Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.831
Filtrar
1.
PLoS Pathog ; 20(4): e1012123, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38607975

RESUMO

RAB GTPases (RABs) control intracellular membrane trafficking with high precision. In the present study, we carried out a short hairpin RNA (shRNA) screen focused on a library of 62 RABs during infection with porcine reproductive and respiratory syndrome virus 2 (PRRSV-2), a member of the family Arteriviridae. We found that 13 RABs negatively affect the yield of PRRSV-2 progeny virus, whereas 29 RABs have a positive impact on the yield of PRRSV-2 progeny virus. Further analysis revealed that PRRSV-2 infection transcriptionally regulated RAB18 through RIG-I/MAVS-mediated canonical NF-κB activation. Disrupting RAB18 expression led to the accumulation of lipid droplets (LDs), impaired LDs catabolism, and flawed viral replication and assembly. We also discovered that PRRSV-2 co-opts chaperone-mediated autophagy (CMA) for lipolysis via RAB18, as indicated by the enhanced associations between RAB18 and perlipin 2 (PLIN2), CMA-specific lysosomal associated membrane protein 2A (LAMP2A), and heat shock protein family A (Hsp70) member 8 (HSPA8/HSC70) during PRRSV-2 infection. Knockdown of HSPA8 and LAMP2A impacted on the yield of PRRSV-2 progeny virus, implying that the virus utilizes RAB18 to promote CMA-mediated lipolysis. Importantly, we determined that the C-terminal domain (CTD) of HSPA8 could bind to the switch II domain of RAB18, and the CTD of PLIN2 was capable of associating with HSPA8, suggesting that HSPA8 facilitates the interaction between RAB18 and PLIN2 in the CMA process. In summary, our findings elucidate how PRRSV-2 hijacks CMA-mediated lipid metabolism through innate immune activation to enhance the yield of progeny virus, offering novel insights for the development of anti-PRRSV-2 treatments.


Assuntos
Autofagia Mediada por Chaperonas , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Lipólise , Regulação para Cima , Proteínas rab de Ligação ao GTP/genética , Proteínas de Membrana Lisossomal , RNA Interferente Pequeno
2.
Cell Host Microbe ; 32(5): 676-692.e5, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38640929

RESUMO

To spread within a host, intracellular Burkholderia form actin tails to generate membrane protrusions into neighboring host cells and use type VI secretion system-5 (T6SS-5) to induce cell-cell fusions. Here, we show that B. thailandensis also uses T6SS-5 to lyse protrusions to directly spread from cell to cell. Dynamin-2 recruitment to the membrane near a bacterium was followed by a short burst of T6SS-5 activity. This resulted in the polymerization of the actin of the newly invaded host cell and disruption of the protrusion membrane. Most protrusion lysis events were dependent on dynamin activity, caused no cell-cell fusion, and failed to be recognized by galectin-3. T6SS-5 inactivation decreased protrusion lysis but increased galectin-3, LC3, and LAMP1 accumulation in host cells. Our results indicate that B. thailandensis specifically activates T6SS-5 assembly in membrane protrusions to disrupt host cell membranes and spread without alerting cellular responses, such as autophagy.


Assuntos
Burkholderia , Sistemas de Secreção Tipo VI , Burkholderia/metabolismo , Burkholderia/fisiologia , Sistemas de Secreção Tipo VI/metabolismo , Humanos , Membrana Celular/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Bactérias/metabolismo , Actinas/metabolismo , Dinamina II/metabolismo , Autofagia , Galectinas/metabolismo , Interações Hospedeiro-Patógeno , Extensões da Superfície Celular/metabolismo , Animais , Proteínas Associadas aos Microtúbulos , Proteína 1 de Membrana Associada ao Lisossomo
3.
J Cell Sci ; 137(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38661040

