Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 512
Filtrar
1.
Arch Biochem Biophys ; 756: 110002, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636689

RESUMO

BACKGROUND: Phospholipid scramblase 1 (PLSCR1) is a calcium-dependent endofacial plasma-membrane protein that plays an essential role in multiple human cancers. However, little is known about its role in glioma. This study aimed to investigate PLSCR1 function in glioma, and elucidate its underlying molecular mechanisms. METHODS: PLSCR1 expression in human glioma cell lines (U87MG, U251, LN229, A172 and T98G) and human astrocytes was detected by western blot and qRT-PCR. PLSCR1 was silenced using si-PLSCR1-1 and si-PLSCR1-2 in LN229 and U251 cells. PLSCR1 was overexpressed using the pcDNA-PLSCR1 plasmid in T98G cells. Colony formation, 5-ethynyl-2'-deoxyuridine, flow cytometry and transwell assays were employed for measuring cell proliferation, apoptosis and mobility after PLSCR1 knockdown or overexpression. PLSCR1 function in glycolysis in glioma cells was determined through measuring the extracellular acidification rate, oxygen consumption rate, glucose consumption and lactate production. Besides, immunohistochemistry, western blot and qRT-PCR were utilized to assess mRNA and protein expression. Besides, the effect of PLSCR1 silencing on subcutaneous tumor was also monitored. RESULTS: PLSCR1 expression was upregulated in glioma. The downregulation of PLSCR1 repressed the proliferation, mobility, epithelial-to-mesenchymal transition (EMT) and glycolysis; however, it facilitated apoptosis in glioma cells. Whereas, PLSCR1 upregulation had the opposite effect. Moreover, PLSCR1 promoted the activation of the IL-6/JAK/STAT3 pathway in glioma cells. Besides, IL-6 treatment significantly reversed the function of PLSCR1 silencing on cell proliferation, mobility, EMT, apoptosis and glycolysis. In a nude mouse tumor model, silencing PLSCR1 suppressed tumor growth via inactivating IL-6/JAK/STAT3 signaling. CONCLUSION: Our results indicated that PLSCR1 could facilitate proliferation, mobility, EMT and glycolysis, but repress apoptosis through activating IL-6/JAK/STAT3 signaling in glioma. Therefore, PLSCR1 may function as a potential therapeutic target for glioma.


Assuntos
Proliferação de Células , Glioma , Interleucina-6 , Proteínas de Transferência de Fosfolipídeos , Fator de Transcrição STAT3 , Transdução de Sinais , Humanos , Glioma/metabolismo , Glioma/patologia , Glioma/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Linhagem Celular Tumoral , Animais , Interleucina-6/metabolismo , Camundongos , Camundongos Nus , Janus Quinases/metabolismo , Apoptose , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Glicólise , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C , Movimento Celular
2.
Int J Biol Macromol ; 267(Pt 2): 131240, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583827

RESUMO

Lipids are intimately related to the unique flavor and nutritional values of goat milk. MicroRNAs (miRNA) participate in the regulation of various biological functions, including the synthesis and degradation of lipids. Several studies have shown that miR-103 is involved in the regulation of lipid metabolism, however, the molecular mechanism by which miR-103 regulates lipid metabolism in goat mammary gland is poorly understood. In this study, miR-103 was knocked out in goat mammary epithelial cells (GMECs) by CRISPR/Cas9, and the accumulation of lipid droplets, triglycerides, and cholesterol in the cells was suppressed subsequently. Overexpression or knockdown of miR-103-5p and miR-103-3p in GMECs revealed that it was miR-103-5p that promoted lipid accumulation but not miR-103-3p. In addition, Pantothenate Kinase 3 (PANK3), the host gene of miR-103, and Phospholipid Scramblase 4 (PLSCR4) were identified as the target genes of miR-103-5p by dual fluorescein and miRNA pulldown. Furthermore, we identified that cellular lipid levels were negatively regulated by PANK3 and PLSCR4. Lastly, in miR-103 knockout GMECs, the knockdown of PANK and PLSCR4 rescued the lipid accumulation. These findings suggest that miR-103-5p promotes lipid accumulation by targeting PLSCR4 and the host gene PANK3 in GMECs, providing new insights for the regulation of goat milk lipids via miRNAs.


