Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672907

RESUMO

HKT channels are a plant protein family involved in sodium (Na+) and potassium (K+) uptake and Na+-K+ homeostasis. Some HKTs underlie salt tolerance responses in plants, while others provide a mechanism to cope with short-term K+ shortage by allowing increased Na+ uptake under K+ starvation conditions. HKT channels present a functionally versatile family divided into two classes, mainly based on a sequence polymorphism found in the sequences underlying the selectivity filter of the first pore loop. Physiologically, most class I members function as sodium uniporters, and class II members as Na+/K+ symporters. Nevertheless, even within these two classes, there is a high functional diversity that, to date, cannot be explained at the molecular level. The high complexity is also reflected at the regulatory level. HKT expression is modulated at the level of transcription, translation, and functionality of the protein. Here, we summarize and discuss the structure and conservation of the HKT channel family from algae to angiosperms. We also outline the latest findings on gene expression and the regulation of HKT channels.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas de Plantas/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Simportadores/metabolismo , Proteínas de Transporte de Cátions/classificação , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Transporte de Íons , Magnoliopsida/genética , Magnoliopsida/metabolismo , Microalgas/genética , Microalgas/metabolismo , Filogenia , Proteínas de Plantas/genética , Simportadores/classificação , Simportadores/genética
2.
Biomed Res Int ; 2020: 2690760, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32596286

RESUMO

The K+ transporter/high-affinity K+/K+ uptake (KT/HAK/KUP) transporters dominate K+ uptake, transport, and allocation that play a pivotal role in mineral homeostasis and plant adaptation to adverse abiotic stresses. However, molecular mechanisms towards K+ nutrition in forest trees are extremely rare, especially in willow. In this study, we identified 22 KT/HAK/KUP transporter genes in purple osier willow (designated as SpuHAK1 to SpuHAK22) and examined their expression under K+ deficiency, drought, and salt stress conditions. Both transcriptomic and quantitative real-time PCR (qRT-PCR) analyses demonstrated that SpuHAKs were predominantly expressed in stems, and the expression levels of SpuHAK1, SpuHAK2, SpuHAK3, SpuHAK7, and SpuHAK8 were higher at the whole plant level, whereas SpuHAK9, SpuHAK11, SpuHAK20, and SpuHAK22 were hardly detected in tested tissues. In addition, both K+ deficiency and salt stress decreased the tissue K+ content, while drought increased the tissue K+ content in purple osier plant. Moreover, SpuHAK genes were differentially responsive to K+ deficiency, drought, and salt stresses in roots. K+ deficiency and salt stress mainly enhanced the expression level of responsive SpuHAK genes. Fifteen putative cis-acting regulatory elements, including the stress response, hormone response, circadian regulation, and nutrition and development, were identified in the promoter region of SpuHAK genes. Our findings provide a foundation for further functional characterization of KT/HAK/KUP transporters in forest trees and may be useful for breeding willow rootstocks that utilize potassium more efficiently.


Assuntos
Proteínas de Transporte de Cátions , Proteínas de Plantas , Potássio/metabolismo , Salix , Estresse Salino/genética , Proteínas de Transporte de Cátions/classificação , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salix/genética , Salix/metabolismo , Salix/fisiologia , Transcriptoma/genética
3.
Metallomics ; 12(4): 617-630, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32195517

RESUMO

Metal transport processes are relatively poorly understood in algae in comparison to higher plants and other eukaryotes. A screen of genomes from 33 taxonomically diverse algal species was conducted to identify members of the Cation Diffusion Facilitator (CDF) family of metal ion transporter. All algal genomes contained at least one CDF gene with four species having >10 CDF genes (median of 5 genes per genome), further confirming that this is a ubiquitous gene family. Phylogenetic analysis suggested a CDF gene organisation of five groups, which includes Zn-CDF, Fe/Zn-CDF and Mn-CDF groups, consistent with previous phylogenetic analyses, and two functionally undefined groups. One of these undefined groups was algal specific although excluded chlorophyte and rhodophyte sequences. The majority of sequences (22 out of 26 sequences) from this group had a putative ion binding site motif within transmembrane domain 2 and 5 that was distinct from other CDF proteins, such that alanine or serine replaced the conserved histidine residue. The phylogenetic grouping was supported by sequence cluster analysis. Yeast heterologous expression of CDF proteins from Chlamydomonas reinhardtii indicated Zn2+ and Co2+ transport function by CrMTP1, and Mn2+ transport function by CrMTP2, CrMTP3 and CrMTP4, which validated the phylogenetic prediction. However, the Mn-CDF protein CrMTP3 was also able to provide zinc and cobalt tolerance to the Zn- and Co-sensitive zrc1 cot1 yeast strain. There is wide diversity of CDF transporters within the algae lineage, and some of these genes may be attractive targets for future applications of metal content engineering in plants or microorganisms.