RESUMO

Expression levels of the lactate-H+ cotransporter MCT4 (also known as SLC16A3) and its chaperone CD147 (also known as basigin) are upregulated in breast cancers, correlating with decreased patient survival. Here, we test the hypothesis that MCT4 and CD147 favor breast cancer invasion through interdependent effects on extracellular matrix (ECM) degradation. MCT4 and CD147 expression and membrane localization were found to be strongly reciprocally interdependent in MDA-MB-231 breast cancer cells. Overexpression of MCT4 and/or CD147 increased, and their knockdown decreased, migration, invasion and the degradation of fluorescently labeled gelatin. Overexpression of both proteins led to increases in gelatin degradation and appearance of the matrix metalloproteinase (MMP)-generated collagen-I cleavage product reC1M, and these increases were greater than those observed upon overexpression of each protein alone, suggesting a concerted role in ECM degradation. MCT4 and CD147 colocalized with invadopodia markers at the plasma membrane. They also colocalized with MMP14 and the lysosomal marker LAMP1, as well as partially with the autophagosome marker LC3, in F-actin-decorated intracellular vesicles. We conclude that MCT4 and CD147 reciprocally regulate each other and interdependently support migration and invasiveness of MDA-MB-231 breast cancer cells. Mechanistically, this involves MCT4-CD147-dependent stimulation of ECM degradation and specifically of MMP-mediated collagen-I degradation. We suggest that the MCT4-CD147 complex is co-delivered to invadopodia with MMP14.


Assuntos
Basigina , Neoplasias da Mama , Matriz Extracelular , Proteína 1 de Membrana Associada ao Lisossomo , Metaloproteinase 14 da Matriz , Transportadores de Ácidos Monocarboxílicos , Invasividade Neoplásica , Podossomos , Feminino , Humanos , Basigina/metabolismo , Basigina/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular , Matriz Extracelular/metabolismo , Gelatina/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Membrana Lisossomal/genética , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 14 da Matriz/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Invasividade Neoplásica/genética , Podossomos/metabolismo
4.
J Immunol ; 212(11): 1782-1790, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629901

RESUMO

Enterovirus 71 (EV71) is a significant causative agent of hand, foot, and mouth disease, with potential serious neurologic complications or fatal outcomes. The lack of effective treatments for EV71 infection is attributed to its elusive pathogenicity. Our study reveals that human plasmacytoid dendritic cells (pDCs), the main type I IFN-producing cells, selectively express scavenger receptor class B, member 2 (SCARB2) and P-selectin glycoprotein ligand 1 (PSGL-1), crucial cellular receptors for EV71. Some strains of EV71 can replicate within pDCs and stimulate IFN-α production. The activation of pDCs by EV71 is hindered by Abs to PSGL-1 and soluble PSGL-1, whereas Abs to SCARB2 and soluble SCARB2 have a less pronounced effect. Our data suggest that only strains binding to PSGL-1, more commonly found in severe cases, can replicate in pDCs and induce IFN-α secretion, highlighting the importance of PSGL-1 in these processes. Furthermore, IFN-α secretion by pDCs can be triggered by EV71 or UV-inactivated EV71 virions, indicating that productive infection is not necessary for pDC activation. These findings provide new insights into the interaction between EV71 and pDCs, suggesting that pDC activation could potentially mitigate the severity of EV71-related diseases.


Assuntos
Células Dendríticas , Enterovirus Humano A , Interferon-alfa , Proteínas de Membrana Lisossomal , Glicoproteínas de Membrana , Células Dendríticas/imunologia , Células Dendríticas/virologia , Humanos , Enterovirus Humano A/imunologia , Enterovirus Humano A/fisiologia , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Membrana Lisossomal/imunologia , Interferon-alfa/metabolismo , Interferon-alfa/imunologia , Receptores Depuradores/metabolismo , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/virologia , Replicação Viral
5.
Int Immunopharmacol ; 132: 111929, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38555817

RESUMO

Increased expression of CXCL10 and its receptor CXCR3 represents an inflammatory response in cells and tissues. Macrophage polarization and autophagy are major functions in inflammatory macrophages; however, the cellular functions of the CXCL10-CXCR3 axis in macrophages are not well understood. Here, we examined the role of CXCL10-CXCR3-axis-regulated autophagy in macrophage polarization. First, in non-inflammatory macrophages, whereas CXCL10 promotes M2 polarization and inhibits M1 polarization, CXCR3 antagonist AMG487 induces the opposite macrophage polarization. Next, CXCL10 promotes the expression of autophagy proteins (Atg5-Atg12 complex, p62, LC3-II, and LAMP1) and AMG487 inhibits their expression. Knockdown of LAMP1 by short interfering RNA switches the CXCL10-induced polarization from M2 to M1 in non-inflammatory macrophages. Furthermore, in inflammatory macrophages stimulated by poly(I:C), CXCL10 induces M1 polarization and AMG487 induces M2 polarization in association with a decrease in LAMP1. Finally, AMG487 alleviates lung injury after poly(I:C) treatment in mice. In conclusion, CXCL10-CXCR3 axis differentially directs macrophage polarization in inflammatory and non-inflammatory states, and autophagy protein LAMP1 acts as the switch controlling the direction of macrophage polarization by CXCL10-CXCR3.