Assuntos
Células Epiteliais , Cabras , Metabolismo dos Lipídeos , Glândulas Mamárias Animais , MicroRNAs , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Cabras/genética , Metabolismo dos Lipídeos/genética , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Feminino , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/deficiência , Regulação para Cima/genética , Gotículas Lipídicas/metabolismo , Regulação da Expressão Gênica , Triglicerídeos/metabolismo
3.
EMBO J ; 43(10): 2035-2061, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627600

RESUMO

Phosphatidylinositol (PI) is the precursor lipid for the minor phosphoinositides (PPIns), which are critical for multiple functions in all eukaryotic cells. It is poorly understood how phosphatidylinositol, which is synthesized in the ER, reaches those membranes where PPIns are formed. Here, we used VT01454, a recently identified inhibitor of class I PI transfer proteins (PITPs), to unravel their roles in lipid metabolism, and solved the structure of inhibitor-bound PITPNA to gain insight into the mode of inhibition. We found that class I PITPs not only distribute PI for PPIns production in various organelles such as the plasma membrane (PM) and late endosomes/lysosomes, but that their inhibition also significantly reduced the levels of phosphatidylserine, di- and triacylglycerols, and other lipids, and caused prominent increases in phosphatidic acid. While VT01454 did not inhibit Golgi PI4P formation nor reduce resting PM PI(4,5)P2 levels, the recovery of the PM pool of PI(4,5)P2 after receptor-mediated hydrolysis required both class I and class II PITPs. Overall, these studies show that class I PITPs differentially regulate phosphoinositide pools and affect the overall cellular lipid landscape.


Assuntos
Fosfatidilinositóis , Proteínas de Transferência de Fosfolipídeos , Humanos , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Metabolismo dos Lipídeos , Membrana Celular/metabolismo , Células HeLa , Organelas/metabolismo , Endossomos/metabolismo , Animais
4.
Dis Model Mech ; 17(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38436085

RESUMO

P4-ATPases flip lipids from the exoplasmic to cytoplasmic leaflet of cell membranes, a property crucial for many biological processes. Mutations in P4-ATPases are associated with severe inherited and complex human disorders. We determined the expression, localization and ATPase activity of four variants of ATP8A2, the P4-ATPase associated with the neurodevelopmental disorder known as cerebellar ataxia, impaired intellectual development and disequilibrium syndrome 4 (CAMRQ4). Two variants, G447R and A772P, harboring mutations in catalytic domains, expressed at low levels and mislocalized in cells. In contrast, the E459Q variant in a flexible loop displayed wild-type expression levels, Golgi-endosome localization and ATPase activity. The R1147W variant expressed at 50% of wild-type levels but showed normal localization and activity. These results indicate that the G447R and A772P mutations cause CAMRQ4 through protein misfolding. The E459Q mutation is unlikely to be causative, whereas the R1147W may display a milder disease phenotype. Using various programs that predict protein stability, we show that there is a good correlation between the experimental expression of the variants and in silico stability assessments, suggesting that such analysis is useful in identifying protein misfolding disease-associated variants.


Assuntos
Adenosina Trifosfatases , Simulação por Computador , Doenças Genéticas Inatas , Mutação , Proteínas de Transferência de Fosfolipídeos , Humanos , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Ataxia Cerebelar/genética , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/enzimologia , Complexo de Golgi/metabolismo , Células HEK293 , Deficiência Intelectual/genética , Mutação/genética , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Estabilidade Proteica , Transporte Proteico
5.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38499328

RESUMO

Lipid transfer proteins mediate the transfer of lipids between organelle membranes, and the loss of function of these proteins has been linked to neurodegeneration. However, the mechanism by which loss of lipid transfer activity leads to neurodegeneration is not understood. In Drosophila photoreceptors, depletion of retinal degeneration B (RDGB), a phosphatidylinositol transfer protein, leads to defective phototransduction and retinal degeneration, but the mechanism by which loss of this activity leads to retinal degeneration is not understood. RDGB is localized to membrane contact sites through the interaction of its FFAT motif with the ER integral protein VAP. To identify regulators of RDGB function in vivo, we depleted more than 300 VAP-interacting proteins and identified a set of 52 suppressors of rdgB The molecular identity of these suppressors indicates a role of novel lipids in regulating RDGB function and of transcriptional and ubiquitination processes in mediating retinal degeneration in rdgB9 The human homologs of several of these molecules have been implicated in neurodevelopmental diseases underscoring the importance of VAP-mediated processes in these disorders.