Assuntos
Proteínas de Transporte de Cátions/genética , Cobalto/metabolismo , Genômica/métodos , Ferro/metabolismo , Manganês/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/classificação , Proteínas de Transporte de Cátions/metabolismo , Carofíceas/classificação , Carofíceas/genética , Carofíceas/metabolismo , Clorófitas/classificação , Clorófitas/genética , Clorófitas/metabolismo , Diatomáceas/classificação , Diatomáceas/genética , Diatomáceas/metabolismo , Haptófitas/classificação , Haptófitas/genética , Haptófitas/metabolismo , Transporte de Íons , Filogenia , Rodófitas/classificação , Rodófitas/genética , Rodófitas/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
4.
Biochim Biophys Acta Biomembr ; 1862(12): 183208, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32004521

RESUMO

The solute carrier 18B1 (SLC18B1) is the most recently identified gene of the vesicular amine transporter family and is conserved in the animal kingdom from insects to humans. Proteoliposomes containing the purified human SLC18B1 protein transport not only monoamines, but also polyamines, such as spermidine (Spd) and spermine (Spm), using an electrochemical gradient of H+ established by vacuolar H+-ATPase (V-ATPase) as the driving force. SLC18B1 gene knockdown abolished the exocytosis of polyamines from mast cells, which affected the secretion of histamine. SLC18B1 gene knockout decreased polyamine levels by ~20% in the brain, and impaired short- and long-term memory. Thus, the SLC18B1 protein is responsible for the vesicular storage and release of polyamines, and functions as a vesicular polyamine transporter (VPAT). VPAT may define when, where, and how polyamine-mediated chemical transmission occurs, providing insights into the more versatile and complex features of amine-mediated chemical transmission than currently considered.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Poliaminas/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Transporte de Cátions/classificação , Proteínas de Transporte de Cátions/genética , Exocitose , Humanos , Neurotransmissores/metabolismo , Filogenia , Especificidade por Substrato , Vesículas Sinápticas/metabolismo
5.
BMC Genomics ; 20(1): 83, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30678642

RESUMO

BACKGROUND: Sugarcane served as the model plant for discovery of the C4 photosynthetic pathway. Magnesium is the central atom of chlorophyll, and thus is considered as a critical nutrient for plant development and photosynthesis. In plants, the magnesium transporter (MGT) family is composed of a number of membrane proteins, which play crucial roles in maintaining Mg homeostasis. However, to date there is no information available on the genomics of MGTs in sugarcane due to the complexity of the Saccharum genome. RESULTS: Here, we identified 10 MGTs from the Saccharum spontaneum genome. Phylogenetic analysis of MGTs suggested that the MGTs contained at least 5 last common ancestors before the origin of angiosperms. Gene structure analysis suggested that MGTs family of dicotyledon may be accompanied by intron loss and pseudoexon phenomena during evolution. The pairwise synonymous substitution rates corresponding to a divergence time ranged from 142.3 to 236.6 Mya, demonstrating that the MGTs are an ancient gene family in plants. Both the phylogeny and Ks analyses indicated that SsMGT1/SsMGT2 originated from the recent ρWGD, and SsMGT7/SsMGT8 originated from the recent σ WGD. These 4 recently duplicated genes were shown low expression levels and assumed to be functionally redundant. MGT6, MGT9 and MGT10 weredominant genes in the MGT family and werepredicted to be located inthe chloroplast. Of the 3 dominant MGTs, SsMGT6 expression levels were found to be induced in the light period, while SsMGT9 and SsMTG10 displayed high expression levels in the dark period. These results suggested that SsMGT6 may have a function complementary to SsMGT9 and SsMTG10 that follows thecircadian clock for MGT in the leaf tissues of S. spontaneum. MGT3, MGT7 and MGT10 had higher expression levels Insaccharum officinarum than in S. spontaneum, suggesting their functional divergence after the split of S. spontaneum and S. officinarum. CONCLUSIONS: This study of gene evolution and expression of MGTs in S. spontaneum provided basis for the comprehensive genomic study of the entire MGT genes family in Saccharum. The results are valuable for further functional analyses of MGT genes and utilization of the MGTs for Saccharum genetic improvement.


