Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Malar J ; 23(1): 71, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461239

RESUMO

BACKGROUND: Therapeutic efficacy studies (TESs) and detection of molecular markers of drug resistance are recommended by the World Health Organization (WHO) to monitor the efficacy of artemisinin-based combination therapy (ACT). This study assessed the trends of molecular markers of artemisinin resistance and/or reduced susceptibility to lumefantrine using samples collected in TES conducted in Mainland Tanzania from 2016 to 2021. METHODS: A total of 2,015 samples were collected during TES of artemether-lumefantrine at eight sentinel sites (in Kigoma, Mbeya, Morogoro, Mtwara, Mwanza, Pwani, Tabora, and Tanga regions) between 2016 and 2021. Photo-induced electron transfer polymerase chain reaction (PET-PCR) was used to confirm presence of malaria parasites before capillary sequencing, which targeted two genes: Plasmodium falciparum kelch 13 propeller domain (k13) and P. falciparum multidrug resistance 1 (pfmdr1). RESULTS: Sequencing success was ≥ 87.8%, and 1,724/1,769 (97.5%) k13 wild-type samples were detected. Thirty-seven (2.1%) samples had synonymous mutations and only eight (0.4%) had non-synonymous mutations in the k13 gene; seven of these were not validated by the WHO as molecular markers of resistance. One sample from Morogoro in 2020 had a k13 R622I mutation, which is a validated marker of artemisinin partial resistance. For pfmdr1, all except two samples carried N86 (wild-type), while mutations at Y184F increased from 33.9% in 2016 to about 60.5% in 2021, and only four samples (0.2%) had D1246Y mutations. pfmdr1 haplotypes were reported in 1,711 samples, with 985 (57.6%) NYD, 720 (42.1%) NFD, and six (0.4%) carrying minor haplotypes (three with NYY, 0.2%; YFD in two, 0.1%; and NFY in one sample, 0.1%). Between 2016 and 2021, NYD decreased from 66.1% to 45.2%, while NFD increased from 38.5% to 54.7%. CONCLUSION: This is the first report of the R622I (k13 validated mutation) in Tanzania. N86 and D1246 were nearly fixed, while increases in Y184F mutations and NFD haplotype were observed between 2016 and 2021. Despite the reports of artemisinin partial resistance in Rwanda and Uganda, this study did not report any other validated mutations in these study sites in Tanzania apart from R622I suggesting that intensified surveillance is urgently needed to monitor trends of drug resistance markers and their impact on the performance of ACT.


Assuntos
Antimaláricos , Artemisininas , Carrubicina/análogos & derivados , Malária Falciparum , Humanos , Lumefantrina/farmacologia , Lumefantrina/uso terapêutico , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Tanzânia , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Artemeter/uso terapêutico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Combinação Arteméter e Lumefantrina/farmacologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/epidemiologia , Biomarcadores , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
2.
Antimicrob Agents Chemother ; 68(4): e0153423, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38411062

RESUMO

Malaria remains a leading cause of morbidity and mortality in Burkina Faso, which utilizes artemether-lumefantrine as the principal therapy to treat uncomplicated malaria and seasonal malaria chemoprevention with monthly sulfadoxine-pyrimethamine plus amodiaquine in children during the transmission season. Monitoring the activities of available antimalarial drugs is a high priority. We assessed the ex vivo susceptibility of Plasmodium falciparum to 11 drugs in isolates from patients presenting with uncomplicated malaria in Bobo-Dioulasso in 2021 and 2022. IC50 values were derived using a standard 72 h growth inhibition assay. Parasite DNA was sequenced to characterize known drug resistance-mediating polymorphisms. Isolates were generally susceptible, with IC50 values in the low-nM range, to chloroquine (median IC5010 nM, IQR 7.9-24), monodesethylamodiaquine (22, 14-46) piperaquine (6.1, 3.6-9.2), pyronaridine (3.0, 1.3-5.5), quinine (50, 30-75), mefloquine (7.1, 3.7-10), lumefantrine (7.1, 4.5-12), dihydroartemisinin (3.7, 2.2-5.5), and atovaquone (0.2, 0.1-0.3) and mostly resistant to cycloguanil (850, 543-1,290) and pyrimethamine (33,200, 18,400-54,200), although a small number of outliers were seen. Considering genetic markers of resistance to aminoquinolines, most samples had wild-type PfCRT K76T (87%) and PfMDR1 N86Y (95%) sequences. For markers of resistance to antifolates, established PfDHFR and PfDHPS mutations were highly prevalent, the PfDHPS A613S mutation was seen in 19% of samples, and key markers of high-level resistance (PfDHFR I164L; PfDHPS K540E) were absent or rare (A581G). Mutations in the PfK13 propeller domain known to mediate artemisinin partial resistance were not detected. Overall, our results suggest excellent susceptibilities to drugs now used to treat malaria and moderate, but stable, resistance to antifolates used to prevent malaria.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Malária , Criança , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Antagonistas do Ácido Fólico/farmacologia , Burkina Faso , Artemeter/uso terapêutico , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Malária/tratamento farmacológico , Lumefantrina/farmacologia , Lumefantrina/uso terapêutico , Combinação de Medicamentos , Polimorfismo Genético/genética , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
3.
J R Soc Interface ; 21(210): 20230570, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38228183

