Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34768871

RESUMO

Replication timing (RT) is a cellular program to coordinate initiation of DNA replication in all origins within the genome. RIF1 (replication timing regulatory factor 1) is a master regulator of RT in human cells. This role of RIF1 is associated with binding G4-quadruplexes and changes in 3D chromatin that may suppress origin activation over a long distance. Many effects of RIF1 in fork reactivation and DNA double-strand (DSB) repair (DSBR) are underlined by its interaction with TP53BP1 (tumor protein p53 binding protein). In G1, RIF1 acts antagonistically to BRCA1 (BRCA1 DNA repair associated), suppressing end resection and homologous recombination repair (HRR) and promoting non-homologous end joining (NHEJ), contributing to DSBR pathway choice. RIF1 is an important element of intra-S-checkpoints to recover damaged replication fork with the involvement of HRR. High-resolution microscopic studies show that RIF1 cooperates with TP53BP1 to preserve 3D structure and epigenetic markers of genomic loci disrupted by DSBs. Apart from TP53BP1, RIF1 interact with many other proteins, including proteins involved in DNA damage response, cell cycle regulation, and chromatin remodeling. As impaired RT, DSBR and fork reactivation are associated with genomic instability, a hallmark of malignant transformation, RIF1 has a diagnostic, prognostic, and therapeutic potential in cancer. Further studies may reveal other aspects of common regulation of RT, DSBR, and fork reactivation by RIF1.


Assuntos
Reparo do DNA/fisiologia , Período de Replicação do DNA/fisiologia , Proteínas de Ligação a Telômeros/metabolismo , Proteína BRCA1/metabolismo , Cromatina/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA por Junção de Extremidades/fisiologia , Replicação do DNA/genética , Replicação do DNA/fisiologia , Período de Replicação do DNA/genética , Instabilidade Genômica/genética , Humanos , Reparo de DNA por Recombinação , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/fisiologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
2.
J Biol Chem ; 297(6): 101367, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34736895

RESUMO

Rif1 regulates DNA replication timing and double-strand break repair, and its depletion induces transcriptional bursting of two-cell (2C) zygote-specific genes in mouse ES cells. However, how Rif1 regulates zygotic transcription is unclear. We show here that Rif1 depletion promotes the formation of a unique Zscan4 enhancer structure harboring both histone H3 lysine 27 acetylation (H3K27ac) and moderate levels of silencing chromatin mark H3K9me3. Curiously, another enhancer mark H3K4me1 is missing, whereas DNA methylation is still maintained in the structure, which spreads across gene bodies and neighboring regions within the Zscan4 gene cluster. We also found by function analyses of Rif1 domains in ES cells that ectopic expression of Rif1 lacking N-terminal domain results in upregulation of 2C transcripts. This appears to be caused by dominant negative inhibition of endogenous Rif1 protein localization at the nuclear periphery through formation of hetero-oligomers between the N-terminally truncated and endogenous forms. Strikingly, in murine 2C embryos, most of Rif1-derived polypeptides are expressed as truncated forms in soluble nuclear or cytosolic fraction and are likely nonfunctional. Toward the morula stage, the full-length form of Rif1 gradually increased. Our results suggest that the absence of the functional full-length Rif1 due to its instability or alternative splicing and potential inactivation of Rif1 through dominant inhibition by N-terminally truncated Rif1 polypeptides may be involved in 2C-specific transcription program.


Assuntos
Replicação do DNA/fisiologia , Proteínas de Ligação a Telômeros/fisiologia , Ativação Transcricional/fisiologia , Zigoto/metabolismo , Acetilação , Animais , Cromatina/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Fatores de Transcrição/genética , Regulação para Cima
3.
Nucleic Acids Res ; 49(18): 10465-10476, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34520548

