Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 567(7746): 105-108, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30787433

RESUMO

Genomic instability can trigger cellular responses that include checkpoint activation, senescence and inflammation1,2. Although genomic instability has been extensively studied in cell culture and cancer paradigms, little is known about its effect during embryonic development, a period of rapid cellular proliferation. Here we report that mutations in the heterohexameric minichromosome maintenance complex-the DNA replicative helicase comprising MCM2 to MCM73,4-that cause genomic instability render female mouse embryos markedly more susceptible than males to embryonic lethality. This bias was not attributable to X chromosome-inactivation defects, differential replication licensing or X versus Y chromosome size, but rather to 'maleness'-XX embryos could be rescued by transgene-mediated sex reversal or testosterone administration. The ability of exogenous or endogenous testosterone to protect embryos was related to its anti-inflammatory properties5. Ibuprofen, a non-steroidal anti-inflammatory drug, rescued female embryos that contained mutations in not only the Mcm genes but also the Fancm gene; similar to MCM mutants, Fancm mutant embryos have increased levels of genomic instability (measured as the number of cells with micronuclei) from compromised replication fork repair6. In addition, deficiency in the anti-inflammatory IL10 receptor was synthetically lethal with the Mcm4Chaos3 helicase mutant. Our experiments indicate that, during development, DNA damage associated with DNA replication induces inflammation that is preferentially lethal to female embryos, because male embryos are protected by high levels of intrinsic testosterone.


Assuntos
Perda do Embrião/genética , Instabilidade Genômica/genética , Inflamação/genética , Proteínas de Manutenção de Minicromossomo/genética , Mutação , Caracteres Sexuais , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Proliferação de Células , Dano ao DNA , DNA Helicases/genética , Replicação do DNA , Perda do Embrião/patologia , Perda do Embrião/prevenção & controle , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Feminino , Ibuprofeno/farmacologia , Inflamação/patologia , Inflamação/prevenção & controle , Masculino , Camundongos , Componente 4 do Complexo de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/deficiência , Placenta/metabolismo , Placenta/patologia , Gravidez , Receptores de Interleucina-10/deficiência , Receptores de Interleucina-10/genética , Mutações Sintéticas Letais , Testosterona/farmacologia
2.
Genesis ; 53(11): 678-84, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26388201

RESUMO

Maintenance of genome integrity is crucial for the germline, and this is reflected by lower mutation rates in gametes than somatic cells. Germ cells at different stages employ different DNA damage response (DDR) mechanisms. In response to certain DNA repair defects, primordial germ cells (PGCs) either undergo apoptosis or delayed proliferation, although little is known about the underlying mechanisms that govern these outcomes. Here, we report genetic studies of DDR pathways that underlie germ cell depletion in mice mutant for minichromosome maintenance 9 (Mcm9), a gene that plays a role in homologous recombination repair (HRR). Germ cell depletion in these mice is a result of reduced PGC numbers both before and after they arrive in the primitive gonads. This reduction was attributable to reduced proliferation, not apoptosis, and this response was independent of ATM-CHK2-TRP53-P21 signaling. This mechanism of PGC depletion differs from that in Fancm mutants, which also display reduced PGC depletion that is partially orchestrated by the ATM-TRP53-P21 pathway. Germ cell depletion in mice doubly deficient for FANCM and MCM9 was additive, indicating that the damage caused by each mutation triggers different DDR pathways to slow the cell cycle as a means to preserve genomic integrity. genesis 53:678-684, 2015. © 2015 Wiley Periodicals, Inc.


Assuntos
Proliferação de Células , Células Germinativas/citologia , Proteínas de Manutenção de Minicromossomo/fisiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Contagem de Células , Proliferação de Células/genética , Dano ao DNA , Reparo do DNA/genética , Feminino , Masculino , Camundongos , Proteínas de Manutenção de Minicromossomo/deficiência , Proteínas de Manutenção de Minicromossomo/genética , Mutação , Ovário/citologia , Ovário/embriologia , Transdução de Sinais , Testículo/citologia , Testículo/embriologia
3.
Mol Cell ; 59(5): 831-9, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26300262

RESUMO

DNA mismatch repair (MMR) is an evolutionarily conserved process that corrects DNA polymerase errors during replication to maintain genomic integrity. In E. coli, the DNA helicase UvrD is implicated in MMR, yet an analogous helicase activity has not been identified in eukaryotes. Here, we show that mammalian MCM9, a protein involved in replication and homologous recombination, forms a complex with MMR initiation proteins (MSH2, MSH3, MLH1, PMS1, and the clamp loader RFC) and is essential for MMR. Mcm9-/- cells display microsatellite instability and MMR deficiency. The MCM9 complex has a helicase activity that is required for efficient MMR since wild-type but not helicase-dead MCM9 restores MMR activity in Mcm9-/- cells. Moreover, MCM9 loading onto chromatin is MSH2-dependent, and in turn MCM9 stimulates the recruitment of MLH1 to chromatin. Our results reveal a role for MCM9 and its helicase activity in mammalian MMR.


Assuntos
Reparo de Erro de Pareamento de DNA/fisiologia , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Bases , Cromatina/genética , Cromatina/metabolismo , DNA/genética , DNA/metabolismo , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Técnicas de Inativação de Genes , Células HeLa , Humanos , Instabilidade de Microssatélites , Proteínas de Manutenção de Minicromossomo/deficiência , Proteínas de Manutenção de Minicromossomo/genética , Proteína 1 Homóloga a MutL , Proteína 2 Homóloga a MutS/química , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga a MutS , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
4.
Cell Cycle ; 13(11): 1737-48, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24674891

RESUMO

Mcm10 is a multifunctional replication factor with reported roles in origin activation, polymerase loading, and replication fork progression. The literature supporting these variable roles is controversial, and it has been debated whether Mcm10 has an active role in elongation. Here, we provide evidence that the mcm10-1 allele confers alterations in DNA synthesis that lead to defective-replisome-induced mutagenesis (DRIM). Specifically, we observed that mcm10-1 cells exhibited elevated levels of PCNA ubiquitination and activation of the translesion polymerase, pol-ζ. Whereas translesion synthesis had no measurable impact on viability, mcm10-1 mutants also engaged in error-free postreplicative repair (PRR), and this pathway promoted survival at semi-permissive conditions. Replication gaps in mcm10-1 were likely caused by elongation defects, as dbf4-1 mutants, which are compromised for origin activation did not display any hallmarks of replication stress. Furthermore, we demonstrate that deficiencies in priming, induced by a pol1-1 mutation, also resulted in DRIM, but not in error-free PRR. Similar to mcm10-1 mutants, DRIM did not rescue the replication defect in pol1-1 cells. Thus, it appears that DRIM is not proficient to fill replication gaps in pol1-1 and mcm10-1 mutants. Moreover, the ability to correctly prime nascent DNA may be a crucial prerequisite to initiate error-free PRR.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Reparo do DNA/genética , Replicação do DNA/genética , Proteínas de Manutenção de Minicromossomo/deficiência , Mutagênese/genética , Saccharomyces cerevisiae/genética , Citometria de Fluxo , Vetores Genéticos/genética , Proteínas de Manutenção de Minicromossomo/genética , Taxa de Mutação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Estatísticas não Paramétricas , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA