Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2401386121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696471

RESUMO

In the meiotic prophase, programmed DNA double-strand breaks are repaired by meiotic recombination. Recombination-defective meiocytes are eliminated to preserve genome integrity in gametes. BRCA1 is a critical protein in somatic homologous recombination, but studies have suggested that BRCA1 is dispensable for meiotic recombination. Here we show that BRCA1 is essential for meiotic recombination. Interestingly, BRCA1 also has a function in eliminating recombination-defective oocytes. Brca1 knockout (KO) rescues the survival of Dmc1 KO oocytes far more efficiently than removing CHK2, a vital component of the DNA damage checkpoint in oocytes. Mechanistically, BRCA1 activates chromosome asynapsis checkpoint by promoting ATR activity at unsynapsed chromosome axes in Dmc1 KO oocytes. Moreover, Brca1 KO also rescues the survival of asynaptic Spo11 KO oocytes. Collectively, our study not only unveils an unappreciated role of chromosome asynapsis in eliminating recombination-defective oocytes but also reveals the dual functions of BRCA1 in safeguarding oocyte genome integrity.


Assuntos
Proteína BRCA1 , Proteínas de Ciclo Celular , Camundongos Knockout , Oócitos , Oócitos/metabolismo , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Feminino , Camundongos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Meiose/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Quebras de DNA de Cadeia Dupla , Pareamento Cromossômico/genética , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Recombinação Genética , Recombinação Homóloga , Instabilidade Genômica
2.
Int J Biol Macromol ; 267(Pt 1): 131387, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582470

RESUMO

A novel Lentinus edodes mycelia polysaccharide (LMP) prepared in our laboratory has been identified to be effective in inhibiting the damage of islet ß cells induced by glucose toxicity. However, whether it can effectively alleviate the pyroptosis of human umbilical vein endothelial cells (HUVECs) induced by advanced glycation end products (AGEs) remains unclear. Bioinformatics and cell biology techniques were used to explore the mechanism of LMP inhibiting AGEs-induced HUVECs damage. The results indicated that AGEs significantly increased the expression of LncRNA MALAT1, decreased cell viability to 79.67 %, increased intracellular ROS level to 248.19 % compared with the control group, which further led to cell membrane rupture. The release of LDH in cellular supernatant was increased to 149.42 %, and the rate of propidium iodide staining positive cells increased to 277.19 %, indicating the cell pyroptosis occurred. However, the above trend was effectively retrieved after the treatment with LMP. LMP effectively decreased the expression of LncRNA MALAT1 and mTOR, promoted the expression of miR-199b, inhibited AGEs-induced HUVECs pyroptosis by regulating the NLRP3/Caspase-1/GSDMD pathway. LncRNA MALAT1 might be a new target for LMP to inhibit AGEs-induced HUVECs pyroptosis. This study manifested the role of LMP in improving diabetes angiopathy and broadens the application of polysaccharide.


Assuntos
Caspase 1 , Gasderminas , Produtos Finais de Glicação Avançada , Células Endoteliais da Veia Umbilical Humana , MicroRNAs , Micélio , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , RNA Longo não Codificante , Cogumelos Shiitake , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Piroptose/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Serina-Treonina Quinases TOR/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Caspase 1/metabolismo , Cogumelos Shiitake/química , Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/efeitos dos fármacos , Micélio/química , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química , Sobrevivência Celular/efeitos dos fármacos , Polissacarídeos/farmacologia , Polissacarídeos/química
3.
Int Immunopharmacol ; 133: 112068, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626545

RESUMO

Pyroptosis is an inflammatory form of programmed cell death that plays an important role in regulating tumor progression. Reniformin A (RA) is a natural compound isolated from the medicinal herb Isodon excisoides that has been applied as folk medicine in the treatment of esophageal cancer. However, whether RA has an individual function in cancer and the molecular mechanisms remain unclear. Here, we show that in non-small-cell lung cancer (NSCLC), RA inhibits tumor growth by functioning as a pyroptosis inducer to promote TLR4/NLRP3/caspase-1/GSDMD axis. Specially, RA treatment increased Toll-like receptor 4 (TLR4) protein expression level by enhancing the TLR4 stability. Based on the molecular docking, we identified that RA directly bound to TLR4 to activate the NLRP3 inflammasome and promote pyroptosis in A549 cells. Moreover, TLR4 is essential for RA-induced pyroptosis, and loss of TLR4 abolished RA-induced pyroptosis and further reduced the inhibitory effect of RA on NSCLC. In vivo experiments confirmed that RA inhibited the growth of lung tumors in mice by affecting pyroptosis in a dose-dependent manner. Furthermore, TLR4 knockdown abolished RA-induced pyroptosis and inhibited the effect of RA chemotherapy in vivo. In conclusion, we propose that RA has a significant anticancer effect in NSCLC by inducing TLR4/NLRP3/caspase-1/GSDMD-mediated pyroptosis, which may provide a potential strategy for the treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Caspase 1 , Neoplasias Pulmonares , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas de Ligação a Fosfato , Piroptose , Receptor 4 Toll-Like , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor 4 Toll-Like/metabolismo , Piroptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Caspase 1/metabolismo , Camundongos , Células A549 , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Progressão da Doença , Gasderminas
4.
Free Radic Biol Med ; 215: 64-76, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437927