RESUMO

Telomere binding protein Stn1 forms the CST (Cdc13/CTC1-STN1-TEN1) complex in budding yeast and mammals. Likewise, fission yeast Stn1 and Ten1 form a complex indispensable for telomere protection. We have previously reported that stn1-1, a high-temperature sensitive mutant, rapidly loses telomere DNA at the restrictive temperature due to frequent failure of replication fork progression at telomeres and subtelomeres, both containing repetitive sequences. It is unclear, however, whether Stn1 is required for maintaining other repetitive DNAs such as ribosomal DNA. In this study, we have demonstrated that stn1-1 cells, even when grown at the permissive temperature, exhibited dynamic rearrangements in the telomere-proximal regions of subtelomere and ribosomal DNA repeats. Furthermore, Rad52 and γH2A accumulation was observed at ribosomal DNA repeats in the stn1-1 mutant. The phenotypes exhibited by the stn1-1 allele were largely suppressed in the absence of Reb1, a replication fork barrier-forming protein, suggesting that Stn1 is involved in the maintenance of the arrested replication forks. Collectively, we propose that Stn1 maintains the stability of repetitive DNAs at subtelomeres and rDNA regions.


Assuntos
DNA Fúngico/química , DNA Ribossômico/química , Sequências Repetitivas de Ácido Nucleico , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/genética , Proteínas de Ligação a Telômeros/fisiologia , Proteínas de Ligação a DNA/genética , Viabilidade Microbiana , Mutação , Recombinação Genética , Reparo de DNA por Recombinação , Proteínas de Schizosaccharomyces pombe/genética , Telômero , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/genética
4.
J Biol Chem ; 297(3): 101080, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403696

RESUMO

TIN2 is a core component of the shelterin complex linking double-stranded telomeric DNA-binding proteins (TRF1 and TRF2) and single-strand overhang-binding proteins (TPP1-POT1). In vivo, the large majority of TRF1 and TRF2 exist in complexes containing TIN2 but lacking TPP1/POT1; however, the role of TRF1-TIN2 interactions in mediating interactions with telomeric DNA is unclear. Here, we investigated DNA molecular structures promoted by TRF1-TIN2 interaction using atomic force microscopy (AFM), total internal reflection fluorescence microscopy (TIRFM), and the DNA tightrope assay. We demonstrate that the short (TIN2S) and long (TIN2L) isoforms of TIN2 facilitate TRF1-mediated DNA compaction (cis-interactions) and DNA-DNA bridging (trans-interactions) in a telomeric sequence- and length-dependent manner. On the short telomeric DNA substrate (six TTAGGG repeats), the majority of TRF1-mediated telomeric DNA-DNA bridging events are transient with a lifetime of ~1.95 s. On longer DNA substrates (270 TTAGGG repeats), TIN2 forms multiprotein complexes with TRF1 and stabilizes TRF1-mediated DNA-DNA bridging events that last on the order of minutes. Preincubation of TRF1 with its regulator protein Tankyrase 1 and the cofactor NAD+ significantly reduced TRF1-TIN2 mediated DNA-DNA bridging, whereas TIN2 protected the disassembly of TRF1-TIN2 mediated DNA-DNA bridging upon Tankyrase 1 addition. Furthermore, we showed that TPP1 inhibits TRF1-TIN2L-mediated DNA-DNA bridging. Our study, together with previous findings, supports a molecular model in which protein assemblies at telomeres are heterogeneous with distinct subcomplexes and full shelterin complexes playing distinct roles in telomere protection and elongation.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Moléculas de Adesão Celular/fisiologia , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Microscopia de Força Atômica/métodos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo , Complexo Shelterina/metabolismo , Complexo Shelterina/fisiologia , Telômero/metabolismo , Proteínas de Ligação a Telômeros/fisiologia , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia
5.
Nucleic Acids Res ; 49(7): 3967-3980, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33772576

RESUMO

In budding yeast, Rif1 negatively regulates telomere length, but the mechanism of this regulation has remained elusive. Previous work identified several functional domains of Rif1, but none of these has been shown to mediate telomere length. To define Rif1 domains responsible for telomere regulation, we localized truncations of Rif1 to a single specific telomere and measured telomere length of that telomere compared to bulk telomeres. We found that a domain in the N-terminus containing HEAT repeats, Rif1177-996, was sufficient for length regulation when tethered to the telomere. Charged residues in this region were previously proposed to mediate DNA binding. We found that mutation of these residues disrupted telomere length regulation even when Rif1 was tethered to the telomere. Mutation of other conserved residues in this region, which were not predicted to interact with DNA, also disrupted telomere length maintenance, while mutation of conserved residues distal to this region did not. Our data suggest that conserved amino acids in the region from 436 to 577 play a functional role in telomere length regulation, which is separate from their proposed DNA binding function. We propose that the Rif1 HEAT repeats region represents a protein-protein binding interface that mediates telomere length regulation.


