Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.126
Filtrar
1.
PLoS One ; 19(5): e0298118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722833

RESUMO

It is unclear how telomere-binding protein TPP1 interacts with human telomerase reverse transcriptase (hTERT) and influences cervical cancer development and progression. This study included all eligible 156 cervical cancers diagnosed during 2003-2008 and followed up through 2014, 102 cervical intraepithelial neoplasia (CIN) patients, and 16 participants with normal cervix identified at the same period. Correlation of expression of TPP1 and hTERT in these lesions was assessed using Kappa statistics. TPP1 was knocked down by siRNA in three cervical cancer cell lines. We assessed mRNA expression using quantitative real-time polymerase chain reaction and protein expression using tissue microarray-based immunohistochemical staining. We further analyzed the impact of TPP1 expression on the overall survival of cervical cancer patients by calculating the hazard ratio (HR) with 95% confidence intervals (CIs) using the multivariable-adjusted Cox regression model. Compared to the normal cervix, high TPP1expression was significantly associated with CIN 3 and cervical cancers (P<0.001 for both). Expressions of TPP1 and hTERT were highly correlated in CIN 3 (Kappa statistics = 0.50, P = 0.005), squamous cell carcinoma (Kappa statistics = 0.22, P = 0.011), and adenocarcinoma/adenosquamous carcinoma (Kappa statistics = 0.77, P = 0.001). Mechanistically, knockdown of TPP1 inhibited the expression of hTERT in both mRNA and protein levels. High expression of TPP1 (HR = 2.61, 95% CI 1.23-5.51) and co-high expression of TPP1 and hTERT (HR = 2.38, 95% CI 1.28-4.43) were independently associated with worse survival in cervical cancer patients. TPP1 and hTERT expression was correlated and high expression of TPP1 was associated with high risk of CIN 3 and cervical cancer and could predict a worse survival in cervical cancer.


Assuntos
Complexo Shelterina , Telomerase , Proteínas de Ligação a Telômeros , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/mortalidade , Neoplasias do Colo do Útero/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Proteínas de Ligação a Telômeros/genética , Telomerase/genética , Telomerase/metabolismo , Pessoa de Meia-Idade , Displasia do Colo do Útero/genética , Displasia do Colo do Útero/patologia , Displasia do Colo do Útero/metabolismo , Displasia do Colo do Útero/mortalidade , Adulto , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Tripeptidil-Peptidase 1
2.
Arq Neuropsiquiatr ; 82(5): 1-8, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38763144

RESUMO

BACKGROUND: Neuronal ceroid lipofuscinoses (NCL) are a group of autosomal recessive, inherited, lysosomal, and neurodegenerative diseases that causes progressive dementia, seizures, movement disorders, language delay/regression, progressive visual failure, and early death. Neuronal ceroid lipofuscinosis type 2 (CLN2), caused by biallelic pathogenic variants of the TPP1 gene, is the only NCL with an approved targeted therapy. The laboratory diagnosis of CLN2 is established through highly specific tests, leading to diagnostic delays and eventually hampering the provision of specific treatment for patients with CLN2. Epilepsy is a common and clinically-identifiable feature among NCLs, and seizure onset is the main driver for families to seek medical care. OBJECTIVE: To evaluate the results of the Latin America Epilepsy and Genetics Program, an epilepsy gene panel, as a comprehensive tool for the investigation of CLN2 among other genetic causes of epilepsy. METHODS: A total of 1,284 patients with epilepsy without a specific cause who had at least 1 symptom associated with CLN2 were screened for variants in 160 genes associated with epilepsy or metabolic disorders presenting with epilepsy through an epilepsy gene panel. RESULTS: Variants of the TPP1 gene were identified in 25 individuals (1.9%), 21 of them with 2 variants. The 2 most frequently reported variants were p.Arg208* and p.Asp276Val, and 2 novel variants were detected in the present study: p.Leu308Pro and c.89 + 3G > C Intron 2. CONCLUSION: The results suggest that these genetic panels can be very useful tools to confirm or exclude CLN2 diagnosis and, if confirmed, provide disease-specific treatment for the patients.


