heatstroke health outcomes.


Assuntos
Golpe de Calor , Lesão Pulmonar , Biomarcadores , Creatina Quinase/metabolismo , Células Endoteliais/metabolismo , Proteínas de Ligação a Ácido Graxo/uso terapêutico , Proteínas HMGB/metabolismo , Proteínas de Choque Térmico HSP72/metabolismo , Histonas , Humanos , Interleucina-1alfa/metabolismo , Lipocalina-2/uso terapêutico , Lesão Pulmonar/complicações , Mioglobina/metabolismo , Fosfopiruvato Hidratase/metabolismo , Trombomodulina/metabolismo , Trombomodulina/uso terapêutico , Troponina I/metabolismo , Fator de von Willebrand/metabolismo , Fator de von Willebrand/uso terapêutico
6.
Am J Physiol Regul Integr Comp Physiol ; 323(1): R43-R58, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35470695

RESUMO

Impaired endothelial insulin signaling and consequent blunting of insulin-induced vasodilation is a feature of type 2 diabetes (T2D) that contributes to vascular disease and glycemic dysregulation. However, the molecular mechanisms underlying endothelial insulin resistance remain poorly known. Herein, we tested the hypothesis that endothelial insulin resistance in T2D is attributed to reduced expression of heat shock protein 72 (HSP72). HSP72 is a cytoprotective chaperone protein that can be upregulated with heating and is reported to promote insulin sensitivity in metabolically active tissues, in part via inhibition of JNK activity. Accordingly, we further hypothesized that, in individuals with T2D, 7 days of passive heat treatment via hot water immersion to waist level would improve leg blood flow responses to an oral glucose load (i.e., endogenous insulin stimulation) via induction of endothelial HSP72. In contrast, we found that: 1) endothelial insulin resistance in T2D mice and humans was not associated with reduced HSP72 in aortas and venous endothelial cells, respectively; 2) after passive heat treatment, improved leg blood flow responses to an oral glucose load did not parallel with increased endothelial HSP72; and 3) downregulation of HSP72 (via small-interfering RNA) or upregulation of HSP72 (via heating) in cultured endothelial cells did not impair or enhance insulin signaling, respectively, nor was JNK activity altered. Collectively, these findings do not support the hypothesis that reduced HSP72 is a key driver of endothelial insulin resistance in T2D but provide novel evidence that lower-body heating may be an effective strategy for improving leg blood flow responses to glucose ingestion-induced hyperinsulinemia.


Assuntos
Diabetes Mellitus Tipo 2 , Proteínas de Choque Térmico HSP72 , Resistência à Insulina , Animais , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Proteínas de Choque Térmico HSP72/genética , Proteínas de Choque Térmico HSP72/metabolismo , Insulina/metabolismo , Camundongos
7.
Scand J Med Sci Sports ; 32(6): 984-996, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35247016

RESUMO

PURPOSE: A typical football match leads to neuromuscular fatigue and physical performance impairments up to 72-96 h post-match. While muscle damage is thought to be a major factor, damage on the ultrastructural level has never been documented. The purpose of this study was to investigate post-match cellular muscle damage by quantifying the heat shock protein (HSP) response as a proxy for protein damage. METHODS: Muscle biopsies, blood samples, countermovement jumps, and perception of muscle soreness were obtained from twelve semi-professional football players 1, 24, 48, and 72 h after a 90-min football match. Muscle biopsies were analyzed for αB-crystallin and HSP70 in the cytosolic and cytoskeletal sub-cellular fractions by Western blotting. Fiber type-specific αB-crystallin and HSP70 staining intensity, and tenascin-C immunoreactivity were analyzed with immunohistochemistry. Blood samples were analyzed for creatine kinase and myoglobin. RESULTS: Within 24 h post-match, a 2.7- and 9.9-fold increase in creatine kinase and myoglobin were observed, countermovement jump performance decreased by -9.7% and muscle soreness increased by 0.68 units. αB-crystallin and HSP70 accumulated in cytoskeletal structures evident by a 3.6- and 1.8-fold increase in the cytoskeletal fraction and a parallel decrease in the cytosolic fraction. In type I and II fibers, αB-crystallin staining intensity increased by 15%-41% and remained elevated at 72 h post-match. Lastly, the percentage of fibers with granular staining of αB-crystallin increased 2.2-fold. CONCLUSIONS: Football match play induced a muscular HSP stress response 1-72 h post-match. Specifically, the accumulation of HSPs in cytoskeletal structures and the granular staining of αB-crystallin suggests occurrence of ultrastructural damage. The damage, indicated by the HSP response, might be one reason for the typically 72 h decrease in force-generating capacity after football matches.