Assuntos
Proteínas de Transporte , Proteínas de Drosophila , Degeneração Retiniana , Animais , Humanos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Degeneração Retiniana/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Lipídeos
6.
J Biol Chem ; 300(3): 105755, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364890

RESUMO

XK-related 8 (XKR8), in complex with the transmembrane glycoprotein basigin, functions as a phospholipid scramblase activated by the caspase-mediated cleavage or phosphorylation of its C-terminal tail. It carries a putative phospholipid translocation path of multiple hydrophobic and charged residues in the transmembrane region. It also has a crucial tryptophan at the exoplasmic end of the path that regulates its scrambling activity. We herein investigated the tertiary structure of the human XKR8-basigin complex embedded in lipid nanodiscs at an overall resolution of 3.66 Å. We found that the C-terminal tail engaged in intricate polar and van der Waals interactions with a groove at the cytoplasmic surface of XKR8. These interactions maintained the inactive state of XKR8. Point mutations to disrupt these interactions strongly enhanced the scrambling activity of XKR8, suggesting that the activation of XKR8 is mediated by releasing the C-terminal tail from the cytoplasmic groove. We speculate that the cytoplasmic tail region of XKR8 functions as a plug to prevent the scrambling of phospholipids.


Assuntos
Proteínas Reguladoras de Apoptose , Basigina , Proteínas de Membrana , Proteínas de Transferência de Fosfolipídeos , Humanos , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Basigina/química , Membrana Celular/metabolismo , Lipossomos/química , Proteínas de Membrana/química , Proteínas de Membrana/genética , Nanopartículas/química , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Fosfolipídeos , Conformação Proteica em alfa-Hélice , Imagem Individual de Molécula
7.
Blood ; 143(4): 357-369, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38033286

RESUMO

ABSTRACT: Cell-surface exposure of phosphatidylserine (PS) is essential for phagocytic clearance and blood clotting. Although a calcium-activated phospholipid scramblase (CaPLSase) has long been proposed to mediate PS exposure in red blood cells (RBCs), its identity, activation mechanism, and role in RBC biology and disease remain elusive. Here, we demonstrate that TMEM16F, the long-sought-after RBC CaPLSase, is activated by calcium influx through the mechanosensitive channel PIEZO1 in RBCs. PIEZO1-TMEM16F functional coupling is enhanced in RBCs from individuals with hereditary xerocytosis (HX), an RBC disorder caused by PIEZO1 gain-of-function channelopathy. Enhanced PIEZO1-TMEM16F coupling leads to an increased propensity to expose PS, which may serve as a key risk factor for HX clinical manifestations including anemia, splenomegaly, and postsplenectomy thrombosis. Spider toxin GsMTx-4 and antigout medication benzbromarone inhibit PIEZO1, preventing force-induced echinocytosis, hemolysis, and PS exposure in HX RBCs. Our study thus reveals an activation mechanism of TMEM16F CaPLSase and its pathophysiological function in HX, providing insights into potential treatment.


Assuntos
Anemia Hemolítica Congênita , Cálcio , Feminino , Humanos , Anemia Hemolítica Congênita/genética , Cálcio/metabolismo , Eritrócitos/metabolismo , Hidropisia Fetal/genética , Canais Iônicos/genética , Proteínas de Transferência de Fosfolipídeos/genética
8.
Cytotherapy ; 26(2): 145-156, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38099895

RESUMO

BACKGROUND AIMS: Whole tumor cell lysates (TCLs) obtained from cancer cells previously killed by treatments able to promote immunogenic cell death (ICD) can be efficiently used as a source of tumor-associated antigens for the development of highly efficient dendritic cell (DC)-based vaccines. Herein, the potential role of the interferon (IFN)-inducible protein phospholipid scramblase 1 (PLSCR1) in influencing immunogenic features of dying cancer cells and in enhancing DC-based vaccine efficiency was investigated. METHODS: PLSCR1 expression was evaluated in different mantle-cell lymphoma (MCL) cell lines following ICD induction by 9-cis-retinoic acid (RA)/IFN-α combination, and commercial kinase inhibitor was used to identify the signaling pathway involved in its upregulation. A Mino cell line ectopically expressing PLSCR1 was generated to investigate the potential involvement of this protein in modulating ICD features. Whole TCLs obtained from Mino overexpressing PLSCR1 were used for DC loading, and loaded DCs were employed for generation of tumor antigen-specific cytotoxic T lymphocytes. RESULTS: The ICD inducer RA/IFN-α combination promoted PLSCR1 expression through STAT1 activation. PLSCR1 upregulation favored pro-apoptotic effects of RA/IFN-α treatment and enhanced the exposure of calreticulin on cell surface. Moreover, DCs loaded with TCLs obtained from Mino ectopically expressing PLSCR1 elicited in vitro greater T-cell-mediated antitumor responses compared with DCs loaded with TCLs derived from Mino infected with empty vector or the parental cell line. Conversely, PLSCR1 knock-down inhibited the stimulating activity of DCs loaded with RA/IFN-α-treated TCLs to elicit cyclin D1 peptide-specific cytotoxic T lymphocytes. CONCLUSIONS: Our results indicate that PLSCR1 improved ICD-associated calreticulin exposure induced by RA/IFN-α and was clearly involved in DC-based vaccine efficiency as well, suggesting a potential contribution in the control of pathways associated to DC activation, possibly including those involved in antigen uptake and concomitant antitumor immune response activation.


