Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 141: 111715, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34198046

RESUMO

The Pro-inflammatory cytokine, Interleukin 17A (IL-17A) plays a vital role in the pathogenesis of inflammatory-induced acute lung injury (ALI). But, the mechanisms of this pro-inflammatory cytokine in response to activation after replication stress are not yet known. Control on DNA replication (DR) is vital for maintaining genome stability. Minichromosome maintenance (MCM) proteins play essential roles in various cancers, but their involvement during ALI is not yet been discussed. The present study was carried out to assess the participation of IL-17A during replication stress and to evaluate the contribution of curcumin on this. Mass spectrometry-based proteomic approach has been used on mice lung tissues treated with IL-17A, as a prime mediator to cause injury and curcumin a natural polyphenol as an intervention. Several trends were identified from the proteomic subset which revealed that IL-17A induces expressions of proteins like MCM2, MCM3, and MCM6 along with other proteins involved in DR. Interestingly, curcumin was found in suppressing the expression levels of these proteins. This was also confirmed via validating LC-MS/MS data using appropriate molecular techniques. Pathway and gene ontology analysis were performed with DAVID GO databases. Apart from this, the present study also reports the unique contribution of curcumin in suppressing the mRNA levels of other MCMs like MCM4, MCM5, and MCM7 as well as of ORC1 and ORC2. Hence, the present study revolves around linking the replication stress by pro-inflammatory effects, highlighting the implications for ALI and therapies. This study, therefore, enhances our capacity to therapeutically target DR-specific proteins.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Curcumina/uso terapêutico , Interleucina-17/toxicidade , Proteínas de Manutenção de Minicromossomo/biossíntese , Proteômica/métodos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Animais , Biomarcadores/metabolismo , Bleomicina/toxicidade , Curcumina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Manutenção de Minicromossomo/genética
2.
Nature ; 587(7833): 297-302, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33087936

RESUMO

Minichromosome maintenance proteins (MCMs) are DNA-dependent ATPases that bind to replication origins and license them to support a single round of DNA replication. A large excess of MCM2-7 assembles on chromatin in G1 phase as pre-replication complexes (pre-RCs), of which only a fraction become the productive CDC45-MCM-GINS (CMG) helicases that are required for genome duplication1-4. It remains unclear why cells generate this surplus of MCMs, how they manage to sustain it across multiple generations, and why even a mild reduction in the MCM pool compromises the integrity of replicating genomes5,6. Here we show that, for daughter cells to sustain error-free DNA replication, their mother cells build up a nuclear pool of MCMs both by recycling chromatin-bound (parental) MCMs and by synthesizing new (nascent) MCMs. Although all MCMs can form pre-RCs, it is the parental pool that is inherently stable and preferentially matures into CMGs. By contrast, nascent MCM3-7 (but not MCM2) undergo rapid proteolysis in the cytoplasm, and their stabilization and nuclear translocation require interaction with minichromosome-maintenance complex-binding protein (MCMBP), a distant MCM paralogue7,8. By chaperoning nascent MCMs, MCMBP safeguards replicating genomes by increasing chromatin coverage with pre-RCs that do not participate on replication origins but adjust the pace of replisome movement to minimize errors during DNA replication. Consequently, although the paucity of pre-RCs in MCMBP-deficient cells does not alter DNA synthesis overall, it increases the speed and asymmetry of individual replisomes, which leads to DNA damage. The surplus of MCMs therefore increases the robustness of genome duplication by restraining the speed at which eukaryotic cells replicate their DNA. Alterations in physiological fork speed might thus explain why even a minor reduction in MCM levels destabilizes the genome and predisposes to increased incidence of tumour formation.


Assuntos
Replicação do DNA/genética , Genoma Humano/genética , Proteínas de Manutenção de Minicromossomo/biossíntese , Proteínas de Manutenção de Minicromossomo/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Dano ao DNA , Humanos , Proteínas de Manutenção de Minicromossomo/análise , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Estabilidade Proteica , Transporte Proteico
3.
PLoS Genet ; 12(1): e1005787, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26765334

RESUMO

Circumstances that compromise efficient DNA replication, such as disruptions to replication fork progression, cause a state known as DNA replication stress (RS). Whereas normally proliferating cells experience low levels of RS, excessive RS from intrinsic or extrinsic sources can trigger cell cycle arrest and senescence. Here, we report that a key driver of RS-induced senescence is active downregulation of the Minichromosome Maintenance 2-7 (MCM2-7) factors that are essential for replication origin licensing and which constitute the replicative helicase core. Proliferating cells produce high levels of MCM2-7 that enable formation of dormant origins that can be activated in response to acute, experimentally-induced RS. However, little is known about how physiological RS levels impact MCM2-7 regulation. We found that chronic exposure of primary mouse embryonic fibroblasts (MEFs) to either genetically-encoded or environmentally-induced RS triggered gradual MCM2-7 repression, followed by inhibition of replication and senescence that could be accelerated by MCM hemizygosity. The MCM2-7 reduction in response to RS is TRP53-dependent, and involves a group of Trp53-dependent miRNAs, including the miR-34 family, that repress MCM expression in replication-stressed cells before they undergo terminal cell cycle arrest. miR-34 ablation partially rescued MCM2-7 downregulation and genomic instability in mice with endogenous RS. Together, these data demonstrate that active MCM2-7 repression is a physiologically important mechanism for RS-induced cell cycle arrest and genome maintenance on an organismal level.


Assuntos
Replicação do DNA/genética , Instabilidade Genômica , MicroRNAs/genética , Proteínas de Manutenção de Minicromossomo/genética , Animais , Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Proteínas de Manutenção de Minicromossomo/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...