Assuntos
Proteínas de Transporte de Cátions/genética , Evolução Molecular , Magnésio/metabolismo , Família Multigênica , Proteínas de Plantas/genética , Saccharum/genética , Proteínas de Transporte de Cátions/classificação , Proteínas de Transporte de Cátions/metabolismo , Ritmo Circadiano , Éxons , Expressão Gênica/efeitos dos fármacos , Genes de Plantas , Genômica , Íntrons , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Saccharum/efeitos dos fármacos , Saccharum/crescimento & desenvolvimento , Saccharum/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(9): 2108-2113, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440418

RESUMO

The copper-transporting P1B-ATPases, which play a key role in cellular copper homeostasis, have been divided traditionally into two subfamilies, the P1B-1-ATPases or CopAs and the P1B-3-ATPases or CopBs. CopAs selectively export Cu+ whereas previous studies and bioinformatic analyses have suggested that CopBs are specific for Cu2+ export. Biochemical and spectroscopic characterization of Sphaerobacter thermophilus CopB (StCopB) show that, while it does bind Cu2+, the binding site is not the prototypical P1B-ATPase transmembrane site and does not involve sulfur coordination as proposed previously. Most important, StCopB exhibits metal-stimulated ATPase activity in response to Cu+, but not Cu2+, indicating that it is actually a Cu+ transporter. X-ray absorption spectroscopic studies indicate that Cu+ is coordinated by four sulfur ligands, likely derived from conserved cysteine and methionine residues. The histidine-rich N-terminal region of StCopB is required for maximal activity, but is inhibitory in the presence of divalent metal ions. Finally, reconsideration of the P1B-ATPase classification scheme suggests that the P1B-1- and P1B-3-ATPase subfamilies both comprise Cu+ transporters. These results are completely consistent with the known presence of only Cu+ within the reducing environment of the cytoplasm, which should eliminate the need for a Cu2+ P1B-ATPase.


Assuntos
Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/classificação , Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Variação Genética , Ligação Proteica , Alinhamento de Sequência , Enxofre
7.
Plant Mol Biol ; 95(3): 269-278, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28871377

RESUMO

KEY MESSAGE: ZmMGT10 was specifically expressed in maize roots and induced by a deficiency of magnesium. Overexpression of ZmMGT10 restored growth deficiency of the Salmonella typhimurium MM281 strain and enhanced the tolerance in Arabidopsis to stress induced by low magnesium levels by increasing uptake of Mg2+ via roots. CorA/MRS2/MGT-type Mg2+ transporters play a significant role in maintaining magnesium (Mg) homeostasis in plants. Although the maize CorA/MRS2/MGT family comprises of 12 members, currently no member has been functionally characterized. Here, we report the isolation and functional characterization of ZmMGT10 from the maize MRS2/MGT gene family. ZmMGT10 has a typical structure feature which includes two conserved TMs near the C-terminal end and an altered AMN tripeptide motif. The high sequence similarity and close phylogenetic relationship indicates that ZmMGT10 is probably the counterpart of Arabidopsis AtMGT6. The complementation of the Salmonella typhimurium mutated MM281 strain indicates that ZmMGT10 possesses the ability to transport Mg2+. ZmMGT10 was specifically expressed in the plant roots and it can be stimulated by a deficiency of Mg. Transgenic Arabidopsis plants which overexpressed ZmMGT10 grew more vigorously than wild-type plants under low Mg conditions, exhibited by longer root length, higher plant fresh weight and chlorophyll content, suggesting ZmMGT10 was essential for plant growth and development under low Mg conditions. Further investigations found that high accumulation of Mg2+ occurred in transgenic plants attributed to improved Mg2+ uptake and thereby enhanced tolerance to Mg deficiency. Results from this investigation illustrate that ZmMGT10 is a Mg transporter of maize which can enhance the tolerance to Mg deficient conditions by improving Mg2+ uptake in the transgenic plants of Arabidopsis.


Assuntos
Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Magnésio/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Transporte de Cátions/classificação , Proteínas de Transporte de Cátions/genética , Clorofila/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Zea mays/genética
8.
Biochem J ; 473(16): 2531-44, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27274087