Assuntos
Acetamidas , Autofagia , Quimiocina CXCL10 , Inflamação , Macrófagos , Camundongos Endogâmicos C57BL , Pirimidinonas , Receptores CXCR3 , Animais , Receptores CXCR3/metabolismo , Receptores CXCR3/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Autofagia/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Poli I-C/farmacologia , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Membrana Lisossomal/genética , Masculino , Transdução de Sinais , Humanos , Ativação de Macrófagos
6.
Biochem Biophys Res Commun ; 701: 149629, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330730

RESUMO

Accumulation of free heme B in the plasma can be the result of severe hemolytic events, when the scavenger system for free hemoglobin and heme B is overwhelmed. Free heme B can be oxidized into toxic hemin, which has been proven to activate platelet degranulation and aggregation and promote thrombosis. In the present study we analyzed the effect of hemin on the activation-mediated lysosomal degranulation and CD63 surface expression on platelets using classic flow cytometry and fluorescence microscopy techniques. Classical platelet activators were used as control to distinguish the novel effects of hemin from known activation pathways. CD63 is a tetraspanin protein, also known as lysosomal-associated membrane protein 3 or LAMP-3. In resting platelets CD63 is located within the membrane of delta granules and lysosomes of platelet, from where it is integrated into the platelet outer membrane upon stimulation. We were able to show that hemin like the endogenous platelet activators ADP, collagen or thrombin does provoke CD63 re-localization. Interestingly, only hemin-induced CD63 externalization is dependent on the subtilisin-like pro-protein convertase furin as shown by inhibitor experiments. Furthermore, we were able to demonstrate that hemin induces lysosome secretion, a source of the hemin-mediated CD63 presentation. Again, only the hemin-induced lysosome degranulation is furin dependent. In summary we have shown that the pro-protein convertase furin plays an important role in hemin-mediated lysosomal degranulation and CD63 externalization.


Assuntos
Furina , Hemina , Glicoproteínas da Membrana de Plaquetas , Tetraspanina 30 , Antígenos CD/metabolismo , Plaquetas/metabolismo , Furina/metabolismo , Hemina/metabolismo , Proteínas de Membrana Lisossomal , Ativação Plaquetária , Glicoproteínas da Membrana de Plaquetas/metabolismo , Tetraspanina 30/metabolismo , Humanos
7.
PLoS Pathog ; 20(2): e1012022, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38359079

RESUMO

Enterovirus A71 (EV-A71) infection involves a variety of receptors. Among them, two transmembrane protein receptors have been investigated in detail and shown to be critical for infection: P-selectin glycoprotein ligand-1 (PSGL-1) in lymphocytes (Jurkat cells), and scavenger receptor class B member 2 (SCARB2) in rhabdomyosarcoma (RD) cells. PSGL-1 and SCARB2 have been reported to be expressed on the surface of Jurkat and RD cells, respectively. In the work reported here, we investigated the roles of PSGL-1 and SCARB2 in the process of EV-A71 entry. We first examined the expression of SCARB2 in Jurkat cells, and detected it within the cytoplasm, but not on the cell surface. Further, using PSGL-1 and SCARB2 knockout cells, we found that although both PSGL-1 and SCARB2 are essential for virus infection of Jurkat cells, virus attachment to these cells requires only PSGL-1. These results led us to evaluate the cell surface expression and the roles of SCARB2 in other EV-A71-susceptible cell lines. Surprisingly, in contrast to the results of previous studies, we found that SCARB2 is absent from the surface of RD cells and other susceptible cell lines we examined, and that although SCARB2 is essential for infection of these cells, it is dispensable for virus attachment. These results indicate that a receptor other than SCARB2 is responsible for virus attachment to the cell and probably for internalization of virions, not only in Jurkat cells but also in RD cells and other EV-A71-susceptible cells. SCARB2 is highly concentrated in lysosomes and late endosomes, where it is likely to trigger acid-dependent uncoating of virions, the critical final step of the entry process. Our results suggest that the essential interactions between EV-A71 and SCARB2 occur, not at the cell surface, but within the cell.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Humanos , Enterovirus/metabolismo , Enterovirus Humano A/genética , Enterovirus Humano A/metabolismo , Membrana Celular/metabolismo , Linhagem Celular , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Proteínas de Membrana Lisossomal/genética
8.
Mol Biol Cell ; 35(3): ar42, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38231876