RESUMO

BACKGROUND: Sepsis-induced cardiomyopathy (SICM) is common complication in septic patients with a high mortality and is characterized by an abnormal inflammation response, which was precisely regulated by endogenous specialized pro-resolving mediators (SPMs). However, the metabolic changes of cardiac SPMs during SICM and the roles of SPMs subset in the development of SICM remain unknown. METHODS: In this work, the SPMs concentration was assessed using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) of SICM mice and SICM patients. The cardiac function was measured by echocardiography after the treatment of a SPMs subset, termed Resolvin D2 (RvD2). Caspase-11-/-, GSDMD-/- and double deficient (Caspase-11-/-GSDMD-/-) mice were used to clarify the mechanisms of RvD2 in SICM. RESULTS: We found that endogenous cardiac SPMs were disorders and RvD2 was decreased significantly and correlated with left ventricular ejection fraction (LVEF) and ß-BNP, cTnT in Lipopolysaccharide/Cecum ligation and puncture (CLP) induced SICM models. Treatment with RvD2 attenuated lethality, cardiac dysfunction and cardiomyocytes death during SICM. Mechanistically, RvD2 alleviated SICM via inhibiting Caspase-11/GSDMD-mediated cardiomyocytes pyroptosis. Finally, the plasma levels of RvD2 were also decreased and significantly correlated with IL-1ß, ß-BNP, cTnT and LVEF in patients with SICM. Of note, plasma RvD2 level is indicator of SICM patients from healthy controls or sepsis patients. CONCLUSION: These findings suggest that decreased cardiac RvD2 may involve in the pathogenesis of SICM. In addition, treatment with RvD2 represents a novel therapeutic strategy for SICM by inhibiting cardiomyocytes pyroptosis.


Assuntos
Cardiomiopatias , Ácidos Docosa-Hexaenoicos , Sepse , Humanos , Camundongos , Animais , Piroptose , Cromatografia Líquida , Volume Sistólico , Espectrometria de Massas em Tandem , Função Ventricular Esquerda , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/genética , Gasderminas , Proteínas de Ligação a Fosfato/genética
5.
Eur J Med Res ; 29(1): 151, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429762

RESUMO

BACKGROUND: Urosepsis is a life-threatening organ disease in which pathogenic microorganisms in the urine enter the blood through the vessels, causing an imbalance in the immune response to infection. The aim of this study was to elucidate the role of testicular orphan receptor 4 (TR4) in urosepsis. METHODS: The role of TR4 in the progression and prognosis of urosepsis was confirmed by analyzing data from online databases and clinical human samples. To mimic urosepsis, we injected E. coli bacteria into the renal pelvis of mice to create a urosepsis model. Hematoxylin and eosin staining was used to observe histopathological changes in urosepsis. The effects of the upregulation or downregulation of TR4 on macrophage pyroptosis were verified in vitro. Chromatin immunoprecipitation assay was used to verify the effect of TR4 on Gasdermin D (GSDMD) transcription. RESULTS: TR4 was more highly expressed in the nonsurviving group than in the surviving group. Furthermore, overexpressing TR4 promoted inflammatory cytokine expression, and knocking down TR4 attenuated inflammatory cytokine expression. Mechanistically, TR4 promoted pyroptosis by regulating the expression of GSDMD in urosepsis. Furthermore, we also found that TR4 knockdown protected mice from urosepsis induced by the E. coli. CONCLUSIONS: TR4 functions as a key regulator of urosepsis by mediating pyroptosis, which regulates GSDMD expression. Targeting TR4 may be a potential strategy for urosepsis treatment.