ANTECEDENTES: As lipofuscinoses ceroides neuronais (neuronal ceroid lipofuscinoses, NCLs, em inglês) são um grupo de doenças autossômicas recessivas, hereditárias, lisossomais e neurodegenerativas que causam demência progressiva, crises epiléticas, distúrbios de movimento, atraso/regressão da linguagem, deficiência visual progressiva e morte precoce. A lipofuscinose ceroide neuronal tipo 2 (neuronal ceroid lipofuscinosis type 2, CLN2, em inglês), causada por variantes patogênicas bialélicas do gene TPP1, é a única com terapia-alvo aprovada. O diagnóstico laboratorial é realizado por testes específicos, o que leva a atrasos diagnósticos e, consequentemente, prejudica a disponibilização de tratamento. A epilepsia é uma característica comum e clinicamente identificável entre as NCLs, e o início das convulsões é o principal motivo para as famílias buscarem atendimento médico. OBJETIVO: Avaliar os resultados do Programa de Epilepsia e Genética da América Latina, um painel genético, como uma ferramenta abrangente para a investigação de CLN2 entre outras causas genéticas de epilepsia. MéTODOS: Um total de 1.284 pacientes com epilepsia sem uma causa específica e que tinham pelo menos 1 sintoma associado à CLN2 foram rastreados em busca de variantes em 160 genes associados à epilepsia ou a distúrbios metabólicos que apresentam epilepsia, por meio de um painel genético. RESULTADOS: Variantes do gene TPP1 foram identificadas em 25 indivíduos (1,9%), sendo que ; 21 apresentavam duas variantes. As duas variantes mais frequentes foram p.Arg208* e p.Asp276Val, e duas variantes novas foram detectadas neste: p.Leu308Pro e c.89 + 3G > C Intron 2. CONCLUSãO: Os resultados sugerem que os painéis genéticos de epilepsia podem ser uma ferramenta útil para confirmar ou excluir o diagnóstico de CLN2 e, se confirmado, fornecer tratamento específico para os pacientes.


Assuntos
Aminopeptidases , Epilepsia , Lipofuscinoses Ceroides Neuronais , Serina Proteases , Tripeptidil-Peptidase 1 , Humanos , Lipofuscinoses Ceroides Neuronais/genética , Feminino , Masculino , Epilepsia/genética , Aminopeptidases/genética , Serina Proteases/genética , Criança , Adolescente , Adulto , Adulto Jovem , Pré-Escolar , Proteínas de Ligação a Telômeros/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Mutação , Testes Genéticos/métodos , Pessoa de Meia-Idade , Lactente
3.
Biomolecules ; 14(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38540683

RESUMO

Telomeres act as the protective caps of eukaryotic linear chromosomes; thus, proper telomere maintenance is crucial for genome stability. Successful telomere replication is a cornerstone of telomere length regulation, but this process can be fraught due to the many intrinsic challenges telomeres pose to the replication machinery. In addition to the famous "end replication" problem due to the discontinuous nature of lagging strand synthesis, telomeres require various telomere-specific steps for maintaining the proper 3' overhang length. Bulk telomere replication also encounters its own difficulties as telomeres are prone to various forms of replication roadblocks. These roadblocks can result in an increase in replication stress that can cause replication forks to slow, stall, or become reversed. Ultimately, this leads to excess single-stranded DNA (ssDNA) that needs to be managed and protected for replication to continue and to prevent DNA damage and genome instability. RPA and CST are single-stranded DNA-binding protein complexes that play key roles in performing this task and help stabilize stalled forks for continued replication. The interplay between RPA and CST, their functions at telomeres during replication, and their specialized features for helping overcome replication stress at telomeres are the focus of this review.


Assuntos
Proteínas de Ligação a Telômeros , Telômero , Humanos , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Telômero/genética , Telômero/metabolismo , DNA de Cadeia Simples/genética , Instabilidade Genômica , Dano ao DNA , Replicação do DNA
4.
Genes (Basel) ; 15(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38540414