Assuntos
Proteínas Repressoras/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Homeostase do Telômero , Proteínas de Ligação a Telômeros/fisiologia , Telômero/metabolismo , Sítios de Ligação , Ligação Proteica , Domínios Proteicos , Saccharomyces cerevisiae
6.
Cell Biol Int ; 45(6): 1306-1315, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33624913

RESUMO

Alzheimer's disease (AD) is a chronic neurodegenerative disorder which is the primary cause of dementia in the elderly. Telomere attrition has been proposed as a hallmark of aging. Our study aimed to explore the mechanism of the protection of telomere 1 (POT1) in regulating telomere length and affecting cellular senescence in AD. The AD mouse model was established by d-galactose and aluminum chloride, and the water maze test and dark avoidance test were used to detect the behaviors of mice and confirm the success of AD mouse model. AD cell model was established with HT22 cells induced by Aß42 oligomers. POT1 expression in the AD model was detected by quantitative real-time polymerase chain reaction. Cellular telomere length in hippocampal tissue was analyzed by telomere restriction fragment. Localization of intracellular POT1, telomerase, and telomeres was analyzed by immunofluorescence and fluorescence in situ hybridization. Dual-luciferase assay was used to validate the targeted binding relationship between microRNA-340-5p (miR-340-5p) and POT1. After inhibiting POT1 expression, the symptoms of AD in mice were improved. Aß1-42 deposition was reduced, whereas telomere length and telomerase activity was increased. Dual-luciferase assay verified the binding relationship between miR-340-5p and POT1. An increase in miR-340-5p expression could alleviate cellular senescence and AD symptoms. miR-340-5p increased cellular telomere length and delayed cell senescence by inhibiting POT1 expression to improve AD symptoms. This study made a conclusion that miR-340-5p increased cellular telomere length and delayed cell senescence by inhibiting POT1 expression to improve AD symptoms in mice.


Assuntos
Doença de Alzheimer/metabolismo , MicroRNAs/fisiologia , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Animais , Senescência Celular , Feminino , Células HEK293 , Células HT29 , Humanos , Masculino , Camundongos , Complexo Shelterina , Proteínas de Ligação a Telômeros/fisiologia
7.
Int J Sports Med ; 42(3): 283-290, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32947637

RESUMO

Aging muscle is prone to sarcopenia and its associated telomere shortening and increased oxidative stress. Telomeres are protected by a shelterin protein complex, proteins expressed in response to DNA damage. Aerobic exercise training has shown to positively modulate these proteins while aging, but the effects of resistance training are less clear. This investigation was to examine the role of dynamic and isometric RT on markers of senescence and muscle apoptosis: checkpoint kinase 2, 53 kDa protein, shelterin telomere repeat binding 1 and 2, DNA repair, telomere length and redox state in the quadriceps muscle. Fifteen 49-week-old male rats were divided into three groups: control, dynamic resistance training, and isometric resistance training. Dynamic and isometric groups completed five sessions per week during 16 weeks at low to moderate intensity (20-70% maximal load). Only dynamic group decreased expression of 53 kDa protein, proteins from shelterin complex, oxidative stress, and improved antioxidant defense. There was no difference among groups regarding telomere length. In conclusion, dynamic resistance training was more effective than isometric in reducing markers of aging and muscle apoptosis in elderly rats. This modality should be considered as valuable tool do counteract the deleterious effects of aging.