RESUMO

There is growing evidence that zinc and its transporters are involved in cell migration during development and in cancer. In the present study, we show that zinc transporter ZIP10 (SLC39A10) stimulates cell motility and proliferation, both in mammalian cells and in the zebrafish embryo. This is associated with inactivation of GSK (glycogen synthase kinase)-3α and -3ß and down-regulation of E-cadherin (CDH1). Morpholino-mediated knockdown of zip10 causes delayed epiboly and deformities of the head, eye, heart and tail. Furthermore, zip10 deficiency results in overexpression of cdh1, zip6 and stat3, the latter gene product driving transcription of both zip6 and zip10 The non-redundant requirement of Zip6 and Zip10 for epithelial to mesenchymal transition (EMT) is consistent with our finding that they exist as a heteromer. We postulate that a subset of ZIPs carrying prion protein (PrP)-like ectodomains, including ZIP6 and ZIP10, are integral to cellular pathways and plasticity programmes, such as EMT.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Movimento Celular , Desenvolvimento Embrionário , Zinco/metabolismo , Animais , Células CHO , Proteínas de Transporte de Cátions/classificação , Adesão Celular , Proliferação de Células , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Cricetulus , Transição Epitelial-Mesenquimal , Feminino , Humanos , Células MCF-7 , Masculino , Filogenia , Peixe-Zebra/embriologia
9.
Proteins ; 82(10): 2797-811, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25043943

RESUMO

The amino acid-polyamine-organoCation (APC) superfamily is the second largest superfamily of secondary carriers currently known. In this study, we establish homology between previously recognized APC superfamily members and proteins of seven new families. These families include the PAAP (Putative Amino Acid Permease), LIVCS (Branched Chain Amino Acid:Cation Symporter), NRAMP (Natural Resistance-Associated Macrophage Protein), CstA (Carbon starvation A protein), KUP (K⁺ Uptake Permease), BenE (Benzoate:H⁺ Virginia Symporter), and AE (Anion Exchanger). The topology of the well-characterized human Anion Exchanger 1 (AE1) conforms to a UraA-like topology of 14 TMSs (12 α-helical TMSs and 2 mixed coil/helical TMSs). All functionally characterized members of the APC superfamily use cation symport for substrate accumulation except for some members of the AE family which frequently use anion:anion exchange. We show how the different topologies fit into the framework of the common LeuT-like fold, defined earlier (Proteins. 2014 Feb;82(2):336-46), and determine that some of the new members contain previously undocumented topological variations. All new entries contain the two 5 or 7 TMS APC superfamily repeat units, sometimes with extra TMSs at the ends, the variations being greatest within the CstA family. New, functionally characterized members transport amino acids, peptides, and inorganic anions or cations. Except for anions, these are typical substrates of established APC superfamily members. Active site TMSs are rich in glycyl residues in variable but conserved constellations. This work expands the APC superfamily and our understanding of its topological variations.


Assuntos
Modelos Moleculares , Proteínas de Transporte de Cátions Orgânicos/química , Motivos de Aminoácidos , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/classificação , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Antiporters/química , Antiporters/classificação , Antiporters/genética , Antiporters/metabolismo , Transporte Biológico , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/classificação , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Análise por Conglomerados , Biologia Computacional , Bases de Dados de Proteínas , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/classificação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Internet , Proteínas de Transporte de Cátions Orgânicos/classificação , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Software , Terminologia como Assunto , Transativadores/química , Transativadores/classificação , Transativadores/genética , Transativadores/metabolismo
10.
Cell Mol Life Sci ; 71(17): 3281-95, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24710731

RESUMO

Zinc transporters, the Zrt-, Irt-like protein (ZIP) family and the Zn transporter (ZnT) family transporters, are found in all aspects of life. Increasing evidence has clarified the molecular mechanism, in which both transporters play critical roles in cellular and physiological functions via mobilizing zinc across the cellular membrane. In the last decade, mutations in ZIP and ZnT transporter genes have been shown to be implicated in a number of inherited human diseases. Moreover, dysregulation of expression and activity of both transporters has been suggested to be involved in the pathogenesis and progression of chronic diseases including cancer, immunological impairment, and neurodegenerative diseases, although comprehensive understanding is far from complete. The diverse phenotypes of diseases related to ZIP and ZnT transporters reflect the multifarious biological functions of both transporters. The present review summarizes the current understanding of ZIP and ZnT transporter functions from the standpoint of human health and diseases. The study of zinc transporters is currently of great clinical interest.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Zinco/metabolismo , Encéfalo/metabolismo , Proteínas de Transporte de Cátions/classificação , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Dieta , Suplementos Nutricionais , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Homeostase , Humanos , Sistema Imunitário/metabolismo , Absorção Intestinal , Modelos Moleculares , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Polimorfismo de Nucleotídeo Único , Zinco/deficiência , Zinco/farmacocinética
11.
Physiol Plant ; 151(3): 339-47, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24627964