RESUMO

POT1 (Protection of Telomeres 1) is a key component of the six-membered shelterin complex that plays a critical role in telomere protection and length regulation. Germline variants in the POT1 gene have been implicated in predisposition to cancer, primarily to melanoma and chronic lymphocytic leukemia (CLL). We report the identification of POT1 p.(I78T), previously ranked with conflicting interpretations of pathogenicity, as a founder pathogenic variant among Ashkenazi Jews (AJs) and describe its unique clinical landscape. A directed database search was conducted for individuals referred for genetic counselling from 2018 to 2023. Demographic, clinical, genetic, and pathological data were collected and analyzed. Eleven carriers, 25 to 67 years old, from ten apparently unrelated families were identified. Carriers had a total of 30 primary malignancies (range 1-6); nine carriers (82%) had recurrent melanoma between the ages of 25 and 63 years, three carriers (27%) had desmoid tumors, three (27%) had papillary thyroid cancer (PTC), and five women (63% of female carriers) had breast cancer between the ages of 44 and 67 years. Additional tumors included CLL; sarcomas; endocrine tumors; prostate, urinary, and colorectal cancers; and colonic polyps. A review of a local exome database yielded an allelic frequency of the variant of 0.06% among all ethnicities and of 0.25% in AJs. A shared haplotype was found in all carriers tested. POT1 p.(I78T) is a founder disease-causing variant associated with early-onset melanoma and additional various solid malignancies with a high tumor burden. We advocate testing for this variant in high-risk patients of AJ descent. The inclusion of POT1 in germline panels for various types of cancer is warranted.


Assuntos
Leucemia Linfocítica Crônica de Células B , Melanoma , Neoplasias Cutâneas , Neoplasias da Glândula Tireoide , Masculino , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Melanoma/genética , Leucemia Linfocítica Crônica de Células B/genética , Proteínas de Ligação a Telômeros/genética , Neoplasias Cutâneas/genética , Complexo Shelterina
5.
Transl Psychiatry ; 14(1): 131, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429270

RESUMO

Bipolar disorder (BD) has been associated with premature cellular aging with shortened telomere length (TL) as compared to the general population. We recently identified a subgroup of young individuals with prematurely shortened TL. The aims of the present study were to replicate this observation in a larger sample and analyze the expression levels of genes associated with age or TL in a subsample of these individuals. TL was measured on peripheral blood DNA using quantitative polymerase chain reaction in a sample of 542 individuals with BD and clustering analyses were performed. Gene expression level of 29 genes, associated with aging or with telomere maintenance, was analyzed in RNA samples from a subsample of 129 individuals. Clustering analyses identified a group of young individuals (mean age 29.64 years), with shorter TL. None of the tested clinical variables were significantly associated with this subgroup. Gene expression level analyses showed significant downregulation of MYC, POT1, and CD27 in the prematurely aged young individuals compared to the young individuals with longer TL. After adjustment only POT1 remained significantly differentially expressed between the two groups of young individuals. This study confirms the existence of a subgroup of young individuals with BD with shortened TL. The observed decrease of POT1 expression level suggests a newly described cellular mechanism in individuals with BD, that may contribute to telomere shortening.


Assuntos
Transtorno Bipolar , Complexo Shelterina , Adulto , Idoso , Humanos , Envelhecimento , Senilidade Prematura , Transtorno Bipolar/genética , Telômero/genética , Encurtamento do Telômero/genética , Proteínas de Ligação a Telômeros/genética
6.
Environ Res ; 250: 118515, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373547

RESUMO

Telomeres are inert DNA sequences (TTAGGG) at the end of chromosomes that protect genetic information and maintain DNA integrity. Emerging evidence has demonstrated that telomere alteration can be closely related to occupational exposure and the development of various disease conditions, including cancer. However, the functions and underlying molecular mechanisms of telomere alteration and shelterin dysregulation after welding fume exposures have not been broadly defined. In this study, we analyzed telomere length and shelterin complex proteins in peripheral blood mononuclear cells (PBMCs) and in lung tissue recovered from male Sprague-Dawley rats following exposure by intratracheal instillation (ITI) to 2 mg/rat of manual metal arc-stainless steel (MMA-SS) welding fume particulate or saline (vehicle control). PBMCs and lung tissue were harvested at 30 d after instillation. Our study identified telomere elongation and shelterin dysregulation in PBMCs and lung tissue after welding fume exposure. Mechanistically, telomere elongation was independent of telomerase reverse transcriptase (TERT) activation. Collectively, our findings demonstrated that welding fume-induced telomere elongation was (a) TERT-independent and (b) associated with shelterin complex dysregulation. It is possible that an alteration of telomere length and its regulatory proteins may be utilized as predictive biomarkers for various disease conditions after welding fume exposure. This needs further investigation.