Assuntos
Antineoplásicos , Vacinas , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Calreticulina/metabolismo , Morte Celular Imunogênica , Antineoplásicos/metabolismo , Antígenos de Neoplasias , Imunidade , Células Dendríticas , Vacinas/metabolismo
9.
Sci Rep ; 13(1): 13813, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620514

RESUMO

High serum levels of triglycerides (TG) and low levels of high-density lipoprotein cholesterol (HDL-C) increase the risk of coronary heart disease in humans. Herein, we first reported that the C3H/HeNSlc (C3H-S) mouse, a C3H/HeN-derived substrain, is a novel model for dyslipidemia. C3H-S showed hypertriglyceridemia and low total cholesterol (TC), HDL-C, and phospholipid (PL) concentrations. To identify the gene locus causing dyslipidemia in C3H-S, we performed genetic analysis. In F2 intercrosses between C3H-S mice and strains with normal serum lipids, the locus associated with serum lipids was identified as 163-168 Mb on chromosome 2. The phospholipid transfer protein (Pltp) gene was a candidate gene within this locus. Pltp expression and serum PLTP activity were markedly lower in C3H-S mice. Pltp expression was negatively correlated with serum TG and positively correlated with serum TC and HDL-C in F2 mice. Genome sequencing analysis revealed that an endogenous retrovirus (ERV) sequence called intracisternal A particle was inserted into intron 12 of Pltp in C3H-S. These results suggest that ERV insertion within Pltp causes aberrant splicing, leading to reduced Pltp expression in C3H-S. This study demonstrated the contribution of C3H-S to our understanding of the relationship between TG, TC, and PL metabolism via PLTP.


Assuntos
Dislipidemias , Proteínas de Transferência de Fosfolipídeos , Animais , Humanos , Camundongos , HDL-Colesterol , Dislipidemias/genética , Retrovirus Endógenos , Camundongos Endogâmicos C3H , Proteínas de Transferência de Fosfolipídeos/genética , Triglicerídeos
10.
Nature ; 619(7971): 819-827, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438530

RESUMO

Understanding protective immunity to COVID-19 facilitates preparedness for future pandemics and combats new SARS-CoV-2 variants emerging in the human population. Neutralizing antibodies have been widely studied; however, on the basis of large-scale exome sequencing of protected versus severely ill patients with COVID-19, local cell-autonomous defence is also crucial1-4. Here we identify phospholipid scramblase 1 (PLSCR1) as a potent cell-autonomous restriction factor against live SARS-CoV-2 infection in parallel genome-wide CRISPR-Cas9 screens of human lung epithelia and hepatocytes before and after stimulation with interferon-γ (IFNγ). IFNγ-induced PLSCR1 not only restricted SARS-CoV-2 USA-WA1/2020, but was also effective against the Delta B.1.617.2 and Omicron BA.1 lineages. Its robust activity extended to other highly pathogenic coronaviruses, was functionally conserved in bats and mice, and interfered with the uptake of SARS-CoV-2 in both the endocytic and the TMPRSS2-dependent fusion routes. Whole-cell 4Pi single-molecule switching nanoscopy together with bipartite nano-reporter assays found that PLSCR1 directly targeted SARS-CoV-2-containing vesicles to prevent spike-mediated fusion and viral escape. A PLSCR1 C-terminal ß-barrel domain-but not lipid scramblase activity-was essential for this fusogenic blockade. Our mechanistic studies, together with reports that COVID-associated PLSCR1 mutations are found in some susceptible people3,4, identify an anti-coronavirus protein that interferes at a late entry step before viral RNA is released into the host-cell cytosol.