RESUMO

Molecular understanding of cadmium (Cd) transport in indica rice (Oryza sativa) is still insufficient, although indica rice generally has a potential to accumulate higher Cd in shoots and grains than japonica rice. We have previously demonstrated that OsLCT1 is a Cd transporter gene responsible for grain Cd accumulation in the japonica model cultivar Nipponbare. In this study, we isolated OsLCT1 cDNA from Kasalath, a model indica (aus subgroup) cultivar and conducted cation transport activity assays in yeast and mRNA expression analysis in plants. The deduced amino acid sequence of Kasalath OsLCT1 is 91.2% identical and 93.8% similar to that of Nipponbare OsLCT1. We established the yeast heterologous system expressing the Kasalath allele of OsLCT1. Elemental profiling of the yeast cells suggested an efflux activity of Kasalath OsLCT1 for Cd, K, Mg, Ca and Mn, but not for Fe, Zn, Cu and Na. This substrate specificity was identical to that of the Nipponbare version. Quantitative real time-polymerase chain reaction (RT-PCR) showed that expression of OsLCT1 in Kasalath was higher in reproductive stage than in vegetative stage. The expression level of OsLCT1 was significantly higher in Kasalath than in Nipponbare. Phylogenetic analysis found several LCT1-like genes only in grass plants. OsLCT1 is the sole copy in the rice genome and is conserved among each rice subgroup. These newly found low-affinity cation transporter (LCT) homologs will provide a basis for further understanding of LCT-mediated Cd transport.


Assuntos
Cádmio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Transporte de Cátions/classificação , Proteínas de Transporte de Cátions/genética , Flores/genética , Flores/metabolismo , Dosagem de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Transporte de Íons , Dados de Sequência Molecular , Oryza/genética , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
12.
BMC Evol Biol ; 14: 11, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24438197

RESUMO

BACKGROUND: Nitrogen uptake, reallocation within the plant, and between subcellular compartments involves ammonium, nitrate and peptide transporters. Ammonium transporters are separated into two distinct families (AMT1 and AMT2), each comprised of five members on average in angiosperms. Nitrate transporters also form two discrete families (NRT1 and NRT2), with angiosperms having four NRT2s, on average. NRT1s share an evolutionary history with peptide transporters (PTRs). The NRT1/PTR family in land plants usually has more than 50 members and contains also members with distinct activities, such as glucosinolate and abscisic acid transport. RESULTS: Phylogenetic reconstructions of each family across 20 land plant species with available genome sequences were supplemented with subcellular localization and transmembrane topology predictions. This revealed that both AMT families diverged prior to the separation of bryophytes and vascular plants forming two distinct clans, designated as supergroups, each. Ten supergroups were identified for the NRT1/PTR family. It is apparent that nitrate and peptide transport within the NRT1/PTR family is polyphyletic, that is, nitrate and/or peptide transport likely evolved multiple times within land plants. The NRT2 family separated into two distinct clans early in vascular plant evolution. Subsequent duplications occurring prior to the eudicot/monocot separation led to the existence of two AMT1, six AMT2, 31 NRT1/PTR, and two NRT2 clans, designated as groups. CONCLUSION: Phylogenetic separation of groups suggests functional divergence within the angiosperms for each family. Distinct groups within the NRT1/PTR family appear to separate peptide and nitrate transport activities as well as other activities contained within the family, for example nitrite transport. Conversely, distinct activities, such as abscisic acid and glucosinolate transport, appear to have recently evolved from nitrate transporters.


Assuntos
Proteínas de Transporte de Ânions/classificação , Proteínas de Transporte de Cátions/classificação , Embriófitas/classificação , Evolução Molecular , Proteínas de Membrana Transportadoras/classificação , Proteínas de Plantas/classificação , Compostos de Amônio/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Embriófitas/genética , Embriófitas/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Família Multigênica , Transportadores de Nitrato , Nitratos/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Plant Cell Physiol ; 54(10): 1673-83, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23926064

RESUMO

Maintenance of an appropriate magnesium ion (Mg(2+)) concentration is essential for plant growth. In Arabidopsis thaliana, the CorA-MRS2-ALR-type proteins, named MRS2/MGT family proteins, are reportedly localized in various membranes and they function in Mg transport. However, knowledge of this family in other plant species is extremely limited. Furthermore, differential diversification among dicot and monocot plants suggested by phylogenetic analysis indicates that the role of the Arabidopsis MRS2/MGT family proteins is not the same in monocot plants. For a further understanding of this family in higher plants, functional analysis and gene expression profiling of rice MRS2/MGT family members were performed. A phylogenetic tree based on the isolated mRNA sequences of nine members of the OsMRS2 family confirmed that the MRS2/MGT family consists of five clades (A-E). A complementation assay in the yeast CM66 strain showed that four of the nine members possessed the Mg(2+) transport ability. Transient green fluorescent protein (GFP) expression in the isolated rice protoplast indicated that OsMRS2-5 and OsMRS2-6, belonging to clades D and A, respectively, localized in the chloroplast. Expression levels of these genes were low in the unexpanded yellow-green leaf, but increased considerably with leaf maturation. In addition, diurnal oscillation of expression was observed, particularly in OsMRS2-6 expression in the expanded leaf blade. We conclude that OsMRS2 family members function as Mg transporters and suggest that the genes belonging to clade A encode the chloroplast-localized Mg(2+) transporter in plants.