Assuntos
Líquidos Corporais , Sepse , Animais , Humanos , Camundongos , Citocinas , Amarelo de Eosina-(YS) , Escherichia coli , Gasderminas , Proteínas de Ligação a Fosfato/genética , Sepse/complicações , Sepse/genética
6.
Nat Commun ; 15(1): 2751, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553499

RESUMO

Influenza virus activates cellular inflammasome pathways, which can be both beneficial and detrimental to infection outcomes. Here, we investigate the function of the inflammasome-activated, pore-forming protein gasdermin D (GSDMD) during infection. Ablation of GSDMD in knockout (KO) mice (Gsdmd-/-) significantly attenuates influenza virus-induced weight loss, lung dysfunction, lung histopathology, and mortality compared with wild type (WT) mice, despite similar viral loads. Infected Gsdmd-/- mice exhibit decreased inflammatory gene signatures shown by lung transcriptomics. Among these, diminished neutrophil gene activation signatures are corroborated by decreased detection of neutrophil elastase and myeloperoxidase in KO mouse lungs. Indeed, directly infected neutrophils are observed in vivo and infection of neutrophils in vitro induces release of DNA and tissue-damaging enzymes that is largely dependent on GSDMD. Neutrophil depletion in infected WT mice recapitulates the reductions in mortality, lung inflammation, and lung dysfunction observed in Gsdmd-/- animals, while depletion does not have additive protective effects in Gsdmd-/- mice. These findings implicate a function for GSDMD in promoting lung neutrophil responses that amplify influenza virus-induced inflammation and pathogenesis. Targeting the GSDMD/neutrophil axis may provide a therapeutic avenue for treating severe influenza.


Assuntos
Neutrófilos , Orthomyxoviridae , Animais , Camundongos , Neutrófilos/metabolismo , Gasderminas , Inflamassomos/genética , Inflamassomos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Orthomyxoviridae/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo
7.
Oncogene ; 43(20): 1534-1548, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548966

RESUMO

While Stimulator-of-interferon genes (STING) is an innate immune adapter cruicial for sensing cytosolic DNA and modulating immune microenvironment, its tumor-promoting role in tumor survival and immune evasion remains largely unknown. Here we reported that renal cancer cells are exceptionally dependent on STING for survival and evading immunosurveillance via suppressing ER stress-mediated pyroptosis. We found that STING is significantly amplified and upregulated in clear cell renal cell carcinoma (ccRCC), and its elevated expression is associated with worse clinical outcomes. Mechanically, STING depletion in RCC cells specifically triggers activation of the PERK/eIF2α/ATF4/CHOP pathway and activates cleavage of Caspase-8, thereby inducing GSDMD-mediated pyroptosis, which is independent of the innate immune pathway of STING. Moreover, animal study revealed that STING depletion promoted infiltration of CD4+ and CD8+ T cells, consequently boosting robust antitumor immunity via pyroptosis-induced inflammation. From the perspective of targeted therapy, we found that Compound SP23, a PROTAC STING degrader, demonstrated comparable efficacy to STING depletion both in vitro and in vivo for treatment of ccRCC. These findings collectively unveiled an unforeseen function of STING in regulating GSDMD-dependent pyroptosis, thus regulating immune response in RCC. Consequently, pharmacological degradation of STING by SP23 may become an attractive strategy for treatment of advanced RCC.


Assuntos
Carcinoma de Células Renais , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Renais , Proteínas de Membrana , Proteínas de Ligação a Fosfato , Piroptose , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Humanos , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/genética , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Linhagem Celular Tumoral , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/genética , Transdução de Sinais , Gasderminas
8.
Int J Biochem Cell Biol ; 169: 106537, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342404

RESUMO

BACKGROUNDS: Senile osteoporosis-alternatively labeled as skeletal aging-encompasses age-induced bone deterioration and loss of bone microarchitecture. Recent studies have indicated a potential association between senile osteoporosis and chronic systemic inflammation, and pyroptosis in bone marrow-derived mesenchymal stem cells is speculated to contribute to bone loss and osteoporosis. Therefore, targeting pyroptosis in stem cells may be a potential therapeutic strategy for treating osteoporosis. METHODS: Initially, we conducted bioinformatics analysis to screen the GEO databases to identify the key gene associated with pyroptosis in senile osteoporosis. Next, we analyzed the relationship between altered proteins and clinical data. In vitro experiments were then performed to explore whether the downregulation of PKM2 expression could inhibit pyroptosis. Additionally, an aging-related mouse model of osteoporosis was established to validate the efficacy of a PKM2 inhibitor in alleviating osteoporosis progression. RESULTS: We identified PKM2 as a key gene implicated in pyroptosis in senile osteoporosis patients through bioinformatics analysis. Further analyses of bone marrow and stem cells demonstrated significant PKM2 overexpression in senile osteoporosis patients. Silencing PKM2 expression inhibited pyroptosis in senile stem cells, of which the osteogenesis potential and angiogenic function were also primarily promoted. Moreover, the results in vivo demonstrated that administering PKM2 inhibitors suppressed pyroptosis in senile osteoporosis mice and mitigated senile osteoporosis progression. CONCLUSION: Our study uncovered PKM2, a key pyroptosis marker of bone marrow mesenchymal stem cells in senile osteoporosis. Shikonin, a PKM2 inhibitor, was then identified as a potential drug candidate for the treatment of osteoporosis.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Osteoporose , Animais , Humanos , Camundongos , Caspase 1 , Gasderminas , Inflamação , Osteoporose/genética , Proteínas de Ligação a Fosfato/genética , Piroptose/genética , Transdução de Sinais , Piruvato Quinase/metabolismo
9.
Gene ; 893: 147888, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37839766