RESUMO

To reach the lysosome, lysosomal membrane proteins (LMPs) are translocated in the endoplasmic reticulum after synthesis and then transported to the Golgi apparatus. The existence of a direct transport from the Golgi apparatus to the endosomes but also of an indirect route through the plasma membrane has been described. Clathrin adaptor binding motifs contained in the cytosolic tail of LMPs have been described as key players in their intracellular trafficking. Here we used the RUSH assay to synchronize the biosynthetic transport of multiple LMPs. After exiting the Golgi apparatus, RUSH-synchronized LAMP1 was addressed to the cell surface both after overexpression or at endogenous level. Its YXXΦ motif was not involved in the transport from the Golgi apparatus to the plasma membrane but in its endocytosis. LAMP1 and LIMP2 were sorted from each other after reaching the Golgi apparatus. LIMP2 was incorporated in punctate structures for export from the Golgi apparatus from which LAMP1 is excluded. LIMP2-containing post-Golgi transport intermediates did not rely neither on its adaptor binding signal nor on its C-terminal cytoplasmic domain.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Complexo de Golgi , Proteínas de Membrana Lisossomal , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Complexo de Golgi/metabolismo , Membrana Celular/metabolismo , Lisossomos/metabolismo , Clatrina/metabolismo
9.
J Biochem ; 175(5): 561-572, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38215735

RESUMO

Glycosylation changes in cancer proteins have been associated with malignant transformation. However, techniques for analyzing site-specific glycosylation changes in target proteins obtained from clinical tissue samples are insufficient. To overcome these problems, we developed a targeted N-glycoproteomic approach consisting of immunoprecipitation, glycopeptide enrichment, LC/MS/MS and structural assignment using commercially available analytical software followed by manual confirmation. This approach was applied to the comparative site-specific glycosylation analysis of lysosome-associated membrane glycoprotein 1 (LAMP1) between breast cancer (BC) tumors and normal tissues adjacent to tumors. Extensive determination of glycan heterogeneity from four N-glycosylation sites (Asn84/103/249/261) in LAMP1 identified 262 glycoforms and revealed remarkable diversity in tumor glycan structures. A significant increase in N-glycoforms with multiple fucoses and sialic acids at Asn84/249 and high-mannose-type glycans at Asn103/261 were observed in the tumor. Principal component analysis revealed that tumors of different subtypes have independent distributions. This approach enables site-specific glycopeptide analysis of target glycoprotein in breast cancer tissue and become a powerful tool for characterizing tumors with different pathological features by their glycan profiles.


Assuntos
Neoplasias da Mama , Proteína 1 de Membrana Associada ao Lisossomo , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Glicosilação , Feminino , Proteínas de Membrana Lisossomal/metabolismo , Espectrometria de Massas em Tandem , Polissacarídeos/metabolismo , Polissacarídeos/química
10.
Traffic ; 25(1): e12925, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272448