Assuntos
Envelhecimento/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Animais , Apoptose , Biomarcadores/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Reparo do DNA , Genes p53 , Contração Isométrica , Masculino , Músculo Esquelético/citologia , Oxirredução , Estresse Oxidativo , Condicionamento Físico Animal , Ratos Wistar , Encurtamento do Telômero , Proteínas de Ligação a Telômeros/fisiologia
8.
Nucleic Acids Res ; 49(2): 760-775, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33347580

RESUMO

Chromosome stability is primarily determined by telomere length. TRF1 is the core subunit of shelterin that plays a critical role in telomere organization and replication. However, the dynamics of TRF1 in scenarios of telomere-processing activities remain elusive. Using single-molecule magnetic tweezers, we here investigated the dynamics of TRF1 upon organizing a human telomere and the protein-DNA interactions at a moving telomeric fork. We first developed a method to obtain telomeres from human cells for directly measuring the telomere length by single-molecule force spectroscopy. Next, we examined the compaction and decompaction of a telomere by TRF1 dimers. TRF1 dissociates from a compacted telomere with heterogenous loops in ∼20 s. We also found a negative correlation between the number of telomeric loops and loop sizes. We further characterized the dynamics of TRF1 at a telomeric DNA fork. With binding energies of 11 kBT, TRF1 can modulate the forward and backward steps of DNA fork movements by 2-9 s at a critical force of F1/2, temporarily maintaining the telomeric fork open. Our results shed light on the mechanisms of how TRF1 organizes human telomeres and facilitates the efficient replication of telomeric DNA. Our work will help future research on the chemical biology of telomeres and shelterin-targeted drug discovery.


Assuntos
Micromanipulação/métodos , Telômero/ultraestrutura , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Biotinilação , Digoxigenina , Humanos , Sequências Repetidas Invertidas , Células K562 , Imãs , Complexo Shelterina , Imagem Individual de Molécula , Telômero/química , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/fisiologia
9.
Elife ; 92020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258446

RESUMO

Telomere shortening is a presumed tumor suppressor pathway that imposes a proliferative barrier (the Hayflick limit) during tumorigenesis. This model predicts that excessively long somatic telomeres predispose to cancer. Here, we describe cancer-prone families with two unique TINF2 mutations that truncate TIN2, a shelterin subunit that controls telomere length. Patient lymphocyte telomeres were unusually long. We show that the truncated TIN2 proteins do not localize to telomeres, suggesting that the mutations create loss-of-function alleles. Heterozygous knock-in of the mutations or deletion of one copy of TINF2 resulted in excessive telomere elongation in clonal lines, indicating that TINF2 is haploinsufficient for telomere length control. In contrast, telomere protection and genome stability were maintained in all heterozygous clones. The data establish that the TINF2 truncations predispose to a tumor syndrome. We conclude that TINF2 acts as a haploinsufficient tumor suppressor that limits telomere length to ensure a timely Hayflick limit.


Assuntos
Genes Supressores de Tumor , Encurtamento do Telômero/genética , Proteínas de Ligação a Telômeros/fisiologia , Telômero/genética , Linhagem Celular , Feminino , Células HEK293 , Heterozigoto , Humanos , Mutação com Perda de Função , Masculino , Neoplasias/genética , Telômero/patologia , Proteínas de Ligação a Telômeros/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteínas Supressoras de Tumor
10.
Mol Med Rep ; 22(6): 5209-5218, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33174061

RESUMO

Telomeric repeat binding factor 1 (TERF1) has been identified as a tumor suppressor gene in numerous types of human cancer. However, the expression of TERF1 and its mechanism in prostate cancer (PCa) remains unclear. The present study aimed to explore the expression and functions of TERF1 in PCa. The UALCAN database was used to analyze the differential expression of TERF1 between normal prostate tissue and primary PCa tissue. Cell apoptosis was analyzed by Annexin V/propidium iodide staining, and wound healing and Transwell assays were used to detect the cell migration and invasion abilities, respectively. The cell viability was analyzed using an MTT assay. Reverse transcription­quantitative PCR and western blotting were used to analyze the mRNA and protein expression levels, respectively, of epithelial­mesenchymal transition (EMT) markers following TERF1 knockdown in the PC3 cell line. A dual luciferase reporter assay was used to verify the association between TERF1 and microRNA (miR)­155 predicted by bioinformatics analysis. Rescue experiments were performed to determine the role of the miR­155/TERF1 axis in regulating the cellular behaviors of PCa. The results demonstrated that the expression levels of TERF1 in the primary prostate tumors were significantly downregulated compared with in prostate normal tissue. TERF1 silencing was discovered to significantly promote cell viability, migration and invasion, while suppressing cell apoptosis. The impact of TERF1 on PC3 cells was suggested to occur through the EMT pathway. TERF1 was confirmed to be the direct target of miR­155. The overexpression of miR­155 promoted the viability, migration and invasion, while suppressing the apoptosis of the PC3 cell line, while the knockdown of miR­155 in PC3 cells achieved the opposite trends. In addition, TERF1 overexpression reversed the promotive effects of upregulated miR­155 expression levels on the migration and apoptosis of PC3 cells. On the contrary, the knockdown of TERF1 reversed the migration and apoptosis abilities of the downregulated miR­155 expression levels on the cellular behaviors of PC3 cells. In conclusion, TERF1, as a direct target of miR­155, was discovered to be significantly downregulated in PCa, which was suggested to promote the migration and invasion of PCa via the EMT pathway.