Assuntos
Futebol , Humanos , Cadeia B de alfa-Cristalina , Creatina Quinase , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP72/metabolismo , Músculo Esquelético/fisiologia , Mialgia , Mioglobina
8.
Pharmacol Res ; 173: 105879, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34508810

RESUMO

Growth arrest and DNA damage-inducible 45ß (GADD45ß) belongs to the GADD45 family which is small acidic proteins in response to cellular stress. GADD45ß has already been reported to have excellent capabilities against cancer, innate immunity and neurological diseases. However, there is little information regard GADD45ß and non-alcoholic fatty liver disease (NAFLD). In the current work, we found that the expression of GADD45ß was markedly decreased in the livers of NAFLD patients via analyzing Gene Expression Omnibus (GEO) dataset and in mouse model through detecting its mRNA in high-fat-high-fructose diet (HFHFr)-fed mice. Moreover, the results from in vivo experiment demonstrated that overexpression of GADD45ß by AAV8-mediated gene transfer in HFHFr-fed mouse model could reduce the level of serum and hepatic triglyceride (TG), and alleviate insulin resistance. Subsequently, by combining immunoprecipitation (IP) and mass spectrometry, we identified that HSP72 directly interacted with GADD45ß to prevent GADD45ß from being degraded by the proteasome pathway. Finally, the benefits of GADD45ß in regulating key factors of TG synthesis and insulin signaling pathway were abolished after HSP72 knockdown. In conclusion, GADD45ß stabilized by the interaction with HSP72 could alleviate the NAFLD-related pathologies, suggested it might be a potential target for the treatment of NAFLD.


Assuntos
Antígenos de Diferenciação/genética , Proteínas de Choque Térmico HSP72/genética , Resistência à Insulina , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica/genética , Animais , Regulação para Baixo , Células HEK293 , Proteínas de Choque Térmico HSP72/metabolismo , Células Hep G2 , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
9.
Sci Rep ; 11(1): 13356, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172794

RESUMO

The lung is severely affected by intestinal ischemia-reperfusion (I-R) injury. Mesna, a thiol compound, possess anti-inflammatory and antioxidant properties. We aimed in the present work to explore the potential beneficial effects of Mesna on the acute lung damage mediated by intestinal I-R in a rat model. Forty male adult albino rats were randomly separated into; control, intestinal I-R, Mesna I and Mesna II groups. Mesna was administered by intraperitoneal injection at a dose of 100 mg/kg, 60 min before ischemia (Mesna I) and after reperfusion (Mesna II). Arterial blood gases and total proteins in bronchoalveolar lavage (BAL) were measured. Lung tissue homogenates were utilized for biochemical assays of proinflammatory cytokines and oxidative stress markers. Lung specimens were managed for examination by light and electron microscopy. Our results revealed that Mesna attenuated the histopathological changes and apoptosis of the lung following intestinal I-R. Mesna also recovered systemic oxygenation. Mesna suppressed neutrophil infiltration (as endorsed by the reduction in MPO level), reduced ICAM-1 mRNA expression, inhibited NF-κB pathway and reduced the proinflammatory cytokines (TNF-α, IL-1ß and IL-6) in the lung tissues. Mesna maintained the antioxidant profile as evidenced by the elevation of the tissue GPx and SOD and down-regulation of HSP70 immune-expressions. Accordingly, Mesna treatment can be a promising way to counteract remote injury of the lung resulted from intestinal I-R.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Mesna/farmacologia , Traumatismo por Reperfusão/metabolismo , Lesão Pulmonar Aguda/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Proteínas de Choque Térmico HSP72/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Intestinos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Malondialdeído/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos
10.
Mol Med ; 27(1): 53, 2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34053448