Assuntos
Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Magnésio/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Transporte de Cátions/classificação , Proteínas de Transporte de Cátions/metabolismo , Cloroplastos/metabolismo , Teste de Complementação Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Família Multigênica , Mutação , Oryza/metabolismo , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Protoplastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Tempo
14.
PLoS One ; 8(8): e71328, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977017

RESUMO

Hortaea werneckii, ascomycetous yeast from the order Capnodiales, shows an exceptional adaptability to osmotically stressful conditions. To investigate this unusual phenotype we obtained a draft genomic sequence of a H. werneckii strain isolated from hypersaline water of solar saltern. Two of its most striking characteristics that may be associated with a halotolerant lifestyle are the large genetic redundancy and the expansion of genes encoding metal cation transporters. Although no sexual state of H. werneckii has yet been described, a mating locus with characteristics of heterothallic fungi was found. The total assembly size of the genome is 51.6 Mb, larger than most phylogenetically related fungi, coding for almost twice the usual number of predicted genes (23333). The genome appears to have experienced a relatively recent whole genome duplication, and contains two highly identical gene copies of almost every protein. This is consistent with some previous studies that reported increases in genomic DNA content triggered by exposure to salt stress. In hypersaline conditions transmembrane ion transport is of utmost importance. The analysis of predicted metal cation transporters showed that most types of transporters experienced several gene duplications at various points during their evolution. Consequently they are present in much higher numbers than expected. The resulting diversity of transporters presents interesting biotechnological opportunities for improvement of halotolerance of salt-sensitive species. The involvement of plasma P-type H⁺ ATPases in adaptation to different concentrations of salt was indicated by their salt dependent transcription. This was not the case with vacuolar H⁺ ATPases, which were transcribed constitutively. The availability of this genomic sequence is expected to promote the research of H. werneckii. Studying its extreme halotolerance will not only contribute to our understanding of life in hypersaline environments, but should also identify targets for improving the salt- and osmotolerance of economically important plants and microorganisms.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Saccharomycetales/genética , Tolerância ao Sal/genética , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/classificação , Proteínas de Transporte de Cátions/metabolismo , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Dosagem de Genes , Duplicação Gênica , Tamanho do Genoma , Transporte de Íons , Dados de Sequência Molecular , Pressão Osmótica , Filogenia , Saccharomycetales/classificação , Saccharomycetales/metabolismo , Sais/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Cloreto de Sódio
15.
Phytochemistry ; 94: 60-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23838627

RESUMO

The blue petal color of the cornflower (Centaurea cyanus) is caused by protocyanin, a kind of metalloanthocyanin, which is a self-assembled supramolecular metal complex pigment. Protocyanin is composed of six molecules of anthocyanin, six molecules of flavone, one ferric ion, and one magnesium ion. The ferric ion is essential for blue color development. Here, we identify the vacuolar iron transporter gene (CcVIT) from the blue petals of C. cyanus and its function is identified and characterized. The CcVIT transcript was observed only in the petals. Its amino acid sequence is highly homologous to the Arabidopsis thaliana (AtVIT1) and Tulipa gesneriana (TgVit1) vacuolar iron transporters. Heterologous expression of the CcVIT gene in yeast indicated that the corresponding gene product transports ferrous ion into vacuoles. Analysis of purple mutant-line petals clarified that the anthocyanin and flavone components were the same as those found in plants with blue petals, but the amount of iron ions in the colored cells decreased, and consequently the amount of blue protocyanin was reduced. The CcVIT gene was expressed even in purple mutant petals, however, an amino acid substitution (A236E) occurred in that case. This change in the CcVIT gene sequence also resulted in loss of iron transport activity. The CcVIT protein thus plays a critical role in the blue coloration of cornflower petals.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Flores/metabolismo , Ferro/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Transporte Biológico/genética , Proteínas de Transporte de Cátions/classificação , Proteínas de Transporte de Cátions/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Glicosídeos/biossíntese , Glicosídeos/química , Dados de Sequência Molecular , Estrutura Molecular , Mutação , Filogenia , Pigmentação/genética , Pigmentos Biológicos/biossíntese , Pigmentos Biológicos/química , Proteínas de Plantas/genética , Protoplastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Vacúolos/metabolismo
16.
Plant Cell Physiol ; 54(9): 1515-24, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23832511