Assuntos
COVID-19 , Proteínas de Transferência de Fosfolipídeos , SARS-CoV-2 , Animais , Humanos , Camundongos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Quirópteros , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/prevenção & controle , COVID-19/virologia , Sequenciamento do Exoma , Hepatócitos/imunologia , Hepatócitos/metabolismo , Interferon gama/imunologia , Pulmão/imunologia , Pulmão/metabolismo , Fusão de Membrana , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/imunologia , Proteínas de Transferência de Fosfolipídeos/metabolismo , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Internalização do Vírus
11.
J Clin Invest ; 133(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37289545

RESUMO

Exaggerated Type 2 immune responses play critical roles in the pathogenesis of a variety of diseases including asthma, allergy, and pulmonary fibrosis. Recent studies have highlighted the importance of innate type 2 immune responses and innate lymphoid 2 cells (ILC2s) in these disorders. However, the mechanisms that control the development of pulmonary innate type 2 responses (IT2IR) and the recruitment and/or activation of ILC2 cells are poorly understood. In mouse models of pulmonary IT2IR, we demonstrated that phospholipid scramblase-1 (PLSCR1), a type II transmembrane protein that mediates bidirectional and nonspecific translocation of phospholipids between the inner and outer leaflets of the plasma membrane, was a critical regulator of IT2IR in the lung. We further suggested that (a) PLSCR1 bound to and physically interacted with chemoattractant receptor-homologous molecule(CRTH2), which is a G-protein-coupled receptor that is expressed on TH2 cells and on multiple immune cells and is commonly used to identify ILC2 cells, and (b) the effects of PLSCR1 on ILC2 activation and IT2IR were mediated via CRTH2-dependent mechanisms. Overall, our studies demonstrated that PLSCR1 played an essential role in the pathogenesis of ILC2 responses, providing critical insights into biology and disease pathogenesis and identifying targets that can be manipulated in attempts to control IT2IR in chronic diseases such as asthma.


Assuntos
Asma , Imunidade Inata , Animais , Camundongos , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Linfócitos , Inflamação/patologia , Pulmão/patologia , Citocinas
12.
EMBO J ; 42(14): e111790, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37211968

RESUMO

The mature mammalian brain connectome emerges during development via the extension and pruning of neuronal connections. Glial cells have been identified as key players in the phagocytic elimination of neuronal synapses and projections. Recently, phosphatidylserine has been identified as neuronal "eat-me" signal that guides elimination of unnecessary input sources, but the associated transduction systems involved in such pruning are yet to be described. Here, we identified Xk-related protein 8 (Xkr8), a phospholipid scramblase, as a key factor for the pruning of axons in the developing mammalian brain. We found that mouse Xkr8 is highly expressed immediately after birth and required for phosphatidylserine exposure in the hippocampus. Mice lacking Xkr8 showed excess excitatory nerve terminals, increased density of cortico-cortical and cortico-spinal projections, aberrant electrophysiological profiles of hippocampal neurons, and global brain hyperconnectivity. These data identify phospholipid scrambling by Xkr8 as a central process in the labeling and discrimination of developing neuronal projections for pruning in the mammalian brain.


Assuntos
Proteínas Reguladoras de Apoptose , Proteínas de Transferência de Fosfolipídeos , Animais , Camundongos , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Fosfatidilserinas/metabolismo , Axônios/metabolismo , Plasticidade Neuronal , Mamíferos , Proteínas de Membrana/metabolismo
13.
Blood Adv ; 7(16): 4233-4246, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36930803

RESUMO

Platelets use signal transduction pathways facilitated by class I phosphatidylinositol transfer proteins (PITPs). The 2 mammalian class I PITPs, PITPα and PITPß, are single PITP domain soluble proteins that are encoded by different genes and share 77% sequence identity, although their individual roles in mammalian biology remain uncharacterized. These proteins are believed to shuttle phosphatidylinositol and phosphatidylcholine between separate intracellular membrane compartments, thereby regulating phosphoinositide synthesis and second messenger formation. Previously, we observed that platelet-specific deletion of PITPα, the predominantly expressed murine PITP isoform, had no effect on hemostasis but impaired tumor metastasis formation and disrupted phosphoinositide signaling. Here, we found that mice lacking the less expressed PITPß in their platelets exhibited a similar phenotype. However, in contrast to PITPα-null platelet lysates, which have impaired lipid transfer activity, PITPß-null platelet lysates have essentially normal lipid transfer activity, although both isoforms contribute to phosphoinositide synthesis in vitro. Moreover, we found that platelet-specific deletion of both PITPs led to ex vivo platelet aggregation/secretion and spreading defects, impaired tail bleeding, and profound tumor dissemination. Our study also demonstrated that PITP isoforms are required to maintain endogenous phosphoinositide PtdInsP2 levels and agonist-stimulated second messenger formation. The data shown here demonstrate that the 2 isoforms are functionally overlapping and that a single isoform is able to maintain the homeostasis of platelets. However, both class I PITP isoforms contribute to phosphoinositide signaling in platelets through distinct biochemical mechanisms or different subcellular domains.