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized by airway obstruction and progressive lung inflammation. As the primary ingredient of a traditional Chinese medical herb, Baicalin has been previously shown to possess anti-inflammatory abilities. Thus, the current study aimed to elucidate the mechanism by which baicalin alleviates COPD. METHODS: Baicalin was adopted to treat cigarette smoke in extract-exposed MLE-12 cells after which cell viability and apoptosis were determined. The production of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), IL-8 were determined by enzyme-linked immunoassay. A COPD mouse model was constructed via exposure to cigarette smoke and lipopolysaccharide, baicalin treatment. Lung function and inflammatory cell infiltration were determined and the production of Muc5AC, TNF-α, IL-6, IL-8 in the bronchoalveolar lavage fluid (BALF) was assayed by ELISA. The effect of HSP72 and JNK on COPD following treatment with baicalin was assessed both in vivo and in vitro by conducting loss- and gain- function experiments. RESULTS: Baicalin improved lung function evidenced by reduction in inflammatory cell infiltration and Muc5AC, TNF-α, IL-6 and IL-8 levels observed in BALF in mice. Baicalin was further observed to elevate cell viability while inhibited apoptosis and TNF-α, IL-6 and IL-8 levels in MLE-12 cells. Baicalin treatment increased HSP72 expression, while its depletion reversed the effect of baicalin on COPD. HSP72 inhibited the activation of JNK, while JNK activation was found to inhibit the effect of baicalin on COPD. CONCLUSIONS: Baicalin upregulated the expression of HSP72, resulting in the inhibition of JNK signaling activation, which ultimately alleviates COPD.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Flavonoides/farmacologia , Proteínas de Choque Térmico HSP72/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Biomarcadores , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Modelos Animais de Doenças , Flavonoides/uso terapêutico , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico HSP72/genética , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Camundongos , Modelos Biológicos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/etiologia , Testes de Função Respiratória , Resultado do Tratamento
11.
Life Sci ; 278: 119638, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34051216

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. A reader reported several mistakes in the paper including duplicated images in Figures 9 and 10, incorrect names of primer sequences and reference gene, as well as unclear description of the statistical analysis. The authors requested that a corrigendum be published, however, due to the large number of corrections applied, it cannot be concluded that these changes would not alter the conclusions of the paper. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.


Assuntos
Antimetabólitos Antineoplásicos/efeitos adversos , Compostos Benzidrílicos/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Glucosídeos/uso terapêutico , Hesperidina/análogos & derivados , Metotrexato/efeitos adversos , Substâncias Protetoras/uso terapêutico , Animais , Caspase 3/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Proteínas de Choque Térmico HSP72/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Hesperidina/uso terapêutico , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos
12.
mSphere ; 6(3)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011688

RESUMO

Hsp70 proteins are among the most ubiquitous chaperones and play important roles in maintaining proteostasis and resisting environmental stress. Multiple copies of Hsp70s are widely present in eukaryotic cells with redundant and divergent functions, but they have been less well investigated in prokaryotes. Myxococcus xanthus DK1622 is annotated as having many hsp70 genes. In this study, we performed a bioinformatic analysis of Hsp70 proteins and investigated the functions of six hsp70 genes in DK1622, including two genes that encode proteins with the conserved PRK00290 domain (MXAN_3192 and MXAN_6671) and four genes that encode proteins with the cl35085 or cd10170 domain. We found that only MXAN_3192 is essential for cell survival and heat shock induction. MXAN_3192, compared with the other hsp70 genes, has a high transcriptional level, far exceeding that of any other hsp70 gene, which, however, is not the reason for its essentiality. Deletion of MXAN_6671 (sglK) led to multiple deficiencies in development, social motility, and oxidative resistance, while deletion of each of the other four hsp70 genes decreased sporulation and oxidative resistance. MXAN_3192 or sglK, but not the other genes, restored the growth deficiency of the E. colidnaK mutant. Our results demonstrated that the PRK00290 proteins play a central role in the complex cellular functions of M. xanthus, while the other diverse Hsp70 superfamily homologues probably evolved as helpers with some unknown specific functions.IMPORTANCE Hsp70 proteins are highly conserved chaperones that occur in all kingdoms of life. Multiple copies of Hsp70s are often present in genome-sequenced prokaryotes, especially taxa with complex life cycles, such as myxobacteria. We investigated the functions of six hsp70 genes in Myxococcus xanthus DK1622 and demonstrated that the two Hsp70 proteins with the PRK00290 domain play a central role in complex cellular functions in M. xanthus, while other Hsp70 proteins probably evolved as helpers with some unknown specific functions.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Proteínas de Choque Térmico HSP72/genética , Proteínas de Choque Térmico HSP72/metabolismo , Myxococcus xanthus/química , Myxococcus xanthus/genética , Proteínas de Choque Térmico HSP72/classificação , Myxococcus xanthus/metabolismo , Filogenia , Estresse Fisiológico , Transcrição Gênica
13.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802591

