Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 669
Filtrar
1.
ACS Chem Neurosci ; 15(6): 1276-1285, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38454572

RESUMO

Glutamate, the major excitatory neurotransmitter in the vertebrate brain, exerts its functions through the activation of specific plasma membrane receptors and transporters. Overstimulation of glutamate receptors results in neuronal cell death through a process known as excitotoxicity. A family of sodium-dependent glutamate plasma membrane transporters is responsible for the removal of glutamate from the synaptic cleft, preventing an excitotoxic insult. Glial glutamate transporters carry out more than 90% of the brain glutamate uptake activity and are responsible for glutamate recycling through the GABA/Glutamate/Glutamine shuttle. The aryl hydrocarbon receptor is a ligand-dependent transcription factor that integrates environmental clues through its ability to heterodimerize with different transcription factors. Taking into consideration the fundamental role of glial glutamate transporters in glutamatergic synapses and that these transporters are regulated at the transcriptional, translational, and localization levels in an activity-dependent fashion, in this contribution, we explored the involvement of the aryl hydrocarbon receptor, as a model of environmental integrator, in the regulation of the glial sodium-dependent glutamate/aspartate transporter. Using the model of chick cerebellar Bergmann glia cells, we report herein that the aryl hydrocarbon receptors exert a time-dependent decrease in the transporter mRNA levels and a diminution of its uptake activity. The nuclear factor kappa light chain enhancer of the activated B cell signaling pathway is involved in this regulation. Our results favor the notion of an environmentally dependent regulation of glutamate removal in glial cells and therefore strengthen the notion of the involvement of glial cells in xenobiotic neurotoxic effects.


Assuntos
Ácido Aspártico , Receptores de Hidrocarboneto Arílico , Ácido Aspártico/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Sódio/metabolismo , Neuroglia/metabolismo , Ácido Glutâmico/metabolismo , Células Cultivadas
2.
Neurochem Int ; 173: 105658, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135159

RESUMO

The successful implementation of remote ischaemic conditioning as a clinical neuroprotective strategy requires a thorough understanding of its basic principles, which can be modified for each patient. The mechanisms of glutamate homeostasis appear to be a key component. In the current study, we focused on the brain-to-blood glutamate shift mediated by glutamate transporters (excitatory amino acid transports [EAATs]) and the effect of remote ischaemic preconditioning (RIPC) as a mediator of ischaemic tolerance. We used model mimicking ischaemia-mediated excitotoxicity (intracerebroventricular administration of glutamate) to avoid the indirect effect of ischaemia-triggered mechanisms. We found quantitative changes in EAAT2 and EAAT3 and altered membrane trafficking of EAAT1 on the cells of the choroid plexus. These changes could underlie the beneficial effects of ischaemic tolerance. There was reduced oxidative stress and increased glutathione level after RIPC treatment. Moreover, we determined the stimulus-specific response on EAATs. While glutamate overdose stimulated EAAT2 and EAAT3 overexpression, RIPC induced membrane trafficking of EAAT1 and EAAT2 rather than a change in their expression. Taken together, mechanisms related to glutamate homeostasis, especially EAAT-mediated transport, represents a powerful tool of ischaemic tolerance and allow a certain amount of flexibility based on the stimulus used.


Assuntos
Proteínas de Transporte de Glutamato da Membrana Plasmática , Precondicionamento Isquêmico , Humanos , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Ácido Glutâmico/toxicidade , Ácido Glutâmico/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Aminoácidos Excitatórios , Isquemia
3.
Dokl Biochem Biophys ; 502(1): 40-44, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35275305

RESUMO

The Chinese hamster ovary cell line CHO is widely used for biopharmaceutical production. Genome editing makes it possible to improve the growth properties of cells, their auxotrophy, and the functioning of the apoptosis and autophagy induction systems. Simultaneous editing of multiple genes makes it possible to obtain a cell line with the required genotype faster than several consecutive rounds of genomic knockout, but the probability of success is lower. Simultaneous editing of the dhfr, glul, bak1, and bax genes in the CHO S cells genome yielded 24 clones with signs of auxotrophy for thymidine and glutamine. Five of them turned out to be dhfr+/-, all five contained a knockout of one or two glul alleles. In one clone, 7 out of 8 target alleles were inactivated by a frameshift, and the second dhfr allele was partially inactivated by insertion of the GAA triplet, which reduced the enzyme activity 2.5 times. The probability of simultaneous knockout of both dhfr alleles increased to 50% when the genome was edited with a pair of guide RNAs directed to one exon of the dhfr gene.