Assuntos
Plaquetas , Proteínas de Transferência de Fosfolipídeos , Animais , Camundongos , Tempo de Sangramento , Plaquetas/metabolismo , Deleção de Genes , Homeostase/genética , Camundongos Endogâmicos C57BL , Neoplasias/genética , Fosfatidilinositóis/biossíntese , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais/genética , Trombose/genética
14.
J Clin Invest ; 133(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36951953

RESUMO

Endothelial cells (ECs) normally form an anticoagulant surface under physiological conditions, but switch to support coagulation following pathogenic stimuli. This switch promotes thrombotic cardiovascular disease. To generate thrombin at physiologic rates, coagulation proteins assemble on a membrane containing anionic phospholipid, most notably phosphatidylserine (PS). PS can be rapidly externalized to the outer cell membrane leaflet by phospholipid "scramblases," such as TMEM16F. TMEM16F-dependent PS externalization is well characterized in platelets. In contrast, how ECs externalize phospholipids to support coagulation is not understood. We employed a focused genetic screen to evaluate the contribution of transmembrane phospholipid transport on EC procoagulant activity. We identified 2 TMEM16 family members, TMEM16F and its closest paralog, TMEM16E, which were both required to support coagulation on ECs via PS externalization. Applying an intravital laser-injury model of thrombosis, we observed, unexpectedly, that PS externalization was concentrated at the vessel wall, not on platelets. TMEM16E-null mice demonstrated reduced vessel-wall-dependent fibrin formation. The TMEM16 inhibitor benzbromarone prevented PS externalization and EC procoagulant activity and protected mice from thrombosis without increasing bleeding following tail transection. These findings indicate the activated endothelial surface is a source of procoagulant phospholipid contributing to thrombus formation. TMEM16 phospholipid scramblases may be a therapeutic target for thrombotic cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Trombose , Animais , Camundongos , Plaquetas/metabolismo , Doenças Cardiovasculares/metabolismo , Células Endoteliais/metabolismo , Camundongos Knockout , Fosfatidilserinas , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo , Trombose/patologia
15.
Fetal Diagn Ther ; 49(11-12): 479-485, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36476632

RESUMO

INTRODUCTION: Bruck syndrome is a rare autosomal recessive disease characterized by multiple joint contractures, bone fragility, and fractures. Two genes have been associated with Bruck syndrome, FKBP10 and PLOD2, though they are phenotypically indistinguishable. CASE PRESENTATION: We present a prenatally diagnosed case of Bruck syndrome in a young multiparous woman, with no notable personal, family or obstetric history. A 12-week ultrasound raised the suspicion of short long bones, subsequently confirmed at 16 weeks. In addition, bilateral fixed flexion of the elbow, wrist, and knee joints as well as talipes was observed. Chromosomal SNP microarray analysis (0.2 Mb) detected a homozygous deletion at chromosome 3, band q24, involving a part of PLOD2 to a part of PLSCR4. At mid-trimester morphology, bilateral intrauterine fractures of the humerus and femur were evident. In the late third trimester, a fetal echocardiogram noted enlargement of the right heart with severe tricuspid regurgitation in combination with pulmonary insufficiency and a restrictive arterial duct. The potential risk of premature closure of the ductus arteriosus near term led to delivery by emergency caesarean section. CONCLUSION: To our knowledge, this is the first case of Bruck syndrome prenatally confirmed by chromosomal microarray analysis and the second reported case with an extra-skeletal abnormality. This case highlights the importance of comprehensive fetal morphological assessment during pregnancy as diagnosis of an additional abnormality has the potential to impact both management and prognosis.