Assuntos
Pulmão , Ratos Sprague-Dawley , Aço Inoxidável , Telomerase , Soldagem , Animais , Masculino , Telomerase/genética , Telomerase/metabolismo , Aço Inoxidável/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Ratos , Telômero/efeitos dos fármacos , Poluentes Ocupacionais do Ar/toxicidade , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Exposição por Inalação/efeitos adversos , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
7.
Nucleic Acids Res ; 52(7): 3778-3793, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38348929

RESUMO

DNA replication stress, caused by various endogenous and exogenous agents, halt or stall DNA replication progression. Cells have developed diverse mechanisms to tolerate and overcome replication stress, enabling them to continue replication. One effective strategy to overcome stalled replication involves skipping the DNA lesion using a specialized polymerase known as PrimPol, which reinitiates DNA synthesis downstream of the damage. However, the mechanism regulating PrimPol repriming is largely unclear. In this study, we observe that knockdown of STN1 or CTC1, components of the CTC1/STN1/TEN1 complex, leads to enhanced replication progression following UV exposure. We find that such increased replication is dependent on PrimPol, and PrimPol recruitment to stalled forks increases upon CST depletion. Moreover, we find that p21 is upregulated in STN1-depleted cells in a p53-independent manner, and p21 depletion restores normal replication rates caused by STN1 deficiency. We identify that p21 interacts with PrimPol, and STN1 depletion stimulates p21-PrimPol interaction and facilitates PrimPol recruitment to stalled forks. Our findings reveal a previously undescribed interplay between CST, PrimPol and p21 in promoting repriming in response to stalled replication, and shed light on the regulation of PrimPol repriming at stalled forks.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21 , DNA Primase , Replicação do DNA , DNA Polimerase Dirigida por DNA , Enzimas Multifuncionais , Proteínas de Ligação a Telômeros , Raios Ultravioleta , Humanos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , DNA Primase/metabolismo , DNA Primase/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteínas de Ligação a Telômeros/genética , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Dano ao DNA
8.
Nucleic Acids Res ; 52(7): 3722-3739, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38321948

RESUMO

Telomeres protect chromosome ends and are distinguished from DNA double-strand breaks (DSBs) by means of a specialized chromatin composed of DNA repeats bound by a multiprotein complex called shelterin. We investigated the role of telomere-associated proteins in establishing end-protection by studying viable mutants lacking these proteins. Mutants were studied using a Schizosaccharomyces pombe model system that induces cutting of a 'proto-telomere' bearing telomere repeats to rapidly form a new stable chromosomal end, in contrast to the rapid degradation of a control DSB. Cells lacking the telomere-associated proteins Taz1, Rap1, Poz1 or Rif1 formed a chromosome end that was stable. Surprisingly, cells lacking Ccq1, or impaired for recruiting Ccq1 to the telomere, converted the cleaved proto-telomere to a rapidly degraded DSB. Ccq1 recruits telomerase, establishes heterochromatin and affects DNA damage checkpoint activation; however, these functions were separable from protection of the new telomere by Ccq1. In cells lacking Ccq1, telomere degradation was greatly reduced by eliminating the nuclease activity of Mre11 (part of the Mre11-Rad50-Nbs1/Xrs2 DSB processing complex), and higher amounts of nuclease-deficient Mre11 associated with the new telomere. These results demonstrate a novel function for S. pombe Ccq1 to effect end-protection by restraining Mre11-dependent degradation of the DNA end.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ligação a Telômeros , Telômero , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Proteínas de Ligação a Telômeros/genética , Telômero/metabolismo , Telômero/genética , Complexo Shelterina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Exodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Telomerase/metabolismo , Telomerase/genética , Mutação , Proteína Homóloga a MRE11/metabolismo , Proteína Homóloga a MRE11/genética
9.
Hum Mol Genet ; 33(7): 612-623, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38176734