RESUMO

BACKGROUND: Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), acting as one common sepsis-associated organ injury, induces uncontrolled and self-amplifies pulmonary inflammation. Given the lack of clinically effective approaches, the mortality rate of it still remains high. Suramin(SUR), as an antiparasitic drug initially, was found to ameliorate sepsis associated ALI in our previous work. However, the underlying mechanism of its protective effects has not been clarified. Pyroptosis, categorized as an inflammatory form of programmed cell death, could aggravate lung inflammatory responses via inducing alveolar macrophages (AM) pyroptosis. METHODS: MH-S AM cell line was stimulated with or without lipopolysaccharide (LPS) or suramin, and the differential expression genes (DEGs) were excavated using RNA sequencing (RNA-seq). To identify the regulatory roles of these genes, pyroptosis-related genes (PRGs), GO/KEGG and GSEA analysis were conducted. We also performed WB, qRTPCR and ELISA to validate the RNA-seq results and further expound the protective effect of suramin. RESULTS: 624 DEGs were identified between control (CON) and lipopolysaccharide (LPS) groups, and enrichment analysis of these genes revealed significantly enriched pathways that related to immune system and signal transduction. Meanwhile, 500 DEGs were identified in LPS/SUR+LPS group. In addition to the pathways mentioned above, IL-17 pathway and C-type lectin receptor signaling pathway were also enriched. All 6 pathways were connected with pyroptosis. Concurrently, the "DESeq2" R package was used to identify differentially expressed PRGs. Nod1, Nod2, interleukin (IL)-1b, IL-6, tumor necrosis factor (TNF), NLRP3 were upregulated under LPS stimulation. Then, in SUR+LPS group, Nod2, IL-6, IL-1b, NLRP3 were downregulated. The validation results of WB, qRT-PCR, and ELISA showed: the protein and mRNA expression levels of NLRP3, caspase-1, GSDMD and the concentrations of IL-1b, IL-18 were decreased when treated with suramin and LPS. CONCLUSION: Suramin could inhibit NLRP3/caspase-1/GSDMD canonical pyroptosis pathway in LPS-induced MH-S alveolar macrophages.


Assuntos
Macrófagos Alveolares , Sepse , Humanos , Macrófagos Alveolares/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Lipopolissacarídeos/farmacologia , Suramina/farmacologia , Interleucina-6/genética , RNA-Seq , Inflamassomos/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/farmacologia , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Citotóxicas Formadoras de Poros/farmacologia
10.
J Transl Med ; 21(1): 801, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950289

RESUMO

BACKGROUND: Skin cutaneous melanoma (SKCM) is the most aggressive skin cancer, accounting for more than 75% mortality rate of skin-related cancers. As a newly identified programmed cell death, pyroptosis has been found to be closely associated with tumor progression. Nevertheless, the prognostic significance of pyroptosis in SKCM remains elusive. METHODS: A total of 469 SKCM samples and 812 normal samples were obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. Firstly, differentially expressed pyroptosis-related genes (PRGs) between normal samples and SKCM samples were identified. Secondly, we established a prognostic model based on univariate Cox and LASSO Cox regression analyses, which was validated in the test cohort from GSE65904. Thirdly, a nomogram was used to predict the survival probability of SKCM patients. The R package "pRRophetic" was utilized to identify the drug sensitivity between the low- and high-risk groups. Tumor immune infiltration was evaluated using "immuneeconv" R package. Finally, the function of GSDMD and SB525334 was explored in A375 and A2058 cells. RESULTS: Based on univariate Cox and LASSO regression analyses, we established a prognostic model with identified eight PRGs (AIM2, CASP3, GSDMA, GSDMC, GSDMD, IL18, NLRP3, and NOD2), which was validated in the test cohort. SKCM patients were divided into low- and high-risk groups based on the median of risk score. Kaplan-Meier survival analysis showed that high-risk patients had shorter overall survival than low-risk patients. Additionally, time-dependent ROC curves validated the accuracy of the risk model in predicting the prognosis of SKCM. More importantly, 4 small molecular compounds (SB525334, SR8278, Gemcitabine, AT13387) were identified, which might be potential drugs for patients in different risk groups. Finally, overexpression of GSDMD and SB525334 treatment inhibit the proliferation, migration, and invasion of SKCM cells. CONCLUSION: In this study, we constructed a prognostic model based on PRGs and identified GSDMD as a potential therapeutic target, which provide new insights into SKCM treatment.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Piroptose/genética , Pele , Biomarcadores Tumorais/genética , Proteínas Citotóxicas Formadoras de Poros , Proteínas de Ligação a Fosfato/genética , Melanoma Maligno Cutâneo
11.
J Exp Clin Cancer Res ; 42(1): 274, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864196