RESUMO

Ceroid lipofuscinosis neuronal 5 (CLN5) and cathepsin D (CTSD) are soluble lysosomal enzymes that also localize extracellularly. In humans, homozygous mutations in CLN5 and CTSD cause CLN5 disease and CLN10 disease, respectively, which are two subtypes of neuronal ceroid lipofuscinosis (commonly known as Batten disease). The mechanisms regulating the intracellular trafficking of CLN5 and CTSD and their release from cells are not well understood. Here, we used the social amoeba Dictyostelium discoideum as a model system to examine the pathways and cellular components that regulate the intracellular trafficking and release of the D. discoideum homologs of human CLN5 (Cln5) and CTSD (CtsD). We show that both Cln5 and CtsD contain signal peptides for secretion that facilitate their release from cells. Like Cln5, extracellular CtsD is glycosylated. In addition, Cln5 release is regulated by the amount of extracellular CtsD. Autophagy induction promotes the release of Cln5, and to a lesser extent CtsD. Release of Cln5 requires the autophagy proteins Atg1, Atg5, and Atg9, as well as autophagosomal-lysosomal fusion. Atg1 and Atg5 are required for the release of CtsD. Together, these data support a model where Cln5 and CtsD are actively released from cells via their signal peptides for secretion and pathways linked to autophagy. The release of Cln5 and CtsD from cells also requires microfilaments and the D. discoideum homologs of human AP-3 complex mu subunit, the lysosomal-trafficking regulator LYST, mucopilin-1, and the Wiskott-Aldrich syndrome-associated protein WASH, which all regulate lysosomal exocytosis in this model organism. These findings suggest that lysosomal exocytosis also facilitates the release of Cln5 and CtsD from cells. In addition, we report the roles of ABC transporters, microtubules, osmotic stress, and the putative D. discoideum homologs of human sortilin and cation-independent mannose-6-phosphate receptor in regulating the intracellular/extracellular distribution of Cln5 and CtsD. In total, this study identifies the cellular mechanisms regulating the release of Cln5 and CtsD from D. discoideum cells and provides insight into how altered trafficking of CLN5 and CTSD causes disease in humans.


Assuntos
Dictyostelium , Lipofuscinoses Ceroides Neuronais , Humanos , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Catepsina D/metabolismo , Dictyostelium/metabolismo , Sinais Direcionadores de Proteínas , Proteínas de Membrana Lisossomal/genética
11.
Autophagy ; 20(2): 437-440, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37960894

RESUMO

The acidic pH of lysosomes is critical for catabolism in eukaryotic cells and is altered in neurodegenerative disease including Alzheimer and Parkinson. Recent reports using Drosophila and mammalian cell culture systems have identified novel and, at first sight, conflicting roles for the lysosomal associated membrane proteins (LAMPs) in the regulation of the endolysosomal system.Abbreviation: AD: Alzheimer disease; LAMP: lysosomal associated membrane protein; LTR: LysoTracker; PD: Parkinson disease; TMEM175: transmembrane protein 175; V-ATPase: vacuolar-type H+-translocating ATPase.


Assuntos
Doenças Neurodegenerativas , ATPases Vacuolares Próton-Translocadoras , Animais , Doenças Neurodegenerativas/metabolismo , Autofagia , Lisossomos/metabolismo , Proteínas de Membrana Lisossomal , Adenosina Trifosfatases/metabolismo , Drosophila/metabolismo , Concentração de Íons de Hidrogênio , ATPases Vacuolares Próton-Translocadoras/metabolismo , Mamíferos/metabolismo
12.
Biotechnol J ; 19(1): e2300017, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37953689

RESUMO

Plasmid-based transfection can be used in many applications such as transient gene expression (TGE)-based therapeutic protein production. These applications preferentially require maximization of intracellular plasmid availability. Here, we applied a lysosome engineering approach to alleviate lysosome-mediated nucleic acid degradation and enhance the TGE in mammalian cells. By knocking out the lysosomal membrane protein LAMP2C, which is known to be the main player in RNautophagy/DNautophagy (RDA), we significantly improved transient fluorescent protein expression in HEK293 cells by improving the retention rate of transfected plasmids; however, this effect was not observed in CHO cells. Additional knockout of a lysosomal membrane transporter and another RDA player, SIDT2, was ineffective, regardless of the presence of LAMP2C. LAMP2C knockout enhanced TGE-based mAb production in HEK293 cells by up to 2.82-fold increase in specific mAb productivity. Taken together, these results demonstrate that HEK293 cells can be engineered to improve the usage of the transfected plasmid via knockout of the lysosomal membrane protein LAMP2C and provide efficient host cells in TGE systems for therapeutic protein production.