RESUMO

The emergence and spread of drug-resistant Plasmodium falciparum parasites have hindered efforts to eliminate malaria. Monitoring the spread of drug resistance is vital, as drug resistance can lead to widespread treatment failure. We develop a Bayesian model to produce spatio-temporal maps that depict the spread of drug resistance, and apply our methods for the antimalarial sulfadoxine-pyrimethamine. We infer from genetic count data the prevalences over space and time of various malaria parasite haplotypes associated with drug resistance. Previous work has focused on inferring the prevalence of individual molecular markers. In reality, combinations of mutations at multiple markers confer varying degrees of drug resistance to the parasite, indicating that multiple markers should be modelled together. However, the reporting of genetic count data is often inconsistent as some studies report haplotype counts, whereas some studies report mutation counts of individual markers separately. In response, we introduce a latent multinomial Gaussian process model to handle partially reported spatio-temporal count data. As drug-resistant mutations are often used as a proxy for treatment efficacy, point estimates from our spatio-temporal maps can help inform antimalarial drug policies, whereas the uncertainties from our maps can help with optimizing sampling strategies for future monitoring of drug resistance.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Teorema de Bayes , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Mutação , Biomarcadores , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
4.
Malar J ; 23(1): 36, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287365

RESUMO

BACKGROUND: Timely molecular surveillance of Plasmodium falciparum kelch 13 (k13) gene mutations is essential for monitoring the emergence and stemming the spread of artemisinin resistance. Widespread artemisinin resistance, as observed in Southeast Asia, would reverse significant gains that have been made against the malaria burden in Africa. The purpose of this study was to assess the prevalence of k13 polymorphisms in western Kenya and Ethiopia at sites representing varying transmission intensities between 2018 and 2022. METHODS: Dried blood spot samples collected through ongoing passive surveillance and malaria epidemiological studies, respectively, were investigated. The k13 gene was genotyped in P. falciparum isolates with high parasitaemia: 775 isolates from four sites in western Kenya (Homa Bay, Kakamega, Kisii, and Kombewa) and 319 isolates from five sites across Ethiopia (Arjo, Awash, Gambella, Dire Dawa, and Semera). DNA sequence variation and neutrality were analysed within each study site where mutant alleles were detected. RESULTS: Sixteen Kelch13 haplotypes were detected in this study. Prevalence of nonsynonymous k13 mutations was low in both western Kenya (25/783, 3.19%) and Ethiopia (5/319, 1.57%) across the study period. Two WHO-validated mutations were detected: A675V in three isolates from Kenya and R622I in four isolates from Ethiopia. Seventeen samples from Kenya carried synonymous mutations (2.17%). No synonymous mutations were detected in Ethiopia. Genetic variation analyses and tests of neutrality further suggest an excess of low frequency polymorphisms in each study site. Fu and Li's F test statistic in Semera was 0.48 (P > 0.05), suggesting potential population selection of R622I, which appeared at a relatively high frequency (3/22, 13.04%). CONCLUSIONS: This study presents an updated report on the low frequency of k13 mutations in western Kenya and Ethiopia. The WHO-validated R622I mutation, which has previously only been reported along the north-west border of Ethiopia, appeared in four isolates collected from eastern Ethiopia. The rapid expansion of R622I across Ethiopia signals the need for enhanced monitoring of the spread of drug-resistant P. falciparum parasites in East Africa. Although ACT remains currently efficacious in the study areas, continued surveillance is necessary to detect early indicators of artemisinin partial resistance.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Quênia/epidemiologia , Etiópia/epidemiologia , Resistência a Medicamentos/genética , Artemisininas/uso terapêutico , Malária Falciparum/parasitologia , Mutação , Antiparasitários , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
5.
Malar J ; 23(1): 35, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281044

RESUMO

BACKGROUND: Sri Lanka after eliminating malaria in 2012, is in the prevention of re-establishment (POR) phase. Being a tropical country with high malariogenic potential, maintaining vigilance is important. All malaria cases are investigated epidemiologically and followed up by integrated drug efficacy surveillance (iDES). Occasionally, that alone is not adequate to differentiate Plasmodium falciparum reinfections from recrudescences. This study evaluated the World Health Organization and Medicines for Malaria Venture (MMV) recommended genotyping protocol for the merozoite surface proteins (msp1, msp2) and the glutamate-rich protein (glurp) to discriminate P. falciparum recrudescence from reinfection in POR phase. METHODS: All P. falciparum patients detected from April 2014 to December 2019 were included in this study. Patients were treated and followed up by iDES up to 28 days and were advised to get tested if they develop fever at any time over the following year. Basic socio-demographic information including history of travel was obtained. Details of the malariogenic potential and reactive entomological and parasitological surveillance carried out by the Anti Malaria Campaign to exclude the possibility of local transmission were also collected. The msp1, msp2, and glurp genotyping was performed for initial and any recurrent infections. Classification of recurrent infections as recrudescence or reinfection was done based on epidemiological findings and was compared with the genotyping outcome. RESULTS: Among 106 P. falciparum patients, six had recurrent infections. All the initial infections were imported, with a history of travel to malaria endemic countries. In all instances, the reactive entomological and parasitological surveillance had no evidence for local transmission. Five recurrences occurred within 28 days of follow-up and were classified as recrudescence. They have not travelled to malaria endemic countries between the initial and recurrent infections. The other had a recurrent infection after 105 days. It was assumed a reinfection, as he had travelled to the same malaria endemic country in between the two malaria attacks. Genotyping confirmed the recrudescence and the reinfection. CONCLUSIONS: The msp1, msp2 and glurp genotyping method accurately differentiated reinfections from recrudescence. Since reinfection without a history of travel to a malaria endemic country would mean local transmission, combining genotyping outcome with epidemiological findings will assist classifying malaria cases without any ambiguity.