RESUMO

BACKGROUND: Tumor cells can resist chemotherapy-induced pyroptosis through glycolytic reprogramming. Estrogen-related receptor alpha (ERRα) is a central regulator of cellular energy metabolism associated with poor cancer prognosis. Herein, we refine the oncogenic role of ERRα in the pyroptosis pathway and glycolytic metabolism. METHODS: The interaction between ERRα and HIF-1α was verified using co-immunoprecipitation. The transcriptional binding sites of ERRα and NLRP3 were confirmed using dual-luciferase reporter assay and cleavage under targets and tagmentation (CUT&Tag). Flow cytometry, transmission electron microscopy, scanning electron microscopy, cell mito stress test, and extracellular acidification rate analysis were performed to investigate the effects of ERRα on the pyroptosis pathway and glycolytic metabolism. The results of these experiments were further confirmed in endometrial cancer (EC)-derived organoids and nude mice. In addition, the expression of ERRα-related pyroptosis genes was analyzed using The Cancer Genome Atlas and Gene Expression Omnibus database. RESULTS: Triggered by a hypoxic microenvironment, highly expressed ERRα could bind to the promoter of NLRP3 and inhibit caspase-1/GSDMD signaling, which reduced inflammasome activation and increased pyroptosis resistance, thereby resulting in the resistance of cancer cells to cisplatin. Moreover, ERRα activated glycolytic rate-limiting enzyme to bridge glycolytic metabolism and pyroptosis in EC. This phenomenon was further confirmed in EC-derived organoids and nude mice. CUT & Tag sequencing and The Cancer Genome Atlas database analysis showed that ERRα participated in glycolysis and programmed cell death, which resulted in EC progression. CONCLUSIONS: ERRα inhibits pyroptosis in an NLRP3-dependent manner and induces glycolytic metabolism, resulting in cisplatin resistance in EC cells.


Assuntos
Neoplasias do Endométrio , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Camundongos , Animais , Feminino , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Caspase 1/farmacologia , Camundongos Nus , Piroptose , Cisplatino/farmacologia , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Glicólise , Microambiente Tumoral , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/farmacologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
12.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685853

RESUMO

Psoriasis is an important issue in daily dermatological practice. Not only is it an aesthetic defect but it is also a matter of decreased life quality and economic burden. However frequent, the pathogenesis of psoriasis remains uncertain despite numerous investigations. Gasdermins are a family of six proteins. Gasdermin D (GSDMD) is the best-studied from this group and is involved in the processes of inflammation, proliferation, and death of cells, especially pyroptosis. GSDMD has never been studied in psoriatic sera or urine before. Our study involved 60 patients with psoriasis and 30 volunteers without dermatoses as controls. Serum and urinary GSDMD concentrations were examined by ELISA. The tissue expression of GSDMD was assessed by immunohistochemistry. The serum-GSDMD concentration was insignificantly higher in the patients than controls. There were no differences in the urinary-GSDMD concentrations between the patients and controls. Strong tissue expression of GSDMD was significantly more prevalent in psoriatic plaque than in the non-lesional skin and healthy skin of the controls. There was no correlation between the serum-GSDMD concentrations and the psoriasis severity in PASI, age, or disease duration. Taking into consideration the documented role of gasdermins in cell proliferation and death, the increased expression of GSDMD in psoriatic skin may demonstrate the potential involvement of this protein in psoriasis pathogenesis. Neither serum, nor urinary GSDMD can be currently considered a psoriasis biomarker; however, future studies may change this perspective.


Assuntos
Líquidos Corporais , Psoríase , Humanos , Gasderminas , Pele , Psoríase/genética , Proliferação de Células , Proteínas de Ligação a Fosfato/genética , Proteínas Citotóxicas Formadoras de Poros
13.
Int Immunopharmacol ; 124(Pt B): 110958, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741129