RESUMO

High-affinity ammonium uptake in plant roots is mainly mediated by AMT1-type ammonium transporters, and their regulation varies depending on the plant species. In this study we aimed at characterizing AMT-mediated ammonium transport in maize, for which ammonium-based fertilizer is an important nitrogen (N) source. Two ammonium transporter genes, ZmAMT1;1a and ZmAMT1;3, were isolated from a maize root-specific cDNA library by functional complementation of an ammonium uptake-defective yeast mutant. Ectopic expression of both genes in an ammonium uptake-defective Arabidopsis mutant conferred high-affinity ammonium uptake capacities in roots with substrate affinities of 48 and 33 µM for ZmAMT1;1a and ZmAMT1;3, respectively. In situ hybridization revealed co-localization of both ZmAMT genes on the rhizodermis, suggesting an involvement in capturing ammonium from the rhizosphere. In N-deficient maize roots, influx increased significantly while ZmAMT expression did not. Ammonium resupply to N-deficient or nitrate-pre-cultured roots, however, rapidly enhanced both influx and ZmAMT transcript levels, revealing a substrate-inducible regulation of ammonium uptake. In conclusion, the two rhizodermis-localized transporters ZmAMT1;1a and ZmAMT1;3 are most probably the major components in the high-affinity transport system in maize roots. A particular regulatory feature is their persistent induction by ammonium rather than an up-regulation under N deficiency.


Assuntos
Compostos de Amônio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Zea mays/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico , Western Blotting , Proteínas de Transporte de Cátions/classificação , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Hibridização In Situ , Mutação , Filogenia , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rizosfera , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Zea mays/genética
17.
Plant Cell Physiol ; 54(9): 1455-68, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23825218

RESUMO

This study aims to increase our understanding of the functions of CHX transporters in plant cells using the model plant Physcomitrella patens, in which four CHX genes have been identified, PpCHX1-PpCHX4. Two of these genes, PpCHX1 and PpCHX2, are expressed at approximately the same level as the PpACT5 gene, but the other two genes show an extremely low expression. PpCHX1 and PpCHX2 restored growth of Escherichia coli mutants on low K(+)-containing media, suggesting that they mediated K+ uptake that may be energized by symport with H+. In contrast, these genes suppressed the defect associated with the kha1 mutation in Saccharomyces cerevisiae, which suggests that they might mediate K+/H+ antiport. PpCHX1-green fluorescent protein (GFP) fusion protein transiently expressed in P. patens protoplasts co-localized with a Golgi marker. In similar experiments, the PpCHX2-GFP protein appeared to localize to tonoplast and plasma membrane. We constructed the ΔPpchx1 and ΔPpchx2 single mutant lines, and the ΔPpchx2 ΔPphak1 double mutant. Single mutant plants grew normally under all the conditions tested and exhibited normal K+ and Rb+ influxes; the ΔPpchx2 mutation did not increase the defect of ΔPphak1 plants. In long-term experiments, ΔPpchx2 plants showed slightly higher Rb+ retention than wild-type plants, which suggests that PpCHX2 mediates the transfer of Rb+ either from the vacuole to the cytosol or from the cytosol to the external medium in parallel with other transporters. The distinction between these two possibilities is technically difficult. We suggest that K+ transporters of several families are involved in the pH homeostasis of organelles by mediating either K+/H+ antiport or K(+)-H(+) symport.


Assuntos
Bryopsida/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Homeostase , Proteínas de Plantas/metabolismo , Potássio/metabolismo , Sequência de Aminoácidos , Bryopsida/genética , Proteínas de Transporte de Cátions/classificação , Proteínas de Transporte de Cátions/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Teste de Complementação Genética , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Transporte de Íons/genética , Cinética , Dados de Sequência Molecular , Mutação , Filogenia , Proteínas de Plantas/genética , Antiportadores de Potássio-Hidrogênio/genética , Antiportadores de Potássio-Hidrogênio/metabolismo , Protoplastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rubídio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
18.
Plant Cell Physiol ; 54(7): 1118-31, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23628997