Assuntos
Artrogripose , Osteogênese Imperfeita , Humanos , Gravidez , Feminino , Artrogripose/complicações , Artrogripose/diagnóstico , Artrogripose/genética , Homozigoto , Cesárea , Deleção de Sequência , Osteogênese Imperfeita/complicações , Osteogênese Imperfeita/diagnóstico , Osteogênese Imperfeita/genética , Proteínas de Transferência de Fosfolipídeos/genética
16.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36362012

RESUMO

Bacterial lipopolysaccharides (LPS, endotoxins) are found in high amounts in the gut lumen. LPS can cross the gut barrier and pass into the blood (endotoxemia), leading to low-grade inflammation, a common scheme in metabolic diseases. Phospholipid transfer protein (PLTP) can transfer circulating LPS to plasma lipoproteins, thereby promoting its detoxification. However, the impact of PLTP on the metabolic fate and biological effects of gut-derived LPS is unknown. This study aimed to investigate the influence of PLTP on low-grade inflammation, obesity and insulin resistance in relationship with LPS intestinal translocation and metabolic endotoxemia. Wild-type (WT) mice were compared with Pltp-deficient mice (Pltp-KO) after a 4-month high-fat (HF) diet or oral administration of labeled LPS. On a HF diet, Pltp-KO mice showed increased weight gain, adiposity, insulin resistance, lipid abnormalities and inflammation, together with a higher exposure to endotoxemia compared to WT mice. After oral administration of LPS, PLTP deficiency led to increased intestinal translocation and decreased association of LPS to lipoproteins, together with an altered catabolism of triglyceride-rich lipoproteins (TRL). Our results show that PLTP, by modulating the intestinal translocation of LPS and plasma processing of TRL-bound LPS, has a major impact on low-grade inflammation and the onset of diet-induced metabolic disorders.


Assuntos
Dieta Hiperlipídica , Endotoxemia , Inflamação , Resistência à Insulina , Aumento de Peso , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Endotoxemia/induzido quimicamente , Endotoxemia/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Lipopolissacarídeos/efeitos adversos , Lipoproteínas/metabolismo , Obesidade/etiologia , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Aumento de Peso/fisiologia
17.
Eur Biophys J ; 51(7-8): 579-593, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36260146

RESUMO

Human phospholipid scramblase 1 (hPLSCR1) is a 37 kDa multi-compartmental protein, which was initially identified as a Ca2+-dependent phospholipid translocator upon localizing to the plasma membrane. However, under certain physiological conditions, hPLSCR1 is localized to the nucleus where it interacts with the IP3R1 promoter (IP3R1P) and regulates its expression. In this study, the DNA binding properties of hPLSCR1 and ∆100-hPLSCR1 (N-terminal 100 amino acids deleted from hPLSCR1) were investigated by using a synthetic IP3R1P oligonucleotide and nonspecific scrambled-sequence oligonucleotides. Our results revealed that hPLSCR1 and ∆100-hPLSCR1 were bound to IP3R1P oligos in a 1:1 stoichiometry. In addition, ∆160-hPLSCR1 could not bind to IP3R1P oligonucleotide suggesting that the proposed DNA binding motif is the actual DNA binding motif. Specific binding of hPLSCR1 and ∆100-hPLSCR1 to IP3R1P oligos was demonstrated by fluorescence anisotropy assay. ITC analysis revealed that hPLSCR1 binds to IP3R1P oligos with Kd = 42.91 ± 0.23 nM. Binding of IP3R1P oligos induces ß-sheet formation in hPLSCR1 and increases the thermal stability of hPLSCR1 and ∆100-hPLSCR1. Binding of IP3R1P oligos to hPLSCR1 altered the B-form of the DNA, which was not observed with ∆100-hPLSCR1. Results from this study suggest that (i) ∆100-hPLSCR1 possesses a minimal DNA binding region and (ii) structural alterations of IP3R1P oligo by hPLSCR1 require proline-rich N-terminal region.


Assuntos
Proteínas de Transferência de Fosfolipídeos , Fosfolipídeos , Humanos , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo , Membrana Celular/metabolismo , Domínios Proteicos , Oligonucleotídeos
18.
Cell Death Dis ; 13(10): 893, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273194