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by pruritus, erythema, and skin barrier dysfunction. Gasdermin D (GSDMD) is the key executioner of an inflammatory cell death mechanism known as pyroptosis. However, the role of GSDMD in the pathogenesis of AD remains unclear. Through the analysis of publicly available Gene Expression Omnibus (GEO) datasets, we observed an upregulation of Gsdmd mRNA in the skin tissue of AD patients. Moreover, we delved into the impact of GSDMD deletion and inhibition on AD-like skin lesions using a mouse model induced by the topical application of oxazolone (Oxa). We found that mice lacking GSDMD exhibited relieved AD signs and symptoms in terms of reduced skin thickness, scarring and scratching behavior compared to wild-type mice after induction of AD-like skin lesions. This was associated with decreased infiltration of inflammatory cells, reduced epidermal thickness, and decreased serum levels of IgE and IL-4. Western blot analysis further revealed decreased GSDMD cleavage in the skin of GSDMD knockout mice, and reduced expression of IL-1ß and IL-18. Inhibition of GSDMD using the pharmacological agent disulfiram or the herbal compound matrine significantly attenuated the symptoms of AD-like skin lesions in wild-type mice, GSDMD cleavage and pro-inflammatory cytokines were reduced as well. Our results suggest that GSDMD-mediated pyroptosis plays a critical role in the development of AD-like skin lesions, and targeting GSDMD may be a promising therapeutic strategy for AD.


Assuntos
Dermatite Atópica , Animais , Humanos , Camundongos , Citocinas/metabolismo , Dermatite Atópica/metabolismo , Epiderme/patologia , Gasderminas , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Pele/patologia
14.
Nat Ecol Evol ; 7(11): 1930-1943, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37667001

RESUMO

Enhanced cognitive function in humans is hypothesized to result from cortical expansion and increased cellular diversity. However, the mechanisms that drive these phenotypic innovations remain poorly understood, in part because of the lack of high-quality cellular resolution data in human and non-human primates. Here, we take advantage of single-cell expression data from the middle temporal gyrus of five primates (human, chimp, gorilla, macaque and marmoset) to identify 57 homologous cell types and generate cell type-specific gene co-expression networks for comparative analysis. Although orthologue expression patterns are generally well conserved, we find 24% of genes with extensive differences between human and non-human primates (3,383 out of 14,131), which are also associated with multiple brain disorders. To assess the functional significance of gene expression differences in an evolutionary context, we evaluate changes in network connectivity across meta-analytic co-expression networks from 19 animals. We find that a subset of these genes has deeply conserved co-expression across all non-human animals, and strongly divergent co-expression relationships in humans (139 out of 3,383, <1% of primate orthologues). Genes with human-specific cellular expression and co-expression profiles (such as NHEJ1, GTF2H2, C2 and BBS5) typically evolve under relaxed selective constraints and may drive rapid evolutionary change in brain function.


Assuntos
Primatas , Transcriptoma , Animais , Humanos , Encéfalo/metabolismo , Redes Reguladoras de Genes , Pan troglodytes/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo
15.
DNA Cell Biol ; 42(9): 554-562, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37566540

RESUMO

Inhibition of the inflammatory response triggered by microglial pyroptosis inflammatory activation may be one of the effective ways to alleviate cerebral ischemia-reperfusion injury, the specific mechanism of which remains unclear. In this study, BV-2 microglia with or without oxygen-glucose deprivation/reoxygenation (OGD/R) or long noncoding RNA (lncRNA) Gm44206 knockdown were used as cell models to conduct an in vitro study. Detection of lactate dehydrogenase release and pyroptosis-related protein levels was performed using a corresponding kit and western blotting, respectively. Proliferation of microglia was evaluated by CCK8 assay. Enzyme-linked immunosorbent assay was applied for measuring levels of proinflammatory cytokines. This study verified the involvement of microglial pyroptosis as well as upregulation of NLRP3, Caspase-1, GSDMD, and Apoptosis-associated Speck-like protein containing a C-terminal caspase-recruitment domain (ASC) in cerebral ischemia-reperfusion injury. Moreover, knockdown of lncRNA Gm44206 could alleviate OGD/R-induced microglial pyroptosis and cell proliferation inhibition through the NLRP3/Caspase-1/GSDMD pathway, thus decreasing the release of proinflammatory cytokines, including interleukin (IL)-1ß, IL-6, IL-18, and tumor necrosis factor-alpha. In conclusion, this study established a correlation between microglial pyroptosis and cerebral ischemia-reperfusion injury and identified lncRNA Gm44206 as a potential regulator of NLRP3/Caspase-1/GSDMD axis-mediated microglial pyroptosis, which could be considered a promising therapeutic target.