Assuntos
Proteínas de Transporte de Nucleotídeos , Cricetinae , Animais , Humanos , Cricetulus , Proteínas de Membrana Lisossomal , Células HEK293 , Plasmídeos/genética , Expressão Gênica , Transfecção , Proteínas de Transporte de Nucleotídeos/genética
13.
Stem Cell Res ; 74: 103291, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141358

RESUMO

The neuronal ceroid lipofuscinoses (NCLs) are a group of common inherited neurodegenerative disorders of childhood. All forms of NCLs are life-limiting with no curative treatments. Most of the 13 NCL genes encode proteins residing in endolysosomal pathways, such as CLN5, a potential lysosomal enzyme. Two induced pluripotent stem cell lines (hiPSCs) were generated from skin fibroblasts of CLN5 disease patients via non-integrating Sendai virus reprogramming. They demonstrate typical stem cell morphology, express pluripotency markers, exhibit trilineage differentiation potential and also successfully differentiate into neurons. These hiPSCs represent a potential resource to model CLN5 disease in a human context and investigate potential therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Lipofuscinoses Ceroides Neuronais , Humanos , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Membrana Lisossomal/genética , Mutação/genética , Fibroblastos/metabolismo
14.
J Cell Mol Med ; 28(3): e18088, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38146591

RESUMO

Lysosomal dysfunction can drive carcinogenesis. Lysosomal-associated membrane protein 3 (LAMP3), is a member of the Lysosome Associated Membrane Proteins and is involved in the malignant phenotype such as tumour metastasis and drug resistance, while the mechanisms that regulate the malignant progression of tumour remain vague. Our study aims to provide a more systematic and comprehensive understanding of the role of LAMP3 in the progression of various cancers by various databases.We explored the role of LAMP3 in pan-cancer using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database. Multiple online web platforms and software were used for data analysis, including HPA, TIMER, TISIDB, GEPIA, UALCAN, Kaplan-Meier plotter, DAVID and TIGER. The immunohistochemistry was used to quantify the LAMP3 and PD-L1 expression levels in cancer.High LAMP3 expression was found in most cancers and differentially expressed across molecular and immune subtypes. The expression of LAMP3 was involved in the immune-associated processes of Antigen processing and presentation, Th17 cell differentiation, Th1 and Th2 cell differentiation, and the immune-associated pathways of T cell receptor and B cell receptor signalling pathways in most cancers. It also correlated with genetic markers of immunomodulators in various cancers. LAMP3 and PD-L1 expression in BRCA and HNSC tissues was higher than that in corresponding adjacent normal tissues by immunohistochemistry. There is a significant correlation between the expression of LAMP3 and PD-L1.Our study elucidates that LAMP3 has different expression patterns and genetic alteration patterns in different tumours. It is a potential biomarker for immune-related cancer diagnosis, prognosis and efficacy prediction.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Proteína 3 de Membrana Associada ao Lisossomo , Prognóstico , Proteínas de Membrana Lisossomal
15.
Sci Adv ; 9(50): eadj1205, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091401

RESUMO

We demonstrate that the Parkinson's VPS35[D620N] mutation alters the expression of ~220 lysosomal proteins and stimulates recruitment and phosphorylation of Rab proteins at the lysosome. This recruits the phospho-Rab effector protein RILPL1 to the lysosome where it binds to the lysosomal integral membrane protein TMEM55B. We identify highly conserved regions of RILPL1 and TMEM55B that interact and design mutations that block binding. In mouse fibroblasts, brain, and lung, we demonstrate that the VPS35[D620N] mutation reduces RILPL1 levels, in a manner reversed by LRRK2 inhibition and proteasome inhibitors. Knockout of RILPL1 enhances phosphorylation of Rab substrates, and knockout of TMEM55B increases RILPL1 levels. The lysosomotropic agent LLOMe also induced LRRK2 kinase-mediated association of RILPL1 to the lysosome, but to a lower extent than the D620N mutation. Our study uncovers a pathway through which dysfunctional lysosomes resulting from the VPS35[D620N] mutation recruit and activate LRRK2 on the lysosomal surface, driving assembly of the RILPL1-TMEM55B complex.


Assuntos
Doença de Parkinson , Animais , Camundongos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Camundongos Knockout , Mutação , Lisossomos/metabolismo , Proteínas de Membrana Lisossomal
16.
Cancer Commun (Lond) ; 43(11): 1207-1228, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37794698