Assuntos
Demência Frontotemporal , Malária Falciparum , Proteína 1 de Superfície de Merozoito , Distrofia Muscular do Cíngulo dos Membros , Miosite de Corpos de Inclusão , Osteíte Deformante , Masculino , Humanos , Proteína 1 de Superfície de Merozoito/genética , Plasmodium falciparum/genética , Reinfecção , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico , Antígenos de Protozoários/genética , Antígenos de Protozoários/uso terapêutico , Genótipo , Ácido Glutâmico , Sri Lanka/epidemiologia , Variação Genética , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Malária Falciparum/tratamento farmacológico , Recidiva
6.
Antimicrob Agents Chemother ; 68(1): e0129923, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38092677

RESUMO

In 2023, we updated data collected since 2010 on Plasmodium falciparum K13 and MDR1 drug resistance markers in Huye district, southern Rwanda. Artemisinin resistance-associated PfK13 markers occurred in 17.5% of 212 malaria patients (561H, 9.0%; 675V, 5.7%; and 469F, 2.8%), nearly double the frequency from 2019. PfMDR1 N86, linked with lumefantrine tolerance, was close to fixation at 98%. In southern Rwanda, markers signaling resistance to artemisinin and lumefantrine are increasing, albeit at a relatively slow rate.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Ruanda/epidemiologia , Prevalência , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Lumefantrina/uso terapêutico , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
7.
Lancet Infect Dis ; 24(2): 161-171, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37858325

RESUMO

BACKGROUND: Plasmodium falciparum is an apicomplexan parasite responsible for lethal cases of malaria. According to WHO recommendations, P falciparum cases are treated with artemisinin-based combination therapy including dihydroartemisinin-piperaquine. However, the emergence of resistant parasites against dihydroartemisinin-piperaquine was reported in southeast Asia in 2008 and, a few years later, suspected in South America. METHODS: To characterise resistance emergence, a treatment efficacy study was performed on the reported patients infected with P falciparum and treated with dihydroartemisinin-piperaquine in French Guiana (n=6, 2016-18). Contemporary isolates collected in French Guiana were genotyped for P falciparum chloroquine resistance transporter (pfCRT; n=845) and pfpm2 and pfpm3 copy number (n=231), phenotyped using the in vitro piperaquine survival assay (n=86), and analysed through genomic studies (n=50). Additional samples from five Amazonian countries and one outside the region were genotyped (n=1440). FINDINGS: In field isolates, 40 (47%) of 86 (95% CI 35·9-57·1) were resistant to piperaquine in vitro; these phenotypes were more associated with pfCRTC350R (ie, Cys350Arg) and pfpm2 and pfpm3 amplifications (Dunn test, p<0·001). Those markers were also associated with dihydroartemisinin-piperaquine treatment failure (n=3 [50%] of 6). A high prevalence of piperaquine resistance markers was observed in Suriname in 19 (83%) of 35 isolates and in Guyana in 579 (73%) of 791 isolates. The pfCRTC350R mutation emerged before pfpm2 and pfpm3 amplification in a temporal sequence different from southeast Asia, and in the absence of artemisinin partial resistance, suggesting a geographically distinctive epistatic relationship between these genetic markers. INTERPRETATION: The high prevalence of piperaquine resistance markers in parasite populations of the Guianas, and the risk of associated therapeutic failures calls for caution on dihydroartemisinin-piperaquine use in the region. Furthermore, greater attention should be given to potential differences in genotype to phenotype mapping across genetically distinct parasite populations from different continents. FUNDING: Pan American Health Organization and WHO, French Ministry for Research, European Commission, Santé publique France, Agence Nationale de la Recherche, Fundação de Amparo à Pesquisa do Estado do Amazonas, Ministry of Health of Brazil, Oswaldo Cruz Foundation, and National Institutes of Health. TRANSLATIONS: For the French and Portuguese translations of the abstract see Supplementary Materials section.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Piperazinas , Quinolinas , Humanos , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Resultado do Tratamento , Estudos Epidemiológicos , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
8.
Malar J ; 22(1): 375, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38072967

RESUMO

BACKGROUND: Resistance against artemisinin-based combination therapy is one of the challenges to malaria control and elimination globally. Mutations in different genes (Pfdhfr, Pfdhps, Pfk-13 and Pfmdr1) confer resistance to artesunate and sulfadoxine-pyrimethamine (AS + SP) were analysed from Mandla district, Madhya Pradesh, to assess the effectiveness of the current treatment regimen against uncomplicated Plasmodium falciparum. METHODS: Dried blood spots were collected during the active fever survey and mass screening and treatment activities as part of the Malaria Elimination Demonstration Project (MEDP) from 2019 to 2020. Isolated DNA samples were used to amplify the Pfdhfr, Pfdhps, Pfk13 and Pfmdr1 genes using nested PCR and sequenced for mutation analysis using the Sanger sequencing method. RESULTS: A total of 393 samples were subjected to PCR amplification, sequencing and sequence analysis; 199, 215, 235, and 141 samples were successfully sequenced for Pfdhfr, Pfdhps, Pfk13, Pfmdr1, respectively. Analysis revealed that the 53.3% double mutation (C59R, S108N) in Pfdhfr, 89.3% single mutation (G437A) in Pfdhps, 13.5% single mutants (N86Y), and 51.1% synonymous mutations in Pfmdr1 in the study area. Five different non-synonymous and two synonymous point mutations found in Pfk13, which were not associated to artemisinin resistance. CONCLUSION: The study has found that mutations linked to SP resistance are increasing in frequency, which may reduce the effectiveness of this drug as a future partner in artemisinin-based combinations. No evidence of mutations linked to artemisinin resistance in Pfk13 was found, suggesting that parasites are sensitive to artemisinin derivatives in the study area. These findings are a baseline for routine molecular surveillance to proactively identify the emergence and spread of artemisinin-resistant parasites.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Humanos , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Malária/tratamento farmacológico , Biomarcadores , Resistência a Medicamentos/genética , Índia , Combinação de Medicamentos , Malária Falciparum/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
9.
PLoS One ; 18(11): e0293590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37948402