Assuntos
RNA Longo não Codificante , Traumatismo por Reperfusão , Humanos , Piroptose/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Microglia/patologia , Caspase 1/genética , Caspase 1/metabolismo , Traumatismo por Reperfusão/metabolismo , Interleucina-18/metabolismo , Interleucina-18/farmacologia , Oxigênio/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/farmacologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo
16.
Cells ; 12(10)2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37408196

RESUMO

The heterogeneity of cancer strongly suggests the need to explore additional pathways to target. As cancer cells have increased proteotoxic stress, targeting proteotoxic stress-related pathways such as endoplasmic reticulum stress is attracting attention as a new anticancer treatment. One of the downstream responses to endoplasmic reticulum stress is endoplasmic reticulum-associated degradation (ERAD), a major degradation pathway that facilitates proteasome-dependent degradation of unfolded or misfolded proteins. Recently, SVIP (small VCP/97-interacting protein), an endogenous ERAD inhibitor, has been implicated in cancer progression, especially in glioma, prostate, and head and neck cancers. Here, the data of several RNA-sequencing (RNA-seq) and gene array studies were combined to evaluate the SVIP gene expression analysis on a variety of cancers, with a particular focus on breast cancer. The mRNA level of SVIP was found to be significantly higher in primary breast tumors and correlated well with its promoter methylation status and genetic alterations. Strikingly, the SVIP protein level was found to be low despite increased mRNA levels in breast tumors compared to normal tissues. On the other hand, the immunoblotting analysis showed that the expression of SVIP protein was significantly higher in breast cancer cell lines compared to non-tumorigenic epithelial cell lines, while most of the key proteins of gp78-mediated ERAD did not exhibit such an expression pattern, except for Hrd1. Silencing of SVIP enhanced the proliferation of p53 wt MCF-7 and ZR-75-1 cells but not p53 mutant T47D and SK-BR-3 cells; however, it increased the migration ability of both types of cell lines. Importantly, our data suggest that SVIP may increase p53 protein levels in MCF7 cells by inhibiting Hrd1-mediated p53 degradation. Overall, our data reveal the differential expression and function of SVIP on breast cancer cell lines together with in silico data analysis.


Assuntos
Neoplasias da Mama , Degradação Associada com o Retículo Endoplasmático , Masculino , Humanos , Células MCF-7 , Neoplasias da Mama/genética , Prognóstico , RNA Mensageiro/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação a Fosfato/genética
17.
Am J Med Genet A ; 191(9): 2376-2391, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37293956

RESUMO

Bardet-Biedl syndrome (BBS), is an emblematic ciliopathy hallmarked by pleiotropy, phenotype variability, and extensive genetic heterogeneity. BBS is a rare (~1/140,000 to ~1/160,000 in Europe) autosomal recessive pediatric disorder characterized by retinal degeneration, truncal obesity, polydactyly, cognitive impairment, renal dysfunction, and hypogonadism. Twenty-eight genes involved in ciliary structure or function have been implicated in BBS, and explain the molecular basis for ~75%-80% of individuals. To investigate the mutational spectrum of BBS in Romania, we ascertained a cohort of 24 individuals in 23 families. Following informed consent, we performed proband exome sequencing (ES). We detected 17 different putative disease-causing single nucleotide variants or small insertion-deletions and two pathogenic exon disruptive copy number variants in known BBS genes in 17 pedigrees. The most frequently impacted genes were BBS12 (35%), followed by BBS4, BBS7, and BBS10 (9% each) and BBS1, BBS2, and BBS5 (4% each). Homozygous BBS12 p.Arg355* variants were present in seven pedigrees of both Eastern European and Romani origin. Our data show that although the diagnostic rate of BBS in Romania is likely consistent with other worldwide cohorts (74%), we observed a unique distribution of causal BBS genes, including overrepresentation of BBS12 due to a recurrent nonsense variant, that has implications for regional diagnostics.


Assuntos
Síndrome de Bardet-Biedl , Humanos , Romênia , Síndrome de Bardet-Biedl/diagnóstico , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patologia , Sequenciamento do Exoma , Homozigoto , Mutação , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a Fosfato/genética
18.
Genes (Basel) ; 14(5)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37239474

RESUMO

Bardet-Biedl syndrome (BBS) is a rare clinically and genetically heterogeneous autosomal recessive multi-systemic disorder with 22 known genes. The primary clinical and diagnostic features include six different hallmarks, such as rod-cone dystrophy, learning difficulties, renal abnormalities, male hypogonadism, post-axial polydactyly, and obesity. Here, we report nine consanguineous families and a non-consanguineous family with several affected individuals presenting typical clinical features of BBS. In the present study, 10 BBS Pakistani families were subjected to whole exome sequencing (WES), which revealed novel/recurrent gene variants, including a homozygous nonsense mutation (c.94C>T; p.Gln32Ter) in the IFT27 (NM_006860.5) gene in family A, a homozygous nonsense mutation (c.160A>T; p.Lys54Ter) in the BBIP1 (NM_001195306.1) gene in family B, a homozygous nonsense variant (c.720C>A; p.Cys240Ter) in the WDPCP (NM_015910.7) in family C, a homozygous nonsense variant (c.505A>T; p.Lys169Ter) in the LZTFL1 (NM_020347.4) in family D, pathogenic homozygous 1 bp deletion (c.775delA; p.Thr259Leufs*21) in the MKKS/BBS5 (NM_170784.3) gene in family E, a pathogenic homozygous missense variant (c.1339G>A; p.Ala447Thr) in BBS1 (NM_024649.4) in families F and G, a pathogenic homozygous donor splice site variant (c.951+1G>A; p?) in BBS1 (NM_024649.4) in family H, a pathogenic bi-allelic nonsense variant in MKKS (NM_170784.3) (c.119C>G; p.Ser40*) in family I, and homozygous pathogenic frameshift variants (c.196delA; p.Arg66Glufs*12) in BBS5 (NM_152384.3) in family J. Our findings extend the mutation and phenotypic spectrum of four different types of ciliopathies causing BBS and also support the importance of these genes in the development of multi-systemic human genetic disorders.