Assuntos
Edição de Genes , Proteínas de Transporte de Glutamato da Membrana Plasmática , Tetra-Hidrofolato Desidrogenase , Proteína Killer-Antagonista Homóloga a bcl-2 , Proteína X Associada a bcl-2 , Animais , Células CHO , Cricetinae , Cricetulus , Técnicas de Inativação de Genes , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Tetra-Hidrofolato Desidrogenase/genética , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética
5.
Neurochem Res ; 47(1): 148-162, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33550531

RESUMO

Plasma membrane glutamate transporters move glutamate across the cell membrane in a process that is thought to involve elevator-like movement of the transport domain relative to the static trimerization domain. Conformational changes associated with this elevator-like movement have been blocked by covalent crosslinking of cysteine pairs inserted strategically in several positions in the transporter structure, resulting in inhibition of steady-state transport activity. However, it is not known how these crosslinking restraints affect other partial reactions of the transporter that were identified based on pre-steady-state kinetic analysis. Here, we re-examine two different introduced cysteine pairs in the rat glutamate transporter EAAC1 recombinantely expressed in HEK293 cells, W440C/K268C and K64C/V419C, with respect to the molecular mechanism of their impairment of transporter function. Pre-steady-state kinetic studies of glutamate-induced partial reactions were performed using laser photolysis of caged glutamate to achieve sub-millisecond time resolution. Crosslinking of both cysteine pairs abolished steady-state transport current, as well as the majority of pre-steady-state glutamate-induced charge movements, in both forward and reverse transport mode, suggesting that it is not only the elevator-like movement associated with translocation, but also other transporter partial reactions that are inhibited. In contrast, sodium binding to the empty transporter, and glutamate-induced anion conductance were still intact after the W440C/K268C crosslink. Our results add to the previous mechanistic view of how covalent restraints of the transporter affect function and structural changes linked to individual steps in the transport cycle.


Assuntos
Sistema X-AG de Transporte de Aminoácidos , Transportador 3 de Aminoácido Excitatório , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Transporte Biológico , Transportador 3 de Aminoácido Excitatório/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Cinética , Ratos , Sódio
6.
Neurochem Res ; 47(1): 9-22, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33587237

RESUMO

Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After its release from presynaptic nerve terminals, glutamate is quickly removed from the synaptic cleft by excitatory amino acid transporters (EAATs) 1-5, a subfamily of glutamate transporters. The five proteins utilize a complex transport stoichiometry that couples glutamate transport to the symport of three Na+ ions and one H+ in exchange with one K+ to accumulate glutamate against up to 106-fold concentration gradients. They are also anion-selective channels that open and close during transitions along the glutamate transport cycle. EAATs belong to a larger family of secondary-active transporters, the SLC1 family, which also includes purely Na+- or H+-coupled prokaryotic transporters and Na+-dependent neutral amino acid exchangers. In recent years, molecular cloning, heterologous expression, cellular electrophysiology, fluorescence spectroscopy, structural approaches, and molecular simulations have uncovered the molecular mechanisms of coupled transport, substrate selectivity, and anion conduction in EAAT glutamate transporters. Here we review recent findings on EAAT transport mechanisms, with special emphasis on the highly conserved hairpin 2 gate, which has emerged as the central processing unit in many of these functions.


Assuntos
Sistema X-AG de Transporte de Aminoácidos , Ácido Glutâmico , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Ânions/metabolismo , Transporte Biológico , Transportador 1 de Aminoácido Excitatório/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Ácido Glutâmico/metabolismo , Mamíferos/metabolismo
7.
Int J Mol Sci ; 22(9)2021 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-34065042

RESUMO

Glutathione (GSH) is the most abundant non-protein thiol, and plays crucial roles in the antioxidant defense system and the maintenance of redox homeostasis in neurons. GSH depletion in the brain is a common finding in patients with neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, and can cause neurodegeneration prior to disease onset. Excitatory amino acid carrier 1 (EAAC1), a sodium-dependent glutamate/cysteine transporter that is selectively present in neurons, plays a central role in the regulation of neuronal GSH production. The expression of EAAC1 is posttranslationally controlled by the glutamate transporter-associated protein 3-18 (GTRAP3-18) or miR-96-5p in neurons. The regulatory mechanism of neuronal GSH production mediated by EAAC1 may be a new target in therapeutic strategies for these neurodegenerative diseases. This review describes the regulatory mechanism of neuronal GSH production and its potential therapeutic application in the treatment of neurodegenerative diseases.