RESUMO

BACKGROUNDS: The therapeutic efficacy studies of DHA-PIP for uncomplicated Plasmodium falciparum patients were implemented from 2012 to 2016 along China (Yunnan province)-Myanmar border, which verified the high efficacy of DHA-PIP. With the samples collected in these studies, the genetic characteristics of P. falciparum parasites based on in vivo parasite clearance time (PCT) was investigated to explore if these parasites had developed resistance to DHA and PIP at molecular level. METHODS: The genetic characteristics were investigated based on K13 genotypes, copy numbers of genes pfpm2 and pfmdr1, and nine microsatellite loci (Short Tandem Repeats, STR) flanking the K13 gene on chromosome 13. The PCT 50s were compared based on different K13 genotypes, sites, periods and copy numbers. RESULTS: In the NW (North-West Yunnan province bordering with Myanmar) region, F446I was the main K13 genotype. No significant differences for PCT 50s presented among three K13 genotypes. In SW (South-West Yunnan province bordering with Myanmar) region, only wild K13 genotype was detected in all parasite isolates whose PCT 50s was significantly longer than those in NW region. For the copy numbers of genes, parasite isolates containing multiple copies of pfmdr1 gene were found in both regions, but only single copy of pfpm2 gene was detected. Though the prevalence of parasite isolates with multiple copies of pfmdr1 gene in SW region was higher than that in NW region, no difference in PCT 50s were presented between isolates with single and multiple copies of pfmdr1 gene. The median He values of F446I group and Others (Non-F446I K13 mutation) group were 0.08 and 0.41 respectively. The mean He values of ML group (Menglian County in SW) and W (wild K13 genotype in NW) group were 0 and 0.69 respectively. The mean Fst values between ML and W groups were significantly higher than the other two K13 groups. CONCLUSIONS: P. falciparum isolates in NW and SW regions had very different genetic characteristics. The F446I was hypothesized to have independently appeared and spread in NW region from 2012 and 2016. The high susceptibility of PIP had ensured the efficacy of DHA-PIP in vivo. Multiple copy numbers of pfmdr1 gene might be a potential cause of prolonged clearance time of ACTs drugs along China-Myanmar border. TRIAL REGISTRATION: Trial registration: ISRCTN, ISRCTN 11775446. Registered 17 April 2020-Retrospectively registered, the registered name was Investigating resistance to DHA-PIP for the treatment of Plasmodium falciparum malaria and chloroquine for the treatment of Plasmodium vivax malaria in Yunnan, China. http://www.isrctn.com/ISRCTN11775446.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Parasitos , Masculino , Animais , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Mianmar , Artemisininas/uso terapêutico , China , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Resistência a Medicamentos/genética
10.
Malar J ; 22(1): 231, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37553646

RESUMO

BACKGROUND: Dihydroartemisinin-piperaquine has been Indonesia's first-line anti-malarial treatment since 2008. Annual therapeutic efficacy studies (TES) done in the last 12 years showed continued high treatment efficacy in uncomplicated Plasmodium falciparum malaria. Although these studies did not show evidence for artemisinin resistance, a slight increase in Late Treatment Failure was observed over time. It is highlight to explore the evolution of genetic markers for ACT partner drug resistance since adopting DHA-PPQ. METHODS: Dry blood spots were identified from a mass blood survey of uncomplicated falciparum malaria patients (N = 50) in Sumba from 2010 to 2018. Analysis of genotypic profile (N = 51) and a Therapeutic Efficacy Study (TES) from Papua (N = 142) from 2020 to 2021, 42-day follow-up. PCR correction using msp1, msp2, and glurp was used to distinguish recrudescence and reinfection. Parasite DNA from DBSs was used for genotyping molecular markers for antimalaria drug resistance, including in Pfk13, pfcrt, and pfmdr1, as well as gene copy number variation in pfpm2/3 and pfmdr1. RESULTS: The study revealed the absence of SNPs associated with ART resistance and several novel SNPs such as L396F, I526V, M579I and N537S (4.25%). In Sumba, the mutant haplotype SDD of pfmdr1 was found in one-third of the isolates, while only 8.9% in Papua. None of the pfcrt mutations linked to piperaquine resistance were observed, but 71% of isolates had pfcrt I356L. Amplification of the pfpm2/3 genes was in Sumba (17.02%) and Papua (13.7%), while pfmdr1 copy number prevalence was low (3.8%) in both areas. For the TES study, ten recurrences of infection were observed on days 28, 35, and 42. Late parasitological failure (LPF) was observed in 10/117 (8.5%) subjects by microscopy. PCR correction revealed that all nine cases were re-infections and one was confirmed as recrudescence. CONCLUSION: This study revealed that DHA-PPQ is still highly effective against P. falciparum. The genetic architecture of the parasite P. falciparum isolates during 2010-2021 revealed single copy of Pfpm2 and pfmdr1 were highly prevalent. The slight increase in DHA-PPQ LTF alerts researchers to start testing other ACTs as alternatives to DHA-PPQ for baseline data in order to get a chance of achieving malaria elimination wants by 2030.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Marcadores Genéticos , Variações do Número de Cópias de DNA , Indonésia , Plasmodium falciparum , Malária Falciparum/epidemiologia , Malária/tratamento farmacológico , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
11.
Malar J ; 22(1): 236, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582796