RESUMO

Telomeres are nucleoprotein structures that protect the chromosome ends from degradation and fusion. Telomerase is a ribonucleoprotein complex essential to maintain the length of telomeres. Germline defects that lead to short and/or dysfunctional telomeres cause telomere biology disorders (TBDs), a group of rare and heterogeneous Mendelian diseases including pulmonary fibrosis, dyskeratosis congenita, and Høyeraal-Hreidarsson syndrome. TPP1, a telomeric factor encoded by the gene ACD, recruits telomerase at telomere and stimulates its activity via its TEL-patch domain that directly interacts with TERT, the catalytic subunit of telomerase. TBDs due to TPP1 deficiency have been reported only in 11 individuals. We here report four unrelated individuals with a wide spectrum of TBD manifestations carrying either heterozygous or homozygous ACD variants consisting in the recurrent and previously described in-frame deletion of K170 (K170∆) and three novel missense mutations G179D, L184R, and E215V. Structural and functional analyses demonstrated that the four variants affect the TEL-patch domain of TPP1 and impair telomerase activity. In addition, we identified in the ACD gene several motifs associated with small deletion hotspots that could explain the recurrence of the K170∆ mutation. Finally, we detected in a subset of blood cells from one patient, a somatic TERT promoter-activating mutation that likely provides a selective advantage over non-modified cells, a phenomenon known as indirect somatic genetic rescue. Together, our results broaden the genetic and clinical spectrum of TPP1 deficiency and specify new residues in the TEL-patch domain that are crucial for length maintenance and stability of human telomeres in vivo.


Assuntos
Complexo Shelterina , Telomerase , Proteínas de Ligação a Telômeros , Humanos , Biologia , Mutação , Complexo Shelterina/genética , Telomerase/genética , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
10.
Genes (Basel) ; 15(1)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38254993

RESUMO

The Protection of Telomere 1 (POT1) gene was identified as a melanoma predisposition candidate nearly 10 years ago. Thereafter, various cancers have been proposed as associated with germline POT1 variants in the context of the so-called POT1 Predisposition Tumor Syndrome (POT1-TPD). While the key role, and related risks, of the alterations in POT1 in melanoma are established, the correlation between germline POT1 variants and the susceptibility to other cancers partially lacks evidence, due also to the rarity of POT1-TPD. Issues range from the absence of functional or segregation studies to biased datasets or the need for a revised classification of variants. Furthermore, a proposal of a surveillance protocol related to the cancers associated with POT1 pathogenic variants requires reliable data to avoid an excessive, possibly unjustified, burden for POT1 variant carriers. We propose a critical perspective regarding data published over the last 10 years that correlate POT1 variants to various types of cancer, other than cutaneous melanoma, to offer food for thought for the specialists who manage cancer predisposition syndromes and to stimulate a debate on the grey areas that have been exposed.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Neoplasias Cutâneas/genética , Alimentos , Síndrome , Telômero/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética
11.
EMBO J ; 43(1): 87-111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177309

RESUMO

Telomere repeat binding factor 2 (TRF2) is an essential component of the telomeres and also plays an important role in a number of other non-telomeric processes. Detailed knowledge of the binding and interaction of TRF2 with telomeric nucleosomes is limited. Here, we study the binding of TRF2 to in vitro-reconstituted kilobasepair-long human telomeric chromatin fibres using electron microscopy, single-molecule force spectroscopy and analytical ultracentrifugation sedimentation velocity. Our electron microscopy results revealed that full-length and N-terminally truncated TRF2 promote the formation of a columnar structure of the fibres with an average width and compaction larger than that induced by the addition of Mg2+, in agreement with the in vivo observations. Single-molecule force spectroscopy showed that TRF2 increases the mechanical and thermodynamic stability of the telomeric fibres when stretched with magnetic tweezers. This was in contrast to the result for fibres reconstituted on the 'Widom 601' high-affinity nucleosome positioning sequence, where minor effects on fibre stability were observed. Overall, TRF2 binding induces and stabilises columnar fibres, which may play an important role in telomere maintenance.