Assuntos
Encéfalo/metabolismo , Glutationa/metabolismo , Animais , Antioxidantes/metabolismo , Biomarcadores , Encéfalo/efeitos dos fármacos , Gerenciamento Clínico , Suscetibilidade a Doenças , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Regulação da Expressão Gênica , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Glutationa/farmacologia , Glutationa/uso terapêutico , Humanos , Redes e Vias Metabólicas , Microglia/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
8.
PLoS Comput Biol ; 17(6): e1009019, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34143772

RESUMO

The anatomical and functional organization of neurons and astrocytes at 'tripartite synapses' is essential for reliable neurotransmission, which critically depends on ATP. In low energy conditions, synaptic transmission fails, accompanied by a breakdown of ion gradients, changes in membrane potentials and cell swelling. The resulting cellular damage and cell death are causal to the often devastating consequences of an ischemic stroke. The severity of ischemic damage depends on the age and the brain region in which a stroke occurs, but the reasons for this differential vulnerability are far from understood. In the present study, we address this question by developing a comprehensive biophysical model of a glutamatergic synapse to identify key determinants of synaptic failure during energy deprivation. Our model is based on fundamental biophysical principles, includes dynamics of the most relevant ions, i.e., Na+, K+, Ca2+, Cl- and glutamate, and is calibrated with experimental data. It confirms the critical role of the Na+/K+-ATPase in maintaining ion gradients, membrane potentials and cell volumes. Our simulations demonstrate that the system exhibits two stable states, one physiological and one pathological. During energy deprivation, the physiological state may disappear, forcing a transit to the pathological state, which can be reverted when blocking voltage-gated Na+ and K+ channels. Our model predicts that the transition to the pathological state is favoured if the extracellular space fraction is small. A reduction in the extracellular space volume fraction, as, e.g. observed with ageing, will thus promote the brain's susceptibility to ischemic damage. Our work provides new insights into the brain's ability to recover from energy deprivation, with translational relevance for diagnosis and treatment of ischemic strokes.


Assuntos
Íons/metabolismo , Sinapses/metabolismo , Potenciais de Ação/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/fisiologia , Metabolismo Energético , Proteínas de Transporte de Glutamato da Membrana Plasmática/antagonistas & inibidores , Homeostase , Isquemia/fisiopatologia , Camundongos , Modelos Neurológicos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Transmissão Sináptica
9.
Neurosci Lett ; 758: 136013, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34111510

RESUMO

Preterm infants often suffer from impaired postnatal brain development, and glutamate excitotoxicity is identified as a pivotal mechanism of hyperoxia-induced neurological abnormality. We aimed to investigate the effect of short time hyperoxia on glutamate homeostasis and glutamate transporters expressions in immature brain. Six-day-old (P6) rat pups were exposed to 80% oxygen for 24 h (the hyperoxia group) or placed in atmospheric air (the control group). The concentrations of glutamate and γ-aminobutyric acid (GABA) in immature cerebrum and cerebellum at P7, P14 and P21 were determined by ELISA. The mRNA levels of glutamate transporters including excitatory amino acid transporter 1 (EAAT1), EAAT2, EAAT3, vesicular glutamate transporter 1 (VGLUT1) and VGLUT2 in brain were determined by qPCR. Glutamate accumulation was induced by hyperoxia both in immature cerebrum and cerebellum at P7 but got gradually attenuated at P14 and P21, as evidenced by the changes of glutamate and GABA concentrations. Hyperoxia also induced sustained glutamatic oxidative stress in both cerebrum and cerebellum, as GSH (reduced glutathione) levels in the hyperoxia group were constantly higher than the control group at three examined time-points. Furthermore, at P7, the expressions of all glutamate transporters decreased in both cerebrum and cerebellum except that of EAAT1. At P21, VGLUT2 in cerebrum and EAAT1, EAAT3 and VGLUT2 in cerebellum still displayed significant decrease in expression levels upon hyperoxia stimulation. Taken together, our results indicate that hyperoxia induces glutamate accumulation in brain of rat pups, which is associated with increased oxidative stress and decreased expressions of glutamate transporters.