RESUMO

BACKGROUND: Drug resistance is a serious impediment to efficient control and elimination of malaria in endemic areas. METHODS: This study aimed at analysing the genetic profile of molecular drug resistance in Plasmodium falciparum and Plasmodium vivax parasites from India over a ~ 30-year period (1993-2019). Blood samples of P. falciparum and/or P. vivax-infected patients were collected from 14 regions across India. Plasmodial genome was extracted and used for PCR amplification and sequencing of drug resistance genes in P. falciparum (crt, dhps, dhfr, mdr1, k13) and P. vivax (crt-o, dhps, dhfr, mdr1, k12) field isolates. RESULTS: The double mutant pfcrt SVMNT was highly predominant across the country over three decades, with restricted presence of triple mutant CVIET from Maharashtra in 2012. High rates of pfdhfr-pfdhps quadruple mutants were observed with marginal presence of "fully resistant" quintuple mutant ACIRNI-ISGEAA. Also, resistant pfdhfr and pfdhps haplotype has significantly increased in Delhi between 1994 and 2010. For pfmdr1, only 86Y and 184F mutations were present while no pfk13 mutations associated with artemisinin resistance were observed. Regarding P. vivax isolates, the pvcrt-o K10 "AAG" insertion was absent in all samples collected from Delhi in 2017. Pvdhps double mutant SGNAV was found only in Goa samples of year 2008 for the first time. The pvmdr1 908L, 958M and 1076L mutations were highly prevalent in Delhi and Haryana between 2015 and 2019 at complete fixation. One nonsynonymous novel pvk12 polymorphism was identified (K264R) in Goa. CONCLUSIONS: These findings support continuous surveillance and characterization of P. falciparum and P. vivax populations as proxy for effectiveness of anti-malarial drugs in India, especially for independent emergence of artemisinin drug resistance as recently seen in Africa.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária Vivax , Humanos , Plasmodium falciparum , Plasmodium vivax , Perfil Genético , Índia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/parasitologia , Resistência a Medicamentos/genética , Malária Vivax/epidemiologia , Artemisininas/uso terapêutico , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
12.
Acta Trop ; 246: 106986, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37453579

RESUMO

Treatment of visceral leishmaniasis (VL) is compromised by drug toxicity, high cost and/or the emergence of resistant strains. Though canine vaccines are available, there are no licensed prophylactic human vaccines. One strategy to improve clinical outcome for infected patients is immunotherapy, which associates a chemotherapy that acts directly to reduce parasitism and the administration of an immunogen-adjuvant that activates the host protective Th1-type immune response. In this study, we evaluated an immunotherapy protocol in a murine model by combining recombinant (r)LiHyp1 (a hypothetical amastigote-specific Leishmania protein protective against Leishmania infantum infection), with monophosphoryl-lipid A (MPLA) as adjuvant and amphotericin B (AmpB) as reference antileishmanial drug. We used this protocol to treat L. infantum infected-BALB/c mice, and parasitological, immunological and toxicological evaluations were performed at 1 and 30 days after treatment. Results showed that mice treated with rLiHyp1/MPLA/AmpB presented the lowest parasite burden in all organs evaluated, when both a limiting dilution technique and qPCR were used. In addition, these animals produced higher levels of IFN-γ and IL-12 cytokines and IgG2a isotype antibody, which were associated with lower production of IL-4 and IL-10 and IgG1 isotype. Furthermore, low levels of renal and hepatic damage markers were found in animals treated with rLiHyp1/MPLA/AmpB possibly reflecting the lower parasite load, as compared to the other groups. We conclude that the rLiHyp1/MPLA/AmpB combination could be considered in future studies as an immunotherapy protocol to treat against VL.


Assuntos
Adjuvantes Imunológicos , Amebicidas , Anfotericina B , Leishmaniose Visceral , Lipídeo A , Proteínas de Protozoários , Leishmaniose Visceral/terapia , Animais , Camundongos , Anfotericina B/uso terapêutico , Amebicidas/uso terapêutico , Imunoterapia , Adjuvantes Imunológicos/uso terapêutico , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Proteínas Recombinantes/uso terapêutico , Proteínas de Protozoários/uso terapêutico , Quimioterapia Combinada , Lipídeo A/uso terapêutico , Protocolos Clínicos , Feminino
13.
Malar J ; 22(1): 171, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270589