Assuntos
Cromatina , Complexo Shelterina , Proteína 2 de Ligação a Repetições Teloméricas , Humanos , Nucleossomos , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética
12.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203842

RESUMO

Telomeres protect the ends of linear eukaryotic chromosomes from being recognized as DNA double-strand breaks. Two major protein complexes are involved in the protection of telomeres: shelterin and CST. The dysfunction of these complexes can challenge the function of telomeres and lead to telomere fusions, breakage-fusion-bridge cycles, and cell death. Therefore, monitoring telomere fusions helps to understand telomeres biology. Telomere fusions are often analyzed by Fluorescent In Situ Hybridization (FISH) or PCR. Usually, both methods involve hybridization with a telomeric probe, which allows the detection of fusions containing telomeric sequences, but not of those lacking them. With the aim of detecting both types of fusion events, we have developed a nested PCR method to analyze telomere fusions in Arabidopsis thaliana. This method is simple, accurate, and does not require hybridization. We have used it to analyze telomere fusions in wild-type and mutant plants altered in CTC1, one of the three components of the Arabidopsis CST telomere capping complex. Our results show that null ctc1-2 mutant plants display fusions between all telomeric regions present in Arabidopsis chromosomes 1, 3 and 5, thus highlighting the widespread end-capping protection achieved by CTC1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Ligação a Telômeros , Telômero , Arabidopsis/genética , Hibridização in Situ Fluorescente , Reação em Cadeia da Polimerase , Complexo Shelterina , Telômero/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Arabidopsis/genética
13.
Aging Dis ; 15(2): 535-545, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37548940

RESUMO

Ovarian cancer, more precisely high-grade serous ovarian cancer, is one of the most lethal age-independent gynecologic malignancies in women worldwide, regardless of age. There is mounting evidence that there is a link between telomeres and the RIF1 protein and the proliferation of cancer cells. Telomeres are hexameric (TTAGGG) tandem repeats at the tip of chromosomes that shorten as somatic cells divide, limiting cell proliferation and serving as an important barrier in preventing cancer. RIF1 (Replication Time Regulation Factor 1) plays, among other factors, an important role in the regulation of telomere length. Interestingly, RIF1 appears to influence the DNA double-strand break (DSB) repair pathway. However, detailed knowledge regarding the interplay between RIF1 and telomeres and their degree of engagement in epithelial ovarian cancer (EOC) is still elusive, despite the fact that such knowledge could be of relevance in clinical practice to find novel biomarkers. In this review, we provide an update of recent literature to elucidate the relation between telomere biology and the RIF1 protein during the development of ovarian cancer in women.


Assuntos
Neoplasias Ovarianas , Proteínas de Ligação a Telômeros , Feminino , Humanos , Proteínas de Ligação a Telômeros/genética , Proteínas Repressoras/genética , Neoplasias Ovarianas/genética , Reparo do DNA , Telômero/genética
14.
Bioessays ; 46(2): e2300184, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38047499

RESUMO

Mammalian telomeres have evolved safeguards to prevent their recognition as DNA double-stranded breaks by suppressing the activation of various DNA sensing and repair proteins. We have shown that the telomere-binding proteins TRF2 and RAP1 cooperate to prevent telomeres from undergoing aberrant homology-directed recombination by mediating t-loop protection. Our recent findings also suggest that mammalian telomere-binding proteins interact with the nuclear envelope to maintain chromosome stability. RAP1 interacts with nuclear lamins through KU70/KU80, and disruption of RAP1 and TRF2 function result in nuclear envelope rupture, promoting telomere-telomere recombination to form structures termed ultrabright telomeres. In this review, we discuss the importance of the interactions between shelterin components and the nuclear envelope to maintain telomere homeostasis and genome stability.


Assuntos
Membrana Nuclear , Telômero , Animais , Humanos , Membrana Nuclear/metabolismo , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , DNA/metabolismo , Instabilidade Genômica , Mamíferos/genética
15.
Biochemistry ; 62(23): 3360-3372, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37948114