Assuntos
Cerebelo/metabolismo , Cérebro/metabolismo , Hiperóxia/patologia , Doenças do Prematuro/patologia , Animais , Animais Recém-Nascidos , Cerebelo/crescimento & desenvolvimento , Cerebelo/patologia , Cérebro/crescimento & desenvolvimento , Cérebro/patologia , Modelos Animais de Doenças , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Hiperóxia/etiologia , Recém-Nascido , Recém-Nascido Prematuro/crescimento & desenvolvimento , Recém-Nascido Prematuro/metabolismo , Doenças do Prematuro/etiologia , Masculino , Estresse Oxidativo , Oxigênio/administração & dosagem , Oxigênio/efeitos adversos , Ratos , Fatores de Tempo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
10.
J Cell Mol Med ; 25(5): 2549-2562, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33566451

RESUMO

Obesity is associated with inflammation and insulin resistance (IR), but the regulation of insulin sensitivity (IS) and connections between IS and inflammation remain unclear. We investigated the role of miR-467a-5p, a miRNA induced by hyperglycaemia, in regulating inflammation and blood glucose handling. We previously demonstrated that miR-467a-5p is induced by hyperglycaemia and inhibits the production of thrombospondin-1 (TSP-1), a protein implicated in regulating inflammation. To investigate the role of miR-467 in blood glucose handling and tissue inflammation, WT C57BL/6 mice were fed chow or Western diet from 5 to 32 weeks of age and injected weekly with miR-467a-5p antagonist. Inhibiting miR-467a-5p resulted in 47% increase in macrophage infiltration and increased Il6 levels in adipose tissue, higher plasma insulin levels (98 ng/mL vs 63 ng/mL), and 17% decrease in glucose clearance without increase in weight or HDL/LDL. The antagonist effect was lost in mice on Western diet. Mice lacking TSP-1 lost some but not all of the miR-467 effects, suggesting Thbs1 (and other unknown transcripts) are targeted by miR-467 to regulate inflammation. miR-467a-5p provides a physiological feedback when blood glucose is elevated to avoid inflammation and increased blood glucose and insulin levels, which may prevent IR.


Assuntos
Glicemia , Regulação da Expressão Gênica , Inflamação/genética , Inflamação/metabolismo , Insulinas/sangue , MicroRNAs/genética , Tecido Adiposo/metabolismo , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Mediadores da Inflamação/metabolismo , Resistência à Insulina/genética , Lipídeos/sangue , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Especificidade de Órgãos , Pâncreas/metabolismo , Células RAW 264.7
11.
Curr Mol Pharmacol ; 14(2): 138-149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32329706