RESUMO

BACKGROUND: Pfcrt gene has been associated with chloroquine resistance and the pfmdr1 gene can alter malaria parasite susceptibility to lumefantrine, mefloquine, and chloroquine. In the absence of chloroquine (CQ) and extensive use of artemether-lumefantrine (AL) from 2004 to 2020 to treat uncomplicated falciparum malaria, pfcrt haplotype, and pfmdr1 single nucleotide polymorphisms (SNPs) were determined in two sites of West Ethiopia with a gradient of malaria transmission. METHODS: 230 microscopically confirmed P. falciparum isolates were collected from Assosa (high transmission area) and Gida Ayana (low transmission area) sites, of which 225 of them tested positive by PCR. High-Resolution Melting Assay (HRM) was used to determine the prevalence of pfcrt haplotypes and pfmdr1 SNPs. Furthermore, the pfmdr1 gene copy number (CNV) was determined using real-time PCR. A P-value of less or equal to 0.05 was considered significant. RESULTS: Of the 225 samples, 95.5%, 94.4%, 86.7%, 91.1%, and 94.2% were successfully genotyped with HRM for pfcrt haplotype, pfmdr1-86, pfmdr1-184, pfmdr1-1042 and pfmdr1-1246, respectively. The mutant pfcrt haplotypes were detected among 33.5% (52/155) and 80% (48/60) of isolates collected from the Assosa and Gida Ayana sites, respectively. Plasmodium falciparum with chloroquine-resistant haplotypes was more prevalent in the Gida Ayana area compared with the Assosa area (COR = 8.4, P = 0.00). Pfmdr1-N86Y wild type and 184F mutations were found in 79.8% (166/208) and 73.4% (146/199) samples, respectively. No single mutation was observed at the pfmdr1-1042 locus; however, 89.6% (190/212) of parasites in West Ethiopia carry the wild-type D1246Y variants. Eight pfmdr1 haplotypes at codons N86Y-Y184F-D1246Y were identified with the dominant NFD 61% (122/200). There was no difference in the distribution of pfmdr1 SNPs, haplotypes, and CNV between the two study sites (P > 0.05). CONCLUSION: Plasmodium falciparum with the pfcrt wild-type haplotype was prevalent in high malaria transmission site than in low transmission area. The NFD haplotype was the predominant haplotype of the N86Y-Y184F-D1246Y. A continuous investigation is needed to closely monitor the changes in the pfmdr1 SNPs, which are associated with the selection of parasite populations by ACT.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Etiópia/epidemiologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemeter/uso terapêutico , Malária Falciparum/parasitologia , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Malária/tratamento farmacológico , Lumefantrina/uso terapêutico , Plasmodium falciparum , Polimorfismo de Nucleotídeo Único , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico , Resistência a Medicamentos/genética
14.
Antimicrob Agents Chemother ; 67(7): e0161022, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37314336

RESUMO

Increasing reports of resistance to a frontline malaria blood-stage treatment, chloroquine (CQ), raises concerns for the elimination of Plasmodium vivax. The absence of an effective molecular marker of CQ resistance in P. vivax greatly constrains surveillance of this emerging threat. A recent genetic cross between CQ sensitive (CQS) and CQ resistant (CQR) NIH-1993 strains of P. vivax linked a moderate CQR phenotype with two candidate markers in P. vivax CQ resistance transporter gene (pvcrt-o): MS334 and In9pvcrt. Longer TGAAGH motif lengths at MS334 were associated with CQ resistance, as were shorter motifs at the In9pvcrt locus. In this study, high-grade CQR clinical isolates of P. vivax from a low endemic setting in Malaysia were used to investigate the association between the MS334 and In9pvcrt variants and treatment efficacy. Among a total of 49 independent monoclonal P. vivax isolates assessed, high-quality MS334 and In9pvcrt sequences could be derived from 30 (61%) and 23 (47%), respectively. Five MS334 and six In9pvcrt alleles were observed, with allele frequencies ranging from 2 to 76% and 3 to 71%, respectively. None of the clinical isolates had the same variant as the NIH-1993 CQR strain, and none of the variants were associated with CQ treatment failure (all P > 0.05). Multi-locus genotypes (MLGs) at 9 neutral microsatellites revealed a predominant P. vivax strain (MLG6) accounting for 52% of Day 0 infections. The MLG6 strain comprised equal proportions of CQS and CQR infections. Our study reveals complexity in the genetic basis of CQ resistance in the Malaysian P. vivax pre-elimination setting and suggests that the proposed pvcrt-o MS334 and In9pvcrt markers are not reliable markers of CQ treatment efficacy in this setting. Further studies are needed in other endemic settings, applying hypothesis-free genome-wide approaches, and functional approaches to understand the biological impact of the TGAAGH repeats linked to CQ response in a cross are warranted to comprehend and track CQR P. vivax.


Assuntos
Antimaláricos , Malária Vivax , Humanos , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Plasmodium vivax/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malásia , Resistência a Medicamentos/genética , Malária Vivax/epidemiologia , Alelos , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
15.
Drug Resist Updat ; 70: 100978, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37385107

RESUMO

AIMS: We investigated the stage-specific mechanisms of partial resistance to artemisinin (ART, an antimalarial drug) in Plasmodium falciparum (P. falciparum) carrying the Kelch13 C580Y mutation. METHODS: Using fluorescence labeling and activity-based protein profiling, we systematically profile the ART activation levels in P. falciparum during the entire intra-erythrocytic developmental cycle (IDC), and determined the ART-targets profile of the ART-sensitive and -resistant strains at different stages. We retrieved and integrated datasets of single-cell transcriptomics and label-free proteomics across three IDC stages of wild-type P. falciparum. We also employed lipidomics to validate lipid metabolic reprogramming in the resistant strain. RESULTS: The activation and expression patterns of genes and proteins of ART-targets in both ART-sensitive and resistant strains varied at different stages and periods of P. falciparum development, with the late trophozoite stage harboring the largest number of ART targets. We identified and validated 36 overlapping targets, such as GAPDH, EGF-1a, and SpdSyn, during the IDC stages in both strains. We revealed the ART-insensitivity of fatty acid-associated activities in the partially resistant strain at both the early ring and early trophozoite stages. CONCLUSIONS: Our multi-omics strategies provide novel insights into the mechanisms of ART partial resistance in Kelch13 mutant P. falciparum, demonstrating the stage-specific interaction between ART and malaria parasites.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Plasmodium falciparum/genética , Multiômica , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/farmacologia , Proteínas de Protozoários/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Mutação
16.
Malar J ; 22(1): 167, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237307