Assuntos
MicroRNAs/genética , Neoplasias da Próstata/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Células PC-3 , Próstata/patologia , Neoplasias da Próstata/patologia , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/fisiologia
11.
Mol Biol Cell ; 31(23): 2583-2596, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32903138

RESUMO

Telomere maintenance is essential for the long-term proliferation of human pluripotent stem cells, while their telomere length set point determines the proliferative capacity of their differentiated progeny. The shelterin protein TPP1 is required for telomere stability and elongation, but its role in establishing a telomere length set point remains elusive. Here, we characterize the contribution of the shorter isoform of TPP1 (TPP1S) and the amino acid L104 outside the TEL patch, TPP1's telomerase interaction domain, to telomere length control. We demonstrate that cells deficient for TPP1S (TPP1S knockout [KO]), as well as the complete TPP1 KO cell lines, undergo telomere shortening. However, TPP1S KO cells are able to stabilize short telomeres, while TPP1 KO cells die. We compare these phenotypes with those of TPP1L104A/L104A mutant cells, which have short and stable telomeres similar to the TPP1S KO. In contrast to TPP1S KO cells, TPP1L104A/L104A cells respond to increased telomerase levels and maintain protected telomeres. However, TPP1L104A/L104A shows altered sensitivity to expression changes of shelterin proteins suggesting the mutation causes a defect in telomere length feedback regulation. Together this highlights TPP1L104A/L104A as the first shelterin mutant engineered at the endogenous locus of human stem cells with an altered telomere length set point.


Assuntos
Células-Tronco Pluripotentes/metabolismo , Homeostase do Telômero/fisiologia , Proteínas de Ligação a Telômeros/metabolismo , Células HeLa , Humanos , Mutação , Isoformas de Proteínas , Complexo Shelterina , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero/genética , Proteínas de Ligação a Telômeros/fisiologia
12.
Proc Natl Acad Sci U S A ; 116(47): 23527-23533, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31685617

RESUMO

Telomeres cap the ends of linear chromosomes and terminate in a single-stranded DNA (ssDNA) overhang recognized by POT1-TPP1 heterodimers to help regulate telomere length homeostasis. Here hydroxyl radical footprinting coupled with mass spectrometry was employed to probe protein-protein interactions and conformational changes involved in the assembly of telomere ssDNA substrates of differing lengths bound by POT1-TPP1 heterodimers. Our data identified environmental changes surrounding residue histidine 266 of POT1 that were dependent on telomere ssDNA substrate length. We further determined that the chronic lymphocytic leukemia-associated H266L substitution significantly reduced POT1-TPP1 binding to short ssDNA substrates; however, it only moderately impaired the heterodimer binding to long ssDNA substrates containing multiple protein binding sites. Additionally, we identified a telomerase inhibitory role when several native POT1-TPP1 proteins coat physiologically relevant lengths of telomere ssDNA. This POT1-TPP1 complex-mediated inhibition of telomerase is abrogated in the context of the POT1 H266L mutation, which leads to telomere overextension in a malignant cellular environment.