RESUMO

We present an overview of genetic, metabolomic, proteomic and neurochemical studies done mainly in our laboratories that could improve prediction, mechanistic understanding and possibly extend to diagnostics and treatment of alcoholism and alcohol addiction. Specific polymorphisms in genes encoding for interleukins 2 and 6, catechol-O-methyl transferase (COMT), monaminooxidase B (MAO B) and several other enzymes were identified as associated with altered risks of alcoholism in humans. A polymorphism in the gene for BDNF has been linked to the risk of developing deficiences in colour vision sometimes observed in alcoholics. Metabolomic studies of acute ethanol effects on guinea pig brain cortex in vitro, lead to the identification of specific subtypes of GABA(A) receptors involved in the actions of alcohol at various doses. Acute alcohol affected energy metabolism, oxidation and the production of actaldehyde and acetate; this could have specific consequences not only for the brain energy production/utilization but could influence the cytotoxicity of alcohol and impact the epigenetics (histone acetylation). It is unlikely that brain metabolism of ethanol occurs to any significant degree; the reduction in glucose metabolism following alcohol consumption is due to ethanol effects on receptors, such as α4ß3δ GABA(A) receptors. Metabolomics using post-mortem human brain indicated that the catecholaminergic signalling may be preferentially affected by chronic excessive drinking. Changes in the levels of glutathione were consistent with the presence of severe oxidative stress. Proteomics of the post-mortem alcoholic brains identified a large number of proteins, the expression of which was altered by chronic alcohol, with those associated with brain energy metabolism among the most numerous. Neurochemical studies found the increased expression of glutamate transporter GLAST/EAAT1 in brain as one of the largest changes caused by alcoholism. Given that GLAST/EAAT1 is one of the most abundant proteins in the nervous tissue and is intimately associated with the function of the excitatory (glutamatergic) synapses, this may be among the most important effects of chronic alcohol on brain function. It has so far been observed mainly in the prefrontal cortex. We show several experiments suggesting that acute alcohol can translocate GLAST/EAAT1 in astrocytes towards the plasma membrane (and this effect is inhibited by the GABA(B) agonist baclofen) but neither the mechanism nor the specificity (to alcohol) of this phenomenon have been established. Furthermore, as GLAST/EAAT1 is also expressed in testes and sperm (and could also be affected there by chronic alcohol), the levels of GLAST/EAAT1 in sperm could be used as a diagnostic tool in testing the severity of alcoholism in human males. We conclude that the reviewed studies present a unique set of data which could help to predict the risk of developing alcohol dependence (genetics), to improve the understanding of the intoxicating actions of alcohol (metabolomics), to aid in assessing the extent of damage to brain cells caused by chronic excessive drinking (metabolomics and proteomics) and to point to molecular targets that could be used in the treatment and diagnosis of alcoholism and alcohol addiction.


Assuntos
Alcoolismo/genética , Alcoolismo/metabolismo , Etanol/metabolismo , Acetilação , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Encéfalo , Epigênese Genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Histonas/metabolismo , Humanos , Metabolômica , Proteômica , Receptores de GABA/metabolismo , Transdução de Sinais
12.
Neurochem Int ; 142: 104927, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33259861

RESUMO

Recently, the function of blood cells in remote ischemic conditioning (RIC) mediated neuroprotection was undoubtedly confirmed. In the present paper, we have focused on the role of blood elements in glutamate homeostasis. The blood of remote conditioned (tolerant) animals was incubated ex vivo with 100 µM glutamate, and the quantitative and qualitative changes of excitatory amino acid transporters (EAAT 1, 2, and 3) were determined. We confirmed RIC mediated accelerated sequestration of extracellular glutamate via EAATs and altered distribution of that amino acid between plasma and cell elements compared to non-tolerant counterparts. The activity of EAATs was elevated in erythrocytes and monocytes, while the density of transporters was not affected. Quantitative changes of EAAT1 density were detected solely in platelets where the forced scavenging was independent of EAATs inhibition. Surprisingly, the trafficking of immunovisualised EAAT2 and 3 raised at tolerant erythrocytes and monocytes. We have found that protein synthesis underlined this process. On the other hand, depletion of protein synthesis did not significantly affect the scavenging capacity of those cell populations. Our work has demonstrated that the elevated blood scavenging of glutamate overdose could be one of the potential mechanisms underlying RIC mediated tissue protection.


Assuntos
Proteínas de Transporte de Glutamato da Membrana Plasmática/sangue , Ácido Glutâmico/sangue , Membro Posterior/irrigação sanguínea , Membro Posterior/metabolismo , Precondicionamento Isquêmico/métodos , Animais , Transporte Biológico/fisiologia , Masculino , Ratos , Ratos Wistar , Fatores de Tempo
13.
J Neurosci Res ; 99(8): 1908-1921, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33217775