RESUMO

BACKGROUND: Malaria control is highly dependent on the effectiveness of artemisinin-based combination therapy (ACT), the current frontline malaria curative treatment. Unfortunately, the emergence and spread of parasites resistant to artemisinin (ART) derivatives in Southeast Asia and South America, and more recently in Rwanda and Uganda (East Africa), compromise their long-term use in sub-Saharan Africa, where most malaria deaths occur. METHODS: Here, ex vivo susceptibility to dihydroartemisinin (DHA) was evaluated from 38 Plasmodium falciparum isolates collected in 2017 in Thiès (Senegal) expressed in the Ring-stage Survival Assay (RSA). Both major and minor variants were explored in the three conserved-encoding domains of the pfkelch13 gene, the main determinant of ART resistance using a targeted-amplicon deep sequencing (TADS) approach. RESULTS: All samples tested in the ex vivo RSA were found to be susceptible to DHA (parasite survival rate < 1%). The non-synonymous mutations K189T and K248R in pfkelch13 were observed each in one isolate, as major (99%) or minor (5%) variants, respectively. CONCLUSION: The results suggest that ART is still fully effective in the Thiès region of Senegal in 2017. Investigations combining ex vivo RSA and TADS are a useful approach for monitoring ART resistance in Africa.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Parasitos , Animais , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/parasitologia , Senegal , Resistência a Medicamentos/genética , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Plasmodium falciparum , Uganda , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico , Sequenciamento de Nucleotídeos em Larga Escala , Mutação
17.
Malar J ; 22(1): 118, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37038137

RESUMO

BACKGROUND: The spread of Plasmodium vivax strains resistant to chloroquine (CQ) has posed a challenge to control strategies aimed at eliminating malaria. Molecular analysis of candidate resistance markers is very important for monitoring the P. vivax resistance to CQ in different endemic regions. In the present study, the multidrug resistance 1 (pvmdr1) gene, a possible marker for CQ resistance in P. vivax, was evaluated by molecular methods. METHODS: A simple PCR-RFLP method was developed for mutation analysis in pvmdr1 gene. A number of 120 blood spots were obtained from patients with P. vivax mono-infection in 2021. All of the samples were collected from Pakistani patients who travelled to Iran. RESULTS: None of the samples had any mutation at codon 976 of pvmdr1, while the 1076 mutation was detected in 96.2% of the examined isolates. Only two pvmdr1 haplotypes were identified, including the single mutant (Y976/1076L) as the most prevalent haplotype (with 96.2% frequency) and the wild type (Y976/F1076; with 3.8% frequency). CONCLUSIONS: In this study, the major CQ resistance-mediating mutation and multiple mutant haplotypes of the pvmdr1 gene was not detected. However, continuous monitoring of drug resistance markers and close supervision of the efficacy of CQ is essential to detect the potential emergence of CQ-resistant P. vivax isolates in Iran. This data is important for performing future epidemiological surveillance to monitor CQ resistance in this endemic area and the bordering regions.


Assuntos
Antimaláricos , Malária Vivax , Humanos , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Malária Vivax/epidemiologia , Malária Vivax/tratamento farmacológico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Irã (Geográfico)/epidemiologia , Epidemiologia Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium vivax , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
18.
Malar J ; 22(1): 87, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894982

RESUMO

BACKGROUND: Currently, chemotherapy stands out as the major malaria intervention strategy, however, anti-malarial resistance may hamper global elimination programs. Artemisinin-based combination therapy (ACT) stands as the drug of choice for the treatment of Plasmodium falciparum malaria. Plasmodium falciparum kelch13 gene mutations are associated with artemisinin resistance. Thus, this study was aimed at evaluating the circulation of P. falciparum k13 gene polymorphisms from Kisii County, Kenya during an era of ACT deployment. METHODS: Participants suspected to have malaria were recruited. Plasmodium falciparum was confirmed using the microscopy method. Malaria-positive patients were treated with artemether-lumefantrine (AL). Blood from participants who tested positive for parasites after day 3 was kept on filter papers. DNA was extracted using chelex-suspension method. A nested polymerase chain reaction (PCR) was conducted and the second-round products were sequenced using the Sanger method. Sequenced products were analysed using DNAsp 5.10.01 software and then blasted on the NCBI for k13 propeller gene sequence identity using the Basic Local Alignment Search Tool (BLAST). To assess the selection pressure in P. falciparum parasite population, Tajima' D statistic and Fu & Li's D test in DnaSP software 5.10.01 was used. RESULTS: Out of 275 enrolled participants, 231 completed the follow-up schedule. 13 (5.6%) had parasites on day 28 hence characterized for recrudescence. Out of the 13 samples suspected of recrudescence, 5 (38%) samples were positively amplified as P. falciparum, with polymorphisms in the k13-propeller gene detected. Polymorphisms detected in this study includes R539T, N458T, R561H, N431S and A671V, respectively. The sequences have been deposited in NCBI with bio-project number PRJNA885380 and accession numbers SAMN31087434, SAMN31087433, SAMN31087432, SAMN31087431 and SAMN31087430 respectively. CONCLUSIONS: WHO validated polymorphisms in the k13-propeller gene previously reported to be associated with ACT resistance were not detected in the P. falciparum isolates from Kisii County, Kenya. However, some previously reported un-validated k13 resistant single nucleotide polymorphisms were reported in this study but with limited occurrences. The study has also reported new SNPs. More studies need to be carried out in the entire country to understand the association of reported mutations if any, with ACT resistance.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Plasmodium falciparum , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Artemisininas/uso terapêutico , Quênia , Combinação Arteméter e Lumefantrina/uso terapêutico , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico , Artemeter/uso terapêutico , Malária Falciparum/epidemiologia , Polimorfismo de Nucleotídeo Único , Resistência a Medicamentos/genética
19.
Lancet Infect Dis ; 23(5): 568-577, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36462526