RESUMO

Plant MRS2 membrane protein family members have been shown to play important roles in magnesium uptake and homeostasis. Single and double knockouts for two Arabidopsis thaliana genes, AtMRS2-1 and AtMRS2-5, have previously not shown significant phenotypes even under limiting Mg(2+) supply although both are strongly expressed already in early seedlings. Together with AtMRS2-10, these genes form clade B of the AtMRS2 gene family. We now succeeded in obtaining homozygous AtMRS2-1/10 double and AtMRS2-1/5/10 triple knockout lines after selection under increased magnesium supply. Although wilting early, both new mutant lines develop fully and are also fertile under standard magnesium supply, but show severe developmental retardation under limiting Mg(2+) concentrations. To investigate nutrient dependency of germination and seedling development under various conditions, including variable supplies of Mg(2+), Ca(2+), Zn(2+), Mn(2+), Co(2+), Cd(2+) and Cu(2+), in a reproducible and economical way, we employed a small-scale liquid culturing system in 24-well plate set-ups. This allowed the growth and monitoring of individual plantlets of different mutant lines under several nutritional conditions in parallel, and the scoring and statistical evaluation of developmental stages and biomass accumulation. Detrimental effects of higher concentrations of these elements were similar in mutants and the wild type. However, growth retardation phenotypes seen upon hydroponic cultivation under low Mg(2+) could be ameliorated when Ca(2+) concentrations were concomitantly lowered, supporting indications for an important interplay of these two most abundant divalent cations in the nutrient homeostasis of plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Magnésio/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Biomassa , Cálcio/farmacologia , Proteínas de Transporte de Cátions/classificação , Proteínas de Transporte de Cátions/genética , DNA Bacteriano/genética , Relação Dose-Resposta a Droga , Técnicas de Inativação de Genes , Genótipo , Germinação/efeitos dos fármacos , Germinação/genética , Hidroponia , Magnésio/farmacologia , Mutagênese Insercional , Fenótipo , Filogenia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
19.
Curr Top Membr ; 69: 249-93, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23046654

RESUMO

Mn and Fe are important for energy metabolism and oxidative stress resistance and cells maintain adequate stores for survival and prevention of toxicity. Membrane permeases of the natural resistance-associated macrophage protein (Nramp) family importing protons and divalent metals are conserved from bacteria to man. Nramp hydrophobic core relates structurally to a superfamily of cation-driven carriers with inverted symmetry. Molecular phylogeny and sequence features support Nramp pseudo-symmetric three-dimensional (3D) model, and remote ancestry to the LeuT superfamily. Genetic analyses suggest conservation of Nramp sequence marks the transition from a phylogenetic out-group and may relate to divalent metal selectivity. Three phylogroups of bacterial proton-dependent manganese transporters (MntH) demonstrate specific patterns of sequence conservation suggesting functional constraints linked to ecological or taxonomical distributions, which may contribute to bacterial virulence. Nramp 3D model is supported experimentally by transmembrane topology and structure-function studies of Escherichia coli and mouse homologs as well as peptide structure analyses. Eukaryotic Nramps are required for Mn and Fe homeostasis, contributing in multicellular organisms to subcellular and systemic metal traffic and intercellular signaling. Nramps are subjected to elaborate regulation including developmental control of gene expression, protein subcellular targeting, dynamic metallo-dependent control of messenger RNA and protein stability and trafficking. Several human pathologies may result from defects in Nramp-dependent Fe(2+) or Mn(2+) transport, including iron overload, neurodegenerative diseases and innate susceptibility to infectious diseases.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Compostos Ferrosos/metabolismo , Manganês/metabolismo , Animais , Bactérias/metabolismo , Bactérias/patogenicidade , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/classificação , Evolução Molecular , Regulação da Expressão Gênica , Humanos , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Camundongos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Filogenia , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/classificação , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Estrutura Terciária de Proteína , Tuberculose/genética , Tuberculose/metabolismo , Tuberculose/patologia
20.
Plant Cell Physiol ; 53(6): 1117-23, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22514087

RESUMO

The widespread presence of Na(+)-specific uptake systems across plants and fungi is a controversial topic. In this study, we identify two HAK genes, one in the moss Physcomitrella patens and the other in the yeast Yarrowia lipolytica, that encode Na(+)-specific transporters. Because HAK genes are numerous in plants and are duplicated in many fungi, our findings suggest that some HAK genes encode Na(+) transporters and that Na(+) might play physiological roles in plants and fungi more extensively than is currently thought.


Assuntos
Bryopsida/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Plantas/metabolismo , Sódio/metabolismo , Yarrowia/metabolismo , Sequência de Bases , Transporte Biológico Ativo , Bryopsida/genética , Proteínas de Transporte de Cátions/classificação , Proteínas de Transporte de Cátions/genética , Meios de Cultura/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes de Plantas , Transporte de Íons , Filogenia , Proteínas de Plantas/classificação , Potássio/metabolismo , Protoplastos/metabolismo , Fatores de Tempo , Yarrowia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...