Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 13(11): 14557-14570, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078750

RESUMO

GRSF1 is a mitochondrial RNA-binding protein important for maintaining mitochondrial function. We found that GRSF1 is highly expressed in cultured skeletal myoblasts differentiating into myotubes. To understand the physiological function of GRSF1 in vivo, we generated mice in which GRSF1 was specifically ablated in skeletal muscle. The conditional knockout mice (Grsf1cKO) appeared normal until 7-9 months of age. Importantly, however, a reduction of muscle endurance compared to wild-type controls was observed in 16- to 18-month old Grsf1cKO mice. Transcriptomic analysis revealed more than 200 mRNAs differentially expressed in Grsf1cKO muscle at this age. Notably, mRNAs encoding proteins involved in mitochondrial function, inflammation, and ion transport, including Mgarp, Cxcl10, Nfkb2, and Sln mRNAs, were significantly elevated in aged Grsf1cKO muscle. Our findings suggest that GRSF1 deficiency exacerbates the functional decline of aged skeletal muscle, likely through multiple downstream effector proteins.


Assuntos
Envelhecimento/metabolismo , Músculo Esquelético/metabolismo , Resistência Física , Proteínas de Ligação a Poli(A)/deficiência , Animais , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Musculares/metabolismo , Desenvolvimento Muscular/genética , Proteínas de Ligação a Poli(A)/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
BMC Mol Biol ; 14: 4, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23387986

RESUMO

BACKGROUND: T-cell intracellular antigen (TIA) proteins function as regulators of cell homeostasis. These proteins control gene expression globally at multiple levels in response to dynamic regulatory changes and environmental stresses. Herein we identified a micro(mi)RNA signature associated to transiently TIA-depleted HeLa cells and analyzed the potential role of miRNAs combining genome-wide analysis data on mRNA and miRNA profiles. RESULTS: Using high-throughput miRNA expression profiling, transient depletion of TIA-proteins in HeLa cells was observed to promote significant and reproducible changes affecting to a pool of up-regulated miRNAs involving miR-30b-3p, miR125a-3p, miR-193a-5p, miR-197-3p, miR-203a, miR-210, miR-371-5p, miR-373-5p, miR-483-5p, miR-492, miR-498, miR-503-5p, miR-572, miR-586, miR-612, miR-615-3p, miR-623, miR-625-5p, miR-629-5p, miR-638, miR-658, miR-663a, miR-671-5p, miR-769-3p and miR-744-5p. Some up-regulated and unchanged miRNAs were validated and previous results confirmed by reverse transcription and real time PCR. By target prediction of the miRNAs and combined analysis of the genome-wide expression profiles identified in TIA-depleted HeLa cells, we detected connections between up-regulated miRNAs and potential target genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analysis suggest that target genes are related with biological processes associated to the regulation of DNA-dependent transcription, signal transduction and multicellular organismal development as well as with the enrichment of pathways involved in cancer, focal adhesion, regulation of actin cytoskeleton, endocytosis and MAPK and Wnt signaling pathways, respectively. When the collection of experimentally defined differentially expressed genes in TIA-depleted HeLa cells was intersected with potential target genes only 7 out of 68 (10%) up- and 71 out of 328 (22%) down-regulated genes were shared. GO and KEGG database analyses showed that the enrichment categories of biological processes and cellular pathways were related with innate immune response, signal transduction, response to interleukin-1, glomerular basement membrane development as well as neuroactive ligand-receptor interaction, endocytosis, lysosomes and apoptosis, respectively. CONCLUSION: All this considered, these observations suggest that individual miRNAs could act as potential mediators of the epigenetic switch linking transcriptomic dynamics and cell phenotypes mediated by TIA proteins.


Assuntos
Perfilação da Expressão Gênica , Genoma Humano , MicroRNAs/genética , Proteínas de Ligação a Poli(A)/deficiência , Células HeLa , Humanos , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Ligação a Poli(A)/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Antígeno-1 Intracelular de Células T
3.
J Cell Biochem ; 105(1): 99-107, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18452158

RESUMO

TNFalpha is a cytokine wit pleiotropic functions in many organs. In the heart increased TNFalpha levels are not only associated with heart failure, but also, paradoxically, with protection from ischemic damage. To test whether the protective role of TNFalpha in the heart is concentration-dependent, we studied two mouse heart models with low (two- to threefold) over-expression of endogenous TNFalpha: mice deficient in a translational repressor of TNFalpha mRNA, TIA-1(-/-), and mice over-expressing human TNFalpha. Hearts lacking TIA-1 were characterized for their endogenous TNFalpha over-expression during normal Langendorff perfusion. To define which TNFalpha receptor mediates cardiac protection, we also used mice lacking the TNFR1 receptor. Contractile function was assessed in isolated hearts perfused in the isovolumic Langendorff mode during and following global no-flow ischemic stress and in response to varying extracellular [Ca(2+)] to determine their contractile response and Ca(2+) sensitivity. All hearts with low over-expression of TNFalpha, independent of human or murine origin, have improved contractile performance and increased Ca(2+) sensitivity (by 0.2-0.26 pCa). Hearts lacking TNFR1 have contractile performance equal to wild type hearts. Recovery from ischemia was greater in TIA-1(-/-) and was diminished in TNFR1(-/-). Better contractile function in TNFalpha over-expressing hearts is not due to improved cardiac energetics assessed as [ATP] and glucose uptake or to differences in expression of SERCA2a or calmodulin. We suggest that low levels of TNFalpha increase the Ca(2+) sensitivity of the heart via a TNFR1-mediated mechanism.


Assuntos
Regulação da Expressão Gênica , Contração Muscular , Miocárdio/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Cálcio/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Poli(A)/deficiência , Proteínas de Ligação a Poli(A)/genética , Proteínas de Ligação a Poli(A)/metabolismo , RNA Mensageiro/genética , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...