RESUMO

BACKGROUND: Malaria outbreaks are important public health concerns that can cause resurgence in endemic regions approaching elimination. We investigated a Plasmodium falciparum outbreak in Attapeu Province, Laos, during the 2020-21 malaria season, using genomic epidemiology methods to elucidate parasite population dynamics and identify its causes. METHODS: In this genetic analysis, 2164 P falciparum dried blood spot samples were collected from southern Laos between Jan 1, 2017, and April 1, 2021, which included 249 collected during the Attapeu outbreak between April 1, 2020, and April 1, 2021, by routine surveillance. Genetic barcodes obtained from these samples were used to investigate epidemiological changes underpinning the outbreak, estimate population diversity, and analyse population structure. Whole-genome sequencing data from additional historical samples were used to reconstruct the ancestry of outbreak strains using identity-by-descent analyses. FINDINGS: The outbreak parasite populations were characterised by unprecedented loss of genetic diversity, primarily caused by rapid clonal expansion of a multidrug-resistant strain (LAA1) carrying the kelch13 Arg539Thr (R539T) mutation. LAA1 replaced kelch13 Cys580Tyr (C580Y) mutants resistant to dihydroartemisinin-piperaquine (KEL1/PLA1) as the dominant strain. LAA1 inherited 58·8% of its genome from a strain circulating in Cambodia in 2008. A secondary outbreak strain (LAA2) carried the kelch13 C580Y allele, and a genome that is essentially identical to a Cambodian parasite from 2009. A third, low-frequency strain (LAA7) was a recombinant of KEL1/PLA1 with a kelch13 R539T mutant. INTERPRETATION: These results strongly suggest that the outbreak was driven by a selective sweep, possibly associated with multidrug-resistant phenotypes of the outbreak strains. Established resistant populations can circulate at low frequencies for years before suddenly overwhelming dominant strains when the conditions for selection become favourable-eg, when front-line therapies change. Genetic surveillance can support elimination by characterising key properties of outbreaks such as population diversity, drug resistance marker prevalence, and the origins of outbreak strains. FUNDING: Bill & Melinda Gates Foundation; The Global Fund to Fight AIDS, Tuberculosis and Malaria; Wellcome Trust. TRANSLATION: For the Lao translation of the abstract see Supplementary Materials section.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Plasmodium falciparum/genética , Laos/epidemiologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Epidemiologia Molecular , Resistência a Medicamentos/genética , Malária/epidemiologia , Surtos de Doenças , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
20.
Malar J ; 21(1): 394, 2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566182

RESUMO

BACKGROUND: Despite significant progress in eliminating malaria from the state of Odisha, India, the disease is still considered endemic. Artesunate plus sulfadoxine-pyrimethamine (AS + SP) has been introduced since 2010 as first-line treatment for uncomplicated Plasmodium falciparum malaria. This study aimed to investigate the prevalence of mutations associated with resistance to chloroquine (CQ), sulfadoxine-pyrimethamine (SP), and artesunate (ART) in P. falciparum parasites circulating in the state. METHODS: A total of 239 isolates of P. falciparum mono infection were collected during July 2018-November 2020 from the four different geographical regions of the state. Genomic DNA was extracted from 200 µL of venous blood and amplified using nested polymerase chain reaction. Mutations on gene associated with CQ (Pfcrt and Pfmdr1) were assessed by PCR amplification and restriction fragment length polymorphism, artemisinin (Pfk13) gene by DNA sequencing and SP (Pfdhfr and Pfdhps) genes by allele-specific polymerase chain reaction (AsPCR). RESULTS: The point mutation in Pfcrt (K76T) was detected 2.1%, in Pfmdr1 (N86Y) 3.4%, and no mutations were found in Pfkelch13 propeller domain. Prevalence of Pfdhfr, Pfdhps and Pfhdfr-Pfdhps (two locus) gene mutations were 50.43%, 47.05% and 49.79% respectively. The single, double, triple and quadruple point mutations in Pfdhfr gene was 11.2%, 8.2%, 17.2% and 3.4% while, in Pfdhps gene was 10.9%,19.5%, 9.5% and 2.7% respectively. Of the total 13 haplotypes found in Pfdhfr, 8 were detected for the first time in the state and of the total 26 haplotypes found in Pfdhps, 7 were detected for the fisrt time in the state. The linked quintuple mutation Pfdhfr (N51I-C59R-S108N)-Pfdhps (A437G-K540E) responsible for clinical failure (RIII level of resistance) of SP resistance and A16V-S108T mutation in Pfdhfr responsible for cycloguanil was absent. CONCLUSION: The study has demonstrated a low prevalence of CQ resistance alleles in the study area. Despite the absence of the Pfkelch13 mutations, high prevalence of Pfdhfr and Pfdhps point mutations undermine the efficacy of SP partner drug, thereby threatening the P. falciparum malaria treatment policy. Therefore, continuous molecular and in vivo monitoring of ACT efficacy is warranted in Odisha.


Assuntos
Antimaláricos , Resistência a Medicamentos , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artesunato/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Combinação de Medicamentos , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/uso terapêutico , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Sulfadoxina/farmacologia , Sulfadoxina/uso terapêutico , Índia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...