Assuntos
DNA de Cadeia Simples/metabolismo , Mutação de Sentido Incorreto , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Homeostase do Telômero/fisiologia , Proteínas de Ligação a Telômeros/fisiologia , Telômero/metabolismo , Substituição de Aminoácidos , Sistemas CRISPR-Cas , Células HCT116 , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética
13.
Int J Biol Sci ; 15(11): 2350-2362, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31595153

RESUMO

The interaction between genomic DNA and protein fundamentally determines the activity and the function of DNA elements. Capturing the protein complex and identifying the proteins associated with a specific DNA locus is difficult. Herein, we employed CRISPR, the well-known gene-targeting tool in combination with the proximity-dependent labeling tool BioID to capture a specific genome locus associated proteins and to uncover the novel functions of these proteins. By applying this research tool on telomeres, we identified DSP, out of many others, as a convincing telomere binding protein validated by both biochemical and cell-biological approaches. We also provide evidence to demonstrate that the C-terminal domain of DSP is required for its binding to telomere after translocating to the nucleus mediated by NLS sequence of DSP. In addition, we found that the telomere binding of DSP is telomere length dependent as hTERT inhibition or knockdown caused a decrease of telomere length and diminished DSP binding to the telomere. Knockdown of TRF2 also negatively influenced DSP binding to the telomere. Functionally, loss of DSP resulted in the shortened telomere DNA and induced the DNA damage response and cell apoptosis. In conclusion, our studies identified DSP as a novel potential telomere binding protein and highlighted its role in protecting against telomere DNA damage and resultant cell apoptosis.


Assuntos
Núcleo Celular/metabolismo , Desmoplaquinas/fisiologia , Homeostase do Telômero , Proteínas de Ligação a Telômeros/fisiologia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Dano ao DNA , Desmoplaquinas/química , Desmoplaquinas/metabolismo , Células HEK293 , Humanos , Telomerase/metabolismo , Telômero/metabolismo , Encurtamento do Telômero , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/metabolismo
14.
Life Sci ; 232: 116665, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31323273

RESUMO

AIMS: Overexpression of the mechanistic target of rapamycin (mTOR), a member of the PIKK (phosphoinositide kinase-related kinase) family, protects cardiomyocytes from cell death induced by pathological stimuli such as ischemia. We previously reported that posttranslational modification of mTOR plays an important role in regulating cardiac mTOR expression. The aim of this study was to see if Tel2 (telomere maintenance 2), a protein that regulates the abundance of PIKKs, confers similar cardioprotective effects as mTOR. Tel2 is not well-characterized in cardiomyocytes, therefore we examined the effects of Tel2 on cardiomyocyte viability under ischemic stress conditions. MATERIALS AND METHODS: We overexpressed Tel2 or silenced Tel2 with siRNA in the HL-1 cardiomyocyte cell line to survey the effects of Tel2 overexpression and downregulation on cell survival during hypoxia. Adult mouse cardiomyocytes transfected with Tel2 adenoviruses were used to test whether Tel2 sufficiently prevented cardiomyocyte cell death against hydrogen peroxide (H2O2). KEY FINDINGS: Overexpressing Tel2 increased mTOR expression with a concomitant increase in mTOR Complex 1 (mTORC1) and mTORC2 activity in HL-1 cells. Tel2 deletion decreased mTOR expression, and mTORC1 and mTORC2 activity accordingly. In both HL-1 cells and adult mouse cardiomyocytes, Tel2 overexpression protected cardiomyocytes under ischemic stress. These effects were mTOR-dependent, as mTOR inhibitors blunted the effects of Tel2. While gene silencing of Tel2 did not affect cell survival under normoxia, Tel2 silencing made cardiomyocytes more vulnerable to cell death under hypoxia. SIGNIFICANCE: Upregulating Tel2 expression increases mTOR-mediated cardiomyocyte survival and targeting Tel2 could be another therapeutic strategy against ischemic heart disease.