RESUMO

Mitochondrial apoptosis is one of the main mechanisms for cancer cells to overcome chemoresistance. Hexokinase 2 (HK2) can resist cancer cell apoptosis by expressing on mitochondria and binding to voltage-dependent anion channel 1 (VDAC1). We previously reported that peroxisome proliferator-activated receptor coactivator 1 α (PGC1α) is highly expressed in ovarian cancer cisplatin-resistant cells. However, the underlying mechanism remains unclear. Therefore, we evaluated the interaction between PGC1α and HK2 in ovarian cancer cisplatin-resistant cells. We found that the knockdown of PGC1α promotes the apoptosis of ovarian cancer cisplatin-resistant cells and increases their sensitivity to cisplatin. In addition, we found that the knockdown of PGC1α affects the mitochondrial membrane potential and the binding of HK2 and VDAC1. As the heat shock protein 70 (HSP70) family can help protein transport, we detected it and found that PGC1α can promote HSP70 gene transcription. Furthermore, HSP70 can promote an increase of HK2 expression on mitochondria and an increase of binding to VDAC1. Based on these results, PGC1α may reduce apoptosis through the HSP70/HK2/VDAC1 signaling pathway, thus promoting cisplatin resistance of ovarian cancer. These findings provide strong theoretical support for PGC1α as a potential therapeutic target of cisplatin resistance in ovarian cancer.


Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Mitocôndrias/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Proteínas de Choque Térmico HSP72/metabolismo , Hexoquinase/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/fisiologia , Canal de Ânion 1 Dependente de Voltagem/metabolismo
14.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806917

RESUMO

Insufficient stress response and elevated oxidative stress can contribute to skeletal muscle atrophy during mechanical unloading (e.g., spaceflight and bedrest). Perturbations in heat shock proteins (e.g., HSP70), antioxidant enzymes, and sarcolemmal neuronal nitric oxidase synthase (nNOS) have been linked to unloading-induced atrophy. We recently discovered that the sarcolemmal NADPH oxidase-2 complex (Nox2) is elevated during unloading, downstream of angiotensin II receptor 1, and concomitant with atrophy. Here, we hypothesized that peptidyl inhibition of Nox2 would attenuate disruption of HSP70, MnSOD, and sarcolemmal nNOS during unloading, and thus muscle fiber atrophy. F344 rats were divided into control (CON), hindlimb unloaded (HU), and hindlimb unloaded +7.5 mg/kg/day gp91ds-tat (HUG) groups. Unloading-induced elevation of the Nox2 subunit p67phox-positive staining was mitigated by gp91ds-tat. HSP70 protein abundance was significantly lower in HU muscles, but not HUG. MnSOD decreased with unloading; however, MnSOD was not rescued by gp91ds-tat. In contrast, Nox2 inhibition protected against unloading suppression of the antioxidant transcription factor Nrf2. nNOS bioactivity was reduced by HU, an effect abrogated by Nox2 inhibition. Unloading-induced soleus fiber atrophy was significantly attenuated by gp91ds-tat. These data establish a causal role for Nox2 in unloading-induced muscle atrophy, linked to preservation of HSP70, Nrf2, and sarcolemmal nNOS.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , NADPH Oxidase 2/antagonistas & inibidores , Estresse Fisiológico , Ausência de Peso/efeitos adversos , Animais , Biomarcadores , Proteínas de Choque Térmico HSP72/metabolismo , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Estresse Oxidativo , Ligação Proteica , Ratos
15.
Comput Biol Med ; 132: 104301, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33751994