RESUMO

Pif1 is a molecular motor enzyme that is conserved from yeast to mammals. It translocates on ssDNA with a directional bias (5' → 3') and unwinds duplexes using the energy obtained from ATP hydrolysis. Pif1 is involved in dsDNA break repair, resolution of G-quadruplex (G4) structures, negative regulation of telomeres, and Okazaki fragment maturation. An important property of this helicase is to exert force and disrupt protein-DNA complexes, which may otherwise serve as barriers to various cellular pathways. Previously, Pif1 was reported to displace streptavidin from biotinylated DNA, Rap1 from telomeric DNA, and telomerase from DNA ends. Here, we have investigated the ability of S. cerevisiae Pif1 helicase to disrupt protein barriers from G4 and telomeric sites. Yeast chromatin-associated transcription coactivator Sub1 was characterized as a G4 binding protein. We found evidence for a physical interaction between Pif1 helicase and Sub1 protein. Here, we demonstrate that Pif1 is capable of catalyzing the disruption of Sub1-bound G4 structures in an ATP-dependent manner. We also investigated Pif1-mediated removal of yeast telomere-capping protein Cdc13 from DNA ends. Cdc13 exhibits a high-affinity interaction with an 11-mer derived from the yeast telomere sequence. Our results show that Pif1 uses its translocase activity to enhance the dissociation of this telomere-specific protein from its binding site. The rate of dissociation increased with an increase in the helicase loading site length. Additionally, we examined the biochemical mechanism for Pif1-catalyzed protein displacement by mutating the sequence of the telomeric 11-mer on the 5'-end and the 3'-end. The results support a model whereby Pif1 disrupts Cdc13 from the ssDNA in steps.


Assuntos
Quadruplex G , Ácidos Nucleicos , Proteínas de Saccharomyces cerevisiae , Trifosfato de Adenosina/metabolismo , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Ácidos Nucleicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
16.
BMC Vet Res ; 19(1): 236, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950187

RESUMO

BACKGROUND: Motion quality is a critical property for essential functions. Several endogenous and exogenous factors are involved in sperm motility. Here, we measured the relative telomere length and evaluated the gene expression of its binding-proteins, shelterin complex (TRF1, TRF2, RAP1, POT1, TIN2, and TPP1) in sperm of dogs using relative quantitative real-time PCR. We compared them between two sperm subpopulations with poor and good motion qualities (separated by swim-up method). Telomere shortening and alterations of shelterin gene expression result from ROS, genotoxic insults, and genetic predisposition. RESULTS: Sperm kinematic parameters were measured in two subpopulations and then telomeric index of each parameter was calculated. Telomeric index for linearity, VSL, VCL, STR, BCF, and ALH were significantly higher in sperms with good motion quality than in sperms with poor quality. We demonstrated that poor motion quality is associated with shorter telomere, higher expression of TRF2, POT1, and TIN2 genes, and lower expression of the RAP1 gene in dog sperm. The levels of TRF1 and TPP1 gene expression remained consistent despite variations in sperm quality and telomere length. CONCLUSION: Data provided evidence that there are considerable changes in gene expression of many shelterin components (TRF2, TIN2, POT1and RAP1) associated with shortening telomere in the spermatozoa with poor motion quality. Possibly, the poor motion quality is the result of defects in the shelterin complex and telomere length. Our data suggests a new approach in the semen assessment and etiologic investigations of subfertility or infertility in male animals.


Assuntos
Complexo Shelterina , Proteínas de Ligação a Telômeros , Masculino , Cães , Animais , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Encurtamento do Telômero , Motilidade dos Espermatozoides/genética , Sêmen
17.
Hereditas ; 160(1): 37, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37978541

RESUMO

Interstitial lung diseases (ILDs), or diffuse pulmonary lung disease, are a subset of lung diseases that primarily affect lung alveoli and the space around interstitial tissue and bronchioles. It clinically manifests as progressive dyspnea, and patients often exhibit a varied decrease in pulmonary diffusion function. Recently, variants in telomere biology-related genes have been identified as genetic lesions of ILDs. Here, we enrolled 82 patients with interstitial pneumonia from 2017 to 2021 in our hospital to explore the candidate gene mutations of these patients via whole-exome sequencing. After data filtering, a novel heterozygous mutation (NM_025099: p.Gly131Arg) of CTC1 was identified in two affected family members. As a component of CST (CTC1-STN1-TEN1) complex, CTC1 is responsible for maintaining telomeric structure integrity and has also been identified as a candidate gene for IPF, a special kind of chronic ILD with insidious onset. Simultaneously, real-time PCR revealed that two affected family members presented with short telomere lengths, which further confirmed the effect of the mutation in the CTC1 gene. Our study not only expanded the mutation spectrum of CTC1 and provided epidemiological data on ILDs caused by CTC1 mutations but also further confirmed the relationship between heterozygous mutations in CTC1 and ILDs, which may further contribute to understanding the mechanisms underlying ILDs.