RESUMO

BACKGROUND: Cervical cancer (CC) is the fourth most common cancer in women worldwide. Although immunotherapy has been applied in clinical practice, its therapeutic efficacy remains far from satisfactory, necessitating further investigation of the mechanism of CC immune remodeling and exploration of novel treatment targets. This study aimed to investigate the mechanism of CC immune remodeling and explore potential therapeutic targets. METHODS: We conducted single-cell RNA sequencing on a total of 17 clinical specimens, including normal cervical tissues, high-grade squamous intraepithelial lesions, and CC tissues. To validate our findings, we conducted multicolor immunohistochemical staining of CC tissues and constructed a subcutaneous tumorigenesis model in C57BL/6 mice using murine CC cell lines (TC1) to evaluate the effectiveness of combination therapy involving indoleamine 2,3-dioxygenase 1 (IDO1) inhibition and immune checkpoint blockade (ICB). We used the unpaired two-tailed Student's t-test, Mann-Whitney test, or Kruskal-Wallis test to compare continuous data between two groups and one-way ANOVA with Tukey's post hoc test to compare data between multiple groups. RESULTS: Malignant cervical epithelial cells did not manifest noticeable signs of tumor escape, whereas lysosomal-associated membrane protein 3-positive (LAMP3+ ) dendritic cells (DCs) in a mature state with immunoregulatory roles were found to express IDO1 and affect tryptophan metabolism. These cells interacted with both tumor-reactive exhausted CD8+ T cells and CD4+ regulatory T cells, synergistically forming a vicious immunosuppressive cycle and mediating CC immune escape. Further validation through multicolor immunohistochemical staining showed co-localization of neoantigen-reactive T cells (CD3+ , CD4+ /CD8+ , and PD-1+ ) and LAMP3+ DCs (CD80+ and PD-L1+ ). Additionally, a combination of the IDO1 inhibitor with an ICB agent significantly reduced tumor volume in the mouse model of CC compared with an ICB agent alone. CONCLUSIONS: Our study suggested that a combination treatment consisting of targeting IDO1 and ICB agent could improve the therapeutic efficacy of current CC immunotherapies. Additionally, our results provided crucial insights for designing drugs and conducting future clinical trials for CC.


Assuntos
Linfócitos T Reguladores , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/metabolismo , Linfócitos T Reguladores/metabolismo , Microambiente Tumoral , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/metabolismo
17.
Protein Sci ; 32(12): e4823, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37906694

RESUMO

Genetic code expansion enables site-specific photo-crosslinking by introducing photo-reactive non-canonical amino acids into proteins at defined positions during translation. This technology is widely used for analyzing protein-protein interactions and is applicable in mammalian cells. However, the identification of the crosslinked region still remains challenging. Here, we developed a new method to identify the crosslinked region by pre-installing a site-specific cleavage site, an α-hydroxy acid (Nε -allyloxycarbonyl-α-hydroxyl-l-lysine acid, AllocLys-OH), into the target protein. Alkaline treatment cleaves the crosslinked complex at the position of the α-hydroxy acid residue and thus helps to identify which side of the cleavage site, either closer to the N-terminus or C-terminus, the crosslinked site is located within the target protein. A series of AllocLys-OH introductions narrows down the crosslinked region. By applying this method, we identified the crosslinked regions in lysosomal-associated membrane protein type 2A (LAMP2A), a receptor of chaperone-mediated autophagy, in mammalian cells. The results suggested that at least two interfaces are involved in the homophilic interaction, which requires a trimeric or higher oligomeric assembly of adjacent LAMP2A molecules. Thus, the combination of site-specific crosslinking and site-specific cleavage promises to be useful for revealing binding interfaces and protein complex geometries.


Assuntos
Hidroxiácidos , Mamíferos , Animais , Proteínas de Membrana Lisossomal
18.
Braz J Med Biol Res ; 56: e12816, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37878884

RESUMO

Inadequate invasion and excessive apoptosis of trophoblast cells are associated with the development of preeclampsia. Vitamin D deficiency in pregnant women may lead to an increased risk of preeclampsia. However, the underlying mechanisms by which vitamin D is effective in preventing preeclampsia are not fully understood. The objectives of this study were to investigate the role of lysosome-associated membrane glycoprotein 3 (LAMP3) in the pathogenesis of preeclampsia and to evaluate whether vitamin D supplementation would protect against the development of preeclampsia by regulating LAMP3 expression. Firstly, the mRNA and protein levels of LAMP3 were significantly upregulated in the placentas of preeclampsia patients compared to normal placentas, especially in trophoblast cells (a key component of the human placenta). In the hypoxia/reoxygenation (H/R)-exposed HTR-8/Svneo trophoblast cells, LAMP3 expression was also upregulated. H/R exposure repressed cell viability and invasion and increased apoptosis of trophoblast cells. siRNA-mediated knockdown of LAMP3 increased cell viability and invasion and suppressed apoptosis of H/R-exposed trophoblast cells. We further found that 1,25(OH)2D3 (the hormonally active form of vitamin D) treatment reduced LAMP3 expression in H/R exposed trophoblast cells. In addition, 1,25(OH)2D3 treatment promoted cell viability and invasion and inhibited apoptosis of H/R-exposed trophoblast cells. Notably, overexpression of LAMP3 abrogated the protective effect of 1,25(OH)2D3 on H/R-exposed trophoblast cells. Collectively, we demonstrated trophoblast cytoprotection by vitamin D, a process mediated via LAMP3.