RESUMO

Over the past two decades, covalent inhibitors have gained much interest and are living up to their reputation as a powerful tool in drug discovery. Covalent inhibitors possess several significant advantages, including increased biochemical efficiency, prolonged duration and the ability to target shallow, solvent-exposed substrate-binding domains. One of the enzymes that have been both covalently and non-covalently targeted is the heat shock protein 72 (HSP72). This elevated enzyme expression in cancer cells may be responsible for tumorigenesis and tumor progression by providing chemotherapy resistance. A critical gap remains in the molecular understanding of the structural mechanism's covalent and non-covalent binding to HSP72. In this study, we explore the most optimal binding mechanism in the inhibition of the HSP72. Based on the molecular dynamic analyses, it was evident that the non-covalent complex showed more stability than the covalent complex. The covalent ligand, however, was more able to induce and stabilize the sealed conformation of the HSP72-NBD ATP binding domain throughout the. Also, the non-covalent ligand does not induce any significant conformational change as it remained close to the shape of the unbound complex; and the affinity is only dependent on the multiple hydrogen bonds in contrast to the covalent ligand. This is supported by the secondary structure elements and principal component analysis that was more dominant in the covalently inhibited complex. Covalent bond induced the α-helices sealed conformation of the HSP72-NBD; based on our findings, this will prevent other small molecules from interacting at the ATP binding site domain. Moreover, inhibition of the ATP binding domain can directly affect the ATPs protein folding mechanism of the HSP72 enzyme. The essential dynamic analysis presented in this report compliments the binding mechanism of HSP72, establishing covalent inhibition as the preferred method of inhibiting the HSP72 protein. The findings from this study may assist in the design of more target-specific HSP72 covalent inhibitors exploring the surface-exposed lysine residues.


Assuntos
Simulação de Dinâmica Molecular , Neoplasias , Proteínas de Choque Térmico HSP72/metabolismo , Ligantes , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína
16.
Int J Biol Macromol ; 180: 272-285, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33741370

RESUMO

Plasmodium falciparum expresses two essential cytosol localised chaperones; PfHsp70-1 and PfHsp70-z. PfHsp70-z (Hsp110 homologue) is thought to facilitate nucleotide exchange function of PfHsp70-1. PfHsp70-1 is a refoldase, while PfHsp70-z is restricted to holdase chaperone function. The structural features delineating functional specialisation of these chaperones remain unknown. Notably, PfHsp70-z possesses a unique linker segment which could account for its distinct functions. Using recombinant forms of PfHsp70-1, PfHsp70-z and E. coli Hsp70 (DnaK) as well as their linker switch mutant forms, we explored the effects of the linker mutations by conducting several assays such as circular dichroism, intrinsic and extrinsic fluorescence coupled to biochemical and in cellular analyses. Our findings demonstrate that the linker of PfHsp70-z modulates global conformation of the chaperone, regulating several functions such as client protein binding, chaperone- and ATPase activities. In addition, as opposed to the flexible linker of PfHsp70-1, the PfHsp70-z linker is rigid, thus regulating its notable thermal stability, making it an effective stress buffer. Our findings suggest a crucial role for the linker in streamlining the functions of these two chaperones. The findings further explain how these distinct chaperones cooperate to ensure survival of P. falciparum particularly under the stressful human host environment.