Assuntos
Sobrevivência Celular/fisiologia , Miócitos Cardíacos/citologia , Proteínas de Ligação a Telômeros/fisiologia , Adenoviridae/genética , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Inativação Gênica , Peróxido de Hidrogênio/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Transdução de Sinais , Proteínas de Ligação a Telômeros/genética , Transfecção
15.
Nat Commun ; 10(1): 3287, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337767

RESUMO

Homologous recombination (HR) and Fanconi Anemia (FA) pathway proteins in addition to their DNA repair functions, limit nuclease-mediated processing of stalled replication forks. However, the mechanism by which replication fork degradation results in genome instability is poorly understood. Here, we identify RIF1, a non-homologous end joining (NHEJ) factor, to be enriched at stalled replication forks. Rif1 knockout cells are proficient for recombination, but displayed degradation of reversed forks, which depends on DNA2 nuclease activity. Notably, RIF1-mediated protection of replication forks is independent of its function in NHEJ, but depends on its interaction with Protein Phosphatase 1. RIF1 deficiency delays fork restart and results in exposure of under-replicated DNA, which is the precursor of subsequent genomic instability. Our data implicate RIF1 to be an essential factor for replication fork protection, and uncover the mechanisms by which unprotected DNA replication forks can lead to genome instability in recombination-proficient conditions.


Assuntos
Replicação do DNA , Instabilidade Genômica , Proteínas de Ligação a Telômeros/fisiologia , Animais , Células Cultivadas , DNA Cruciforme/química , Camundongos , Domínios Proteicos , Proteína Fosfatase 1/química , Proteína Fosfatase 1/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
16.
Protein Cell ; 10(9): 649-667, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30796637

RESUMO

RAP1 is a well-known telomere-binding protein, but its functions in human stem cells have remained unclear. Here we generated RAP1-deficient human embryonic stem cells (hESCs) by using CRISPR/Cas9 technique and obtained RAP1-deficient human mesenchymal stem cells (hMSCs) and neural stem cells (hNSCs) via directed differentiation. In both hMSCs and hNSCs, RAP1 not only negatively regulated telomere length but also acted as a transcriptional regulator of RELN by tuning the methylation status of its gene promoter. RAP1 deficiency enhanced self-renewal and delayed senescence in hMSCs, but not in hNSCs, suggesting complicated lineage-specific effects of RAP1 in adult stem cells. Altogether, these results demonstrate for the first time that RAP1 plays both telomeric and nontelomeric roles in regulating human stem cell homeostasis.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Mesenquimais/citologia , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Serina Endopeptidases/metabolismo , Proteínas de Ligação a Telômeros/fisiologia , Telômero/metabolismo , Animais , Humanos , Masculino , Metilação , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína Reelina , Complexo Shelterina
17.
Mol Biol Cell ; 30(8): 959-974, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30759056

RESUMO

Mechanical ventilation remains an imperative treatment for the patients with acute respiratory distress syndrome, but can also exacerbate lung injury. We have previously described a key role of RhoA GTPase in high cyclic stretch (CS)-induced endothelial cell (EC) barrier dysfunction. However, cellular mechanotransduction complexes remain to be characterized. This study tested a hypothesis that recovery of a vascular EC barrier after pathologic mechanical stress may be accelerated by cell exposure to physiologic CS levels and involves Rap1-dependent rearrangement of endothelial cell junctions. Using biochemical, molecular, and imaging approaches we found that EC pre- or postconditioning at physiologically relevant low-magnitude CS promotes resealing of cell junctions disrupted by pathologic, high-magnitude CS. Cytoskeletal remodeling induced by low CS was dependent on small GTPase Rap1. Protective effects of EC preconditioning at low CS were abolished by pharmacological or molecular inhibition of Rap1 activity. In vivo, using mice exposed to mechanical ventilation, we found that the protective effect of low tidal volume ventilation against lung injury caused by lipopolysaccharides and ventilation at high tidal volume was suppressed in Rap1 knockout mice. Taken together, our results demonstrate a prominent role of Rap1-mediated signaling mechanisms activated by low CS in acceleration of lung vascular EC barrier restoration.