Assuntos
Doenças Pulmonares Intersticiais , Encurtamento do Telômero , Humanos , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , População do Leste Asiático , Mutação , Doenças Pulmonares Intersticiais/genética , Telômero/genética
18.
Elife ; 122023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37988290

RESUMO

The localization of condensin along chromosomes is crucial for their accurate segregation in anaphase. Condensin is enriched at telomeres but how and for what purpose had remained elusive. Here, we show that fission yeast condensin accumulates at telomere repeats through the balancing acts of Taz1, a core component of the shelterin complex that ensures telomeric functions, and Mit1, a nucleosome remodeler associated with shelterin. We further show that condensin takes part in sister-telomere separation in anaphase, and that this event can be uncoupled from the prior separation of chromosome arms, implying a telomere-specific separation mechanism. Consistent with a cis-acting process, increasing or decreasing condensin occupancy specifically at telomeres modifies accordingly the efficiency of their separation in anaphase. Genetic evidence suggests that condensin promotes sister-telomere separation by counteracting cohesin. Thus, our results reveal a shelterin-based mechanism that enriches condensin at telomeres to drive in cis their separation during mitosis.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Complexo Shelterina , Anáfase , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-37770150

RESUMO

Though telomeres play a crucial role in maintaining genomic stability in cancer cells and have emerged as attractive therapeutic targets in anticancer therapy, the relationship between telomere dysfunction and genomic instability induced by irradiation is still unclear. In this study, we identified that protection of telomeres 1 (POT1), a single-stranded DNA (ssDNA)-binding protein, was upregulated in γ-irradiated HeLa cells and in cancer patients who exhibit radiation tolerance. Knockdown of POT1 delayed the repair of radiation-induced telomeric DNA damage which was associated with enhanced H3K9 trimethylation and enhanced the radiosensitivity of HeLa cells. The depletion of POT1 also resulted in significant genomic instability, by showing a significant increase in end-to-end chromosomal fusions, and the formation of anaphase bridges and micronuclei. Furthermore, knockdown of POT1 disturbed telomerase recruitment to telomere, and POT1 could interact with phosphorylated ATM (p-ATM) and POT1 depletion decreased the levels of p-ATM induced by irradiation, suggesting that POT1 could regulate the telomerase recruitment to telomeres to repair irradiation-induced telomeric DNA damage of HeLa cells through interactions with p-ATM. The enhancement of radiosensitivity in cancer cells can be achieved through the combination of POT1 and telomerase inhibitors, presenting a potential approach for radiotherapy in cancer treatment.


Assuntos
Telomerase , Neoplasias do Colo do Útero , Humanos , Feminino , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/radioterapia , Células HeLa , Telomerase/genética , Telômero/genética , Instabilidade Genômica , Dano ao DNA
20.
Commun Biol ; 6(1): 996, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773433

RESUMO

Protection of telomeres 1a (POT1a) is a telomere binding protein. A decrease of POT1a is related to myeloid-skewed haematopoiesis with ageing, suggesting that protection of telomeres is essential to sustain multi-potency. Since mesenchymal stem cells (MSCs) are a constituent of the hematopoietic niche in bone marrow, their dysfunction is associated with haematopoietic failure. However, the importance of telomere protection in MSCs has yet to be elucidated. Here, we show that genetic deletion of POT1a in MSCs leads to intracellular accumulation of fatty acids and excessive ROS and DNA damage, resulting in impaired osteogenic-differentiation. Furthermore, MSC-specific POT1a deficient mice exhibited skeletal retardation due to reduction of IL-7 producing bone lining osteoblasts. Single-cell gene expression profiling of bone marrow from POT1a deficient mice revealed that B-lymphopoiesis was selectively impaired. These results demonstrate that bone marrow microenvironments composed of POT1a deficient MSCs fail to support B-lymphopoiesis, which may underpin age-related myeloid-bias in haematopoiesis.


Assuntos
Linfopoese , Telômero , Animais , Camundongos , Envelhecimento , Diferenciação Celular , Linfopoese/genética , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...