Assuntos
Citosol/metabolismo , Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP72/química , Proteínas de Choque Térmico HSP72/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Adenosina Trifosfatases/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP72/genética , Ligação de Hidrogênio , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672387

RESUMO

Parasitic organisms especially those of the Apicomplexan phylum, harbour a cytosol localised canonical Hsp70 chaperone. One of the defining features of this protein is the presence of GGMP repeat residues sandwiched between α-helical lid and C-terminal EEVD motif. The role of the GGMP repeats of Hsp70s remains unknown. In the current study, we introduced GGMP mutations in the cytosol localised Hsp70-1 of Plasmodium falciparum (PfHsp70-1) and a chimeric protein (KPf), constituted by the ATPase domain of E. coli DnaK fused to the C-terminal substrate binding domain of PfHsp70-1. A complementation assay conducted using E. coli dnaK756 cells demonstrated that the GGMP motif was essential for chaperone function of the chimeric protein, KPf. Interestingly, insertion of GGMP motif of PfHsp70-1 into DnaK led to a lethal phenotype in E. coli dnaK756 cells exposed to elevated growth temperature. Using biochemical and biophysical assays, we established that the GGMP motif accounts for the elevated basal ATPase activity of PfHsp70-1. Furthermore, we demonstrated that this motif is important for interaction of the chaperone with peptide substrate and a co-chaperone, PfHop. Our findings suggest that the GGMP may account for both the specialised chaperone function and reportedly high catalytic efficiency of PfHsp70-1.


Assuntos
Proteínas de Choque Térmico HSP72/genética , Proteínas de Choque Térmico HSP72/metabolismo , Mutação , Plasmodium falciparum , Proteínas de Protozoários/genética , Dicroísmo Circular , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Teste de Complementação Genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP72/química , Proteínas de Choque Térmico/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Plasmodium falciparum/metabolismo , Estabilidade Proteica , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sequências Repetitivas de Aminoácidos , Espectrometria de Fluorescência
18.
J Therm Biol ; 96: 102855, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33627283

RESUMO

Little is known on the protective effects of L-proline on hen erythrocytes. The aim of the study was to determine the protective effects of this amino acid at concentrations of 50 µg/mL, 100 µg/mL, 200 µg/mL in hen erythrocytes subjected to temperatures 41 °C, 43 °C and 45 °C for 1 h and 4 h. The following cellular parameters were determined: viability, morphological alterations, caspase 3/7 activity, heat shock protein HSP70 1A activity and glutathione level. The results showed that exposure to 43 °C and 45 °C resulted in a decrease of viability and increased morphological alterations of the non-treated erythrocytes. Caspase 3/7 activity was increased only at 45 °C, however HSP70 1A activity and glutathione level were increased in the temperature-dependent manner. On the other hand, erythrocytes additionally exposed to L-proline showed alterations of the parameters when compared to the non-treated cells. L-proline at 50 µg/mL and 100 µg/mL increased caspase 3/7 activity at both 41 °C and 43 °C, however it was less augmented at all the concentrations at 45 °C. Glutathione level was decreased in heat-stressed (at 43 °C and 45 °C) hen erythrocytes treated with L-proline (at 50 µg/mL and 100 µg/mL) but it was increased at 200 µg/mL. HSP70 1A activity was augmented in a concentration- and temperature-dependent manner. The results indicate that proapoptotic or antiapoptotic effects of L-proline depend on its concentration and temperature of heat stress and thermoprotective effects induced by the amino acid on some parameters in hen erythrocytes may be a result of stimulation of antioxidative defense and stimulation of HSP70 1A activity.


Assuntos
Galinhas/sangue , Eritrócitos/efeitos dos fármacos , Resposta ao Choque Térmico , Prolina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Aviárias/metabolismo , Caspase 3/metabolismo , Caspase 7/metabolismo , Sobrevivência Celular , Células Cultivadas , Eritrócitos/metabolismo , Feminino , Glutationa/metabolismo , Proteínas de Choque Térmico HSP72/metabolismo
19.
Exp Physiol ; 106(1): 290-301, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32627238