Assuntos
Síndrome de Bardet-Biedl , Ciliopatias , Polidactilia , Humanos , Masculino , Síndrome de Bardet-Biedl/diagnóstico , Códon sem Sentido , Mutação , Polidactilia/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a Fosfato/genética
19.
Int J Mol Sci ; 24(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37240074

RESUMO

Bardet-Biedl syndrome (BBS) is an autosomal recessive ciliopathy that affects multiple organs, leading to retinitis pigmentosa, polydactyly, obesity, renal anomalies, cognitive impairment, and hypogonadism. Until now, biallelic pathogenic variants have been identified in at least 24 genes delineating the genetic heterogeneity of BBS. Among those, BBS5 is a minor contributor to the mutation load and is one of the eight subunits forming the BBSome, a protein complex implied in protein trafficking within the cilia. This study reports on a European BBS5 patient with a severe BBS phenotype. Genetic analysis was performed using multiple next-generation sequencing (NGS) tests (targeted exome, TES and whole exome, WES), and biallelic pathogenic variants could only be identified using whole-genome sequencing (WGS), including a previously missed large deletion of the first exons. Despite the absence of family samples, the biallelic status of the variants was confirmed. The BBS5 protein's impact was confirmed on the patient's cells (presence/absence and size of the cilium) and ciliary function (Sonic Hedgehog pathway). This study highlights the importance of WGS and the challenge of reliable structural variant detection in patients' genetic explorations as well as functional tests to assess a variant's pathogenicity.


Assuntos
Síndrome de Bardet-Biedl , Polidactilia , Humanos , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patologia , Proteínas do Citoesqueleto/genética , Proteínas Hedgehog/genética , Mutação , Fenótipo , Proteínas de Ligação a Fosfato/genética , Transporte Proteico , Masculino , Pré-Escolar
20.
Clin Exp Hypertens ; 45(1): 2186319, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36890708

RESUMO

Endothelial pyroptosis is a pathological mechanism of atherosclerosis (AS). Circular RNAs (circRNAs) are vital in AS progression by regulating endothelial cell functions. The study aimed to explore whether circ-USP9× regulated pyroptosis of endothelial cell to involve in AS development and the molecular mechanism. Pyroptosis was determined using lactate dehydrogenase (LDH) assay, enzyme linked immunosorbent assay (ELISA), flow cytometry, propidium iodide (PI) staining assay, and western blot. The mechanism of circ-USP9× was determined using RNA pull-down and RNA binding protein immunoprecipitation (RIP) assays. Results showed that circ-USP9× was upregulated in AS and oxidized low-density lipoprotein (ox-LDL)-treated human umbilical vein endothelial cells (HUVECs). Knockdown of circ-USP9× suppressed ox-LDL induced pyroptosis of HUVECs. Mechanically, circ-USP9× could bind to EIF4A3 in the cytoplasm. Moreover, EIF4A3 was bound to GSDMD and further affects GSDMD stability. Overexpression of EIF4A3 rescued cell pyroptosis induced by circ-USP9× depletion. In short, circ-USP9× interacted with EIF4A3 to enhance GSDMD stability, thus further promoting ox-LDL-induced pyroptosis of HUVECs. These findings suggested that circ-USP9× participates in AS progression and may be a potential therapeutic target for AS.


Assuntos
Aterosclerose , MicroRNAs , Humanos , Apoptose , Aterosclerose/genética , Proliferação de Células , RNA Helicases DEAD-box , Ensaio de Imunoadsorção Enzimática , Fator de Iniciação 4A em Eucariotos , Células Endoteliais da Veia Umbilical Humana , L-Lactato Desidrogenase , Lipoproteínas LDL/farmacologia , Proteínas de Ligação a Fosfato/genética , Proteínas Citotóxicas Formadoras de Poros , Piroptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...