Assuntos
Endotélio Vascular/fisiologia , Mecanotransdução Celular/fisiologia , Proteínas de Ligação a Telômeros/metabolismo , Animais , Permeabilidade Capilar , Técnicas de Cultura de Células , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Endotélio Vascular/metabolismo , Feminino , Humanos , Junções Intercelulares , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Artéria Pulmonar , Complexo Shelterina , Transdução de Sinais , Estresse Mecânico , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/fisiologia
18.
Nat Cell Biol ; 21(4): 487-497, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30804506

RESUMO

Failure to complete DNA replication is a stochastic by-product of genome doubling in almost every cell cycle. During mitosis, under-replicated DNA (UR-DNA) is converted into DNA lesions, which are inherited by daughter cells and sequestered in 53BP1 nuclear bodies (53BP1-NBs). The fate of such cells remains unknown. Here, we show that the formation of 53BP1-NBs interrupts the chain of iterative damage intrinsically embedded in UR-DNA. Unlike clastogen-induced 53BP1 foci that are repaired throughout interphase, 53BP1-NBs restrain replication of the embedded genomic loci until late S phase, thus enabling the dedicated RAD52-mediated repair of UR-DNA lesions. The absence or malfunction of 53BP1-NBs causes premature replication of the affected loci, accompanied by genotoxic RAD51-mediated recombination. Thus, through adjusting replication timing and repair pathway choice at under-replicated loci, 53BP1-NBs enable the completion of genome duplication of inherited UR-DNA and prevent the conversion of stochastic under-replications into genome instability.


Assuntos
Estruturas do Núcleo Celular/fisiologia , Dano ao DNA , Período de Replicação do DNA , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/fisiologia , Linhagem Celular , Segregação de Cromossomos , Reparo do DNA , Replicação do DNA , Humanos , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Recombinação Genética , Fase S/genética , Proteínas de Ligação a Telômeros/fisiologia
19.
Microcirculation ; 26(2): e12487, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29924435

RESUMO

In the United States and other westernized nations, CVDs are the leading cause of death in adults over 65 years of age. Large artery stiffness and endothelial dysfunction are increased with age and age-associated arterial dysfunction is an important antecedent of CVDs. One age-associated change that may contribute to vascular dysfunction and CVD risk is an increase in the number of resident senescent cells in the vasculature. Senescent cells display a pro-oxidant, pro-inflammatory phenotype known as the SASP. However, the mechanisms that drive the SASP and the vascular aging phenotype remain elusive. A putative mechanism is the involvement of oxidative stress and inflammation in telomere function. Telomeres are the end caps of chromosomes which are maintained by a six-protein complex known as shelterin. Disruption of shelterin can uncap telomeres and induce cellular senescence. Accordingly, in this review, we propose that oxidative stress and inflammation disrupt shelterin in vascular cells, driving telomere dysfunction and that this mechanism may be responsible for the induction of SASP. The proposed mechanisms may represent some of the initial changes that lead to vascular dysfunction in advanced age.


Assuntos
Envelhecimento , Vasos Sanguíneos/fisiologia , Senescência Celular/fisiologia , Proteínas de Ligação a Telômeros/fisiologia , Telômero/patologia , Animais , Doenças Cardiovasculares/etiologia , Humanos , Inflamação , Estresse Oxidativo , Complexo Shelterina
20.
Nucleic Acids Res ; 46(17): 8865-8875, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29992245

RESUMO

Despite the prime importance of telomeres in chromosome stability, significant mysteries surround the architecture of telomeric chromatin. Through micrococcal nuclease mapping, we show that fission yeast chromosome ends are assembled into distinct protected structures ('telosomes') encompassing the telomeric DNA repeats and over half a kilobase of subtelomeric DNA. Telosome formation depends on the conserved telomeric proteins Taz1 and Rap1, and surprisingly, RNA. Although yeast telomeres have long been thought to be free of histones, we show that this is not the case; telomere repeats contain histones. While telomeric histone H3 bears the heterochromatic lys9-methyl mark, we show that this mark is dispensable for telosome formation. Therefore, telomeric chromatin is organized at an architectural level, in which telomere-binding proteins and RNAs impose a unique nucleosome arrangement, and a second level, in which histone modifications are superimposed upon the higher order architecture.


Assuntos
Cromatina/ultraestrutura , RNA Fúngico/fisiologia , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/genética , Proteínas de Ligação a Telômeros/fisiologia , Telômero/ultraestrutura , Imunoprecipitação da Cromatina , DNA Fúngico/genética , Heterocromatina/ultraestrutura , Código das Histonas , Histonas/fisiologia , Complexos Multiproteicos/fisiologia , Nucleossomos/ultraestrutura , Schizosaccharomyces/ultraestrutura , Complexo Shelterina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...