RESUMO

NEW FINDINGS: What is the central question of this study? Heat acclimation increases tolerance to exercise performed in the heat and may improve maximal oxygen uptake (VO2 max) and performance in temperate environments. However, it is unknown if HA affects the expression of proteins related to mitochondrial biogenesis and oxidative capacity in skeletal muscle. What is the main finding and its importance? We showed that heat acclimation increased VO2 max in a temperate environment but did not change markers of mitochondrial biogenesis and oxidative phosphorylation in the skeletal muscle. ABSTRACT: Heat acclimation (HA) increases tolerance to exercise performed in the heat and may improve maximal oxygen uptake ( V̇O2max ) in temperate environments. However, it is unknown if HA affects the expression of proteins related to mitochondrial biogenesis and oxidative capacity in skeletal muscle. The purpose of this study was to investigate the effect of HA on skeletal muscle markers of mitochondrial biogenesis and oxidative phosphorylation in recreationally trained adults. Thirteen (7 males and 6 females) individuals underwent 10 days of HA. Participants performed two 45 min bouts of exercise (walking at 30-40% maximal velocity at 3% grade) with 10 min rest per session in a hot environment (∼42°C and 30-50% relative humidity). V̇O2max , ventilatory thresholds (VT), and protein expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), mitochondrial transcription factor A (TFAM), calcium/calmodulin-dependent protein kinase (CaMK), electron transport chain (ETC) complexes I-IV, and heat shock protein 72 (Hsp72) in skeletal muscle were measured pre- and post-HA. Comparing day 1 to day 10, HA was confirmed by lower resting core temperature (Tcore ) (P = 0.026), final Tcore (P < 0.0001), mean heart rate (HR) (P = 0.002), final HR (P = 0.003), mean ratings of perceived exertion (RPE) (P = 0.026) and final RPE (P = 0.028). Pre- to post-HA V̇O2max (P = 0.045) increased but VT1 (P = 0.263) and VT2 (P = 0.239) were unchanged. Hsp72 (P = 0.007) increased, but skeletal muscle protein expression (PGC-1α, P = 0.119; TFAM, P = 0.763; CaMK, P = 0.19; ETC I, P = 0.629; ETC II, P = 0.724; ETC III, P = 0.206; ETC IV, P = 0.496) were not affected with HA. HA during low-intensity exercise increased V̇O2max in a temperate environment and Hsp72 but it did not affect markers of mitochondrial biogenesis and oxidative phosphorylation in the skeletal muscle.


Assuntos
Exercício Físico/fisiologia , Proteínas de Choque Térmico HSP72/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Fosforilação Oxidativa , Aclimatação/fisiologia , Adaptação Fisiológica/fisiologia , Humanos , Biogênese de Organelas , Consumo de Oxigênio/fisiologia
20.
Int J Mol Sci ; 21(21)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147803

RESUMO

Type 2 diabetes (T2D) and Alzheimer's disease (AD) are growing in prevalence worldwide. The development of T2D increases the risk of AD disease, while AD patients can show glucose imbalance due to an increased insulin resistance. T2D and AD share similar pathological features and underlying mechanisms, including the deposition of amyloidogenic peptides in pancreatic islets (i.e., islet amyloid polypeptide; IAPP) and brain (ß-Amyloid; Aß). Both IAPP and Aß can undergo misfolding and aggregation and accumulate in the extracellular space of their respective tissues of origin. As a main response to protein misfolding, there is evidence of the role of heat shock proteins (HSPs) in moderating T2D and AD. HSPs play a pivotal role in cell homeostasis by providing cytoprotection during acute and chronic metabolic stresses. In T2D and AD, intracellular HSP (iHSP) levels are reduced, potentially due to the ability of the cell to export HSPs to the extracellular space (eHSP). The increase in eHSPs can contribute to oxidative damage and is associated with various pro-inflammatory pathways in T2D and AD. Here, we review the role of HSP in moderating T2D and AD, as well as propose that these chaperone proteins are an important link in the relationship between T2D and AD.


Assuntos
Doença de Alzheimer/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Choque Térmico/metabolismo , Doença de Alzheimer/complicações , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/complicações , Espaço Extracelular/metabolismo , Proteínas de Choque Térmico HSP72/metabolismo , Humanos , Inflamação , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Ligação Proteica , Dobramento de Proteína , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...