RESUMO

Noninflammatory clearance of dying cells by professional phagocytes, termed efferocytosis, is fundamental in both homeostasis and inflammatory fibrosis disease but has not been confirmed to occur in chronic pancreatitis (CP). Here, we investigated whether efferocytosis constitutes a novel regulatory target in CP and its mechanisms. PRSS1 transgenic (PRSS1Tg) mice were treated with caerulein to mimic CP development. Phospholipid metabolite profiling and epigenetic assays were performed with PRSS1Tg CP models. The potential functions of Atp8b1 in CP model were clarified using Atp8b1-overexpressing adeno-associated virus, immunofluorescence, enzyme-linked immunosorbent assay(ELISA), and lipid metabolomic approaches. ATAC-seq combined with RNA-seq was then used to identify transcription factors binding to the Atp8b1 promoter, and ChIP-qPCR and luciferase assays were used to confirm that the identified transcription factor bound to the Atp8b1 promoter, and to identify the specific binding site. Flow cytometry was performed to analyze the proportion of pancreatic macrophages. Decreased efferocytosis with aggravated inflammation was identified in CP. The lysophosphatidylcholine (LPC) pathway was the most obviously dysregulated phospholipid pathway, and LPC and Atp8b1 expression gradually decreased during CP development. H3K27me3 ChIP-seq showed that increased Atp8b1 promoter methylation led to transcriptional inhibition. Atp8b1 complementation substantially increased the LPC concentration and improved CP outcomes. Bhlha15 was identified as a transcription factor that binds to the Atp8b1 promoter and regulates phospholipid metabolism. Our study indicates that the acinar Atp8b1/LPC pathway acts as an important "find-me" signal for macrophages and plays a protective role in CP, with Atp8b1 transcription promoted by the acinar cell-specific transcription factor Bhlha15. Bhlha15, Atp8b1, and LPC could be clinically translated into valuable therapeutic targets to overcome the limitations of current CP therapies.


Assuntos
Adenosina Trifosfatases , Lisofosfatidilcolinas , Macrófagos , Pancreatite Crônica , Animais , Camundongos , Células Acinares/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Ceruletídeo/toxicidade , Histonas/metabolismo , Inflamação/metabolismo , Lisofosfatidilcolinas/genética , Lisofosfatidilcolinas/metabolismo , Macrófagos/metabolismo , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fatores de Transcrição/metabolismo
19.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077184

RESUMO

Phospholipid scramblase 4 (PLSCR4) is a member of a conserved enzyme family with high relevance for the remodeling of phospholipid distribution in the plasma membrane and the regulation of cellular signaling. While PLSCR1 and -3 are involved in the regulation of adipose-tissue expansion, the role of PLSCR4 is so far unknown. PLSCR4 is significantly downregulated in an adipose-progenitor-cell model of deficiency for phosphatase and tensin homolog (PTEN). PTEN acts as a tumor suppressor and antagonist of the growth and survival signaling phosphoinositide 3-kinase (PI3K)/AKT cascade by dephosphorylating phosphatidylinositol-3,4,5-trisphosphate (PIP3). Patients with PTEN germline deletion frequently develop lipomas. The underlying mechanism for this aberrant adipose-tissue growth is incompletely understood. PLSCR4 is most highly expressed in human adipose tissue, compared with other phospholipid scramblases, suggesting a specific role of PLSCR4 in adipose-tissue biology. In cell and mouse models of lipid accumulation, we found PLSCR4 to be downregulated. We observed increased adipogenesis in PLSCR4-knockdown adipose progenitor cells, while PLSCR4 overexpression attenuated lipid accumulation. PLSCR4 knockdown was associated with increased PIP3 levels and the activation of AKT. Our results indicated that PLSCR4 is a regulator of PI3K/AKT signaling and adipogenesis and may play a role in PTEN-associated adipose-tissue overgrowth and lipoma formation.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adipócitos/metabolismo , Animais , Humanos , Camundongos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis , Proteínas de Transferência de Fosfolipídeos/genética
20.
Commun Biol ; 5(1): 990, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123525

RESUMO

TMEM16F is a Ca2+-activated phospholipid scramblase in the TMEM16 family of membrane proteins. Unlike other TMEM16s exhibiting a membrane-exposed hydrophilic groove that serves as a translocation pathway for lipids, the experimentally determined structures of TMEM16F shows the groove in a closed conformation even under conditions of maximal scramblase activity. It is currently unknown if/how TMEM16F groove can open for lipid scrambling. Here we describe the analysis of ~400 µs all-atom molecular dynamics (MD) simulations of the TMEM16F revealing an allosteric mechanism leading to an open-groove, lipid scrambling competent state of the protein. The groove opens into a continuous hydrophilic conduit that is highly similar in structure to that seen in other activated scramblases. The allosteric pathway connects this opening to an observed destabilization of the Ca2+ ion bound at the distal site near the dimer interface, to the dynamics of specific protein regions that produces the open-groove state to scramble phospholipids.


Assuntos
Anoctaminas , Proteínas de Transferência de Fosfolipídeos , Anoctaminas/química , Anoctaminas/genética , Anoctaminas/metabolismo , Membrana Celular/metabolismo , Condutividade Elétrica , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...