Assuntos
Pré-Eclâmpsia , Trofoblastos , Humanos , Gravidez , Feminino , Trofoblastos/metabolismo , Vitamina D/farmacologia , Pré-Eclâmpsia/genética , Calcitriol/metabolismo , Calcitriol/farmacologia , Linhagem Celular , Placenta , Hipóxia , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Membrana Lisossomal/farmacologia , Movimento Celular , Proteínas de Neoplasias/metabolismo
19.
Autoimmunity ; 56(1): 2259125, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37740656

RESUMO

Lysosomal associated membrane protein 3 (LAMP3) has been reported to be a tumour promoter in multiple cancer types by modulating tumour cell autophagy. However, the potential mechanism of LAMP3 in radio-resistance of head and neck squamous cell carcinoma (HNSCC) remains unknown. Therefore, our current study aims to detect the impacts of LAMP3 on the resistance of HNSCC cells to radiotherapy and meanwhile explore its functional mechanism. Through RT-Qpcr examination, LAMP3 expression was identified to be expressed at a significantly high level in irradiation-resistant HNSCC cell lines compared with irradiation-sensitive HNSCC cell lines. Functional assays including CCK-8, colony formation and Transwell assays demonstrated that LAMP3 enhanced the radio-resistance through inducing autophagy to promote HNSCC cell growth. Furthermore, irradiation-resistant HNSCC cells could transfer exosomal LAMP3 to elevate LAMP3 expression in irradiation-sensitive HNSCC cells. Mechanistically, microRNA (miRNA) miR-526b-3p could inhibit LAMP3 expression so as to strengthen sensitivity of HNSCC cells to radiotherapy. In a word, exosomal LAMP3 expression promoted radioresistance of HNSCC cells via inducing autophagy, while this effect could be suppressed by miR-526b-3p in a targeted manner.


Assuntos
Neoplasias de Cabeça e Pescoço , MicroRNAs , Humanos , Proteína 3 de Membrana Associada ao Lisossomo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Autofagia/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , MicroRNAs/genética , Proteínas de Neoplasias , Proteínas de Membrana Lisossomal/genética
20.
Biomol Biomed ; 23(5): 815-824, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37669449

RESUMO

The same viral infection in different hosts may result in varying levels of clinical symptoms, which is related to the genetic background of the host itself. A total of 406 common cases and 452 severe cases of enterovirus 71 (EV71) infection in Yunnan Province were selected as the research subjects, and SNaPshot technology was used to detect genetic polymorphisms for 25 Tag single-nucleotide polymorphisms (TagSNPs) in the selectin P ligand (SELPLG) and scavenger receptor class B member 2 (SCARB2) genes. Our results demonstrate that SCARB2 polymorphisms (rs74719289, rs3733255 and rs17001551) are related to the severity of EV71 infection (A vs G: OR 0.330; 95% CI 0.115 - 0.947; T vs C: OR 0.336; 95% CI 0.118 - 0.958; and A vs G: OR 0.378; 95% CI 0.145 - 0.984). The SELPLG polymorphisms were not significantly different between common cases and severe cases. Therefore, we conclude that the SCARB2 gene has a protective effect on the course of hand, foot and mouth disease caused by EV71 infection and that SCARB2 gene mutations can reduce the severity of the disease.


Assuntos
Infecções por Enterovirus , Doença de Mão, Pé e Boca , Humanos , China , Patrimônio Genético , Proteínas de Membrana Lisossomal , Polimorfismo de Nucleotídeo Único , Receptores Depuradores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...