RESUMO

Adolescent alcohol drinking is widely recognized as a significant public health problem, and evidence is accumulating that sufficient levels of consumption during this critical period of brain development have an enduring impact on neural and behavioral function. Recent studies have indicated that adolescent intermittent ethanol (AIE) exposure alters astrocyte function, astrocyte-neuronal interactions, and related synaptic regulation and activity. However, few of those studies have included female animals, and a broader assessment of AIE effects on the proteins mediating astrocyte-mediated glutamate dynamics and synaptic function is needed. We measured synaptic membrane expression of several such proteins in the dorsal and ventral regions of the hippocampal formation (DH, VH) from male and female rats exposed to AIE or adolescent intermittent water. In the DH, AIE caused elevated expression of glutamate transporter 1 (GLT-1) in both males and females, elevated postsynaptic density 95 expression in females only, and diminished NMDA receptor subunit 2A expression in males only. AIE and sex interactively altered ephrin receptor A4 (EphA4) expression in the DH. In the VH, AIE elevated expression of the cystine/glutamate antiporter and the glutamate aspartate transporter 1 (GLAST) in males only. Compared to males, female animals expressed lower levels of GLT-1 in the DH and greater levels of ephrin receptor B6 (EphB6) in the VH, in the absence of AIE effects. These results support the growing literature indicating that adolescent alcohol exposure produces long-lasting effects on astrocyte function and astrocyte-neuronal interactions. The sex and subregion specificity of these effects have mechanistic implications for our understanding of AIE effects generally.


Assuntos
Astrócitos/metabolismo , Etanol/administração & dosagem , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Proteína 4 Homóloga a Disks-Large/metabolismo , Feminino , Homeostase/efeitos dos fármacos , Humanos , Masculino , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor EphB6/metabolismo
14.
Biomed Res Int ; 2020: 3636874, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123570

RESUMO

Previous studies have shown the therapeutic properties of ginseng and ginsenosides on hyperactive and impulsive behaviors in several psychiatric diseases. Herein, we investigated the effect of Panax ginseng Meyer (PG) on hyperactive/impulsive behaviors in a manic-like animal model, sleep deprivation (SD) rats. Male rats were sleep-deprived for 48 h, and PG (200 mg/kg) was administered for 4 days, from 2 days prior to the start of SD to the end date of SD. The elevated plus maze (EPM) test showed that PG alleviated the increased frequency of entries into and spent time within open arms by SD. In order to investigate the molecular mechanism on this effect of PG, we assessed differentially expressed genes (DEGs) in the prefrontal cortex of PG-treated SD rats using RNA sequencing (RNA-seq) and performed gene-enrichment analysis for DEGs. The gene-enrichment analysis showed that PG most prominently affected the glutamatergic synapse pathway. Among the glutamatergic synapse pathway genes, particularly, PG enhanced the expressions of glutamate transporter Slc1a3 and Slc1a2 reduced in SD rats. Moreover, we found that PG could inhibit the SD-induced phosphorylation of the NR2A subunit of the NMDA receptor. These results suggested that PG might have a therapeutic effect against the manic-like behaviors, regulating the glutamatergic neurotransmission.


Assuntos
Antimaníacos/farmacologia , Ginsenosídeos/farmacologia , Ácido Glutâmico/metabolismo , Panax/química , Privação do Sono/tratamento farmacológico , Sono REM/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Comportamento Animal , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Privação do Sono/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
15.
CNS Drugs ; 34(11): 1089-1103, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32926322

RESUMO

Epilepsy is one of the most prevalent and devastating neurological disorders characterized by episodes of unusual sensations, loss of awareness, and reoccurring seizures. The frequency and intensity of epileptic fits can vary to a great degree, with almost a third of all cases resistant to available therapies. At present, there is a major unmet need for effective and specific therapeutic intervention. Impairments of the exquisite balance between excitatory and inhibitory synaptic processes in the brain are considered key in the onset and pathophysiology of the disease. As the primary excitatory neurotransmitter in the central nervous system, glutamate has been implicated in the process, with the glutamatergic system holding center stage in the pathobiology as well as in developing disease-modifying therapies. Emerging data pinpoint impairments of glutamate clearance as one of the key causative factors in drug-resistant disease forms. Reinstatement of glutamate homeostasis using pharmacological and genetic modulation of glutamate clearance is therefore considered to be of major translational relevance. In this article, we review the neurobiological and clinical evidence suggesting complex aberrations in the activity and functions of excitatory amino acid transporters (EAATs) in epilepsy, with knock-on effects on glutamate homeostasis as a leading cause for the development of refractory forms. We consider the emerging data on pharmacological and genetic manipulations of EAATs, with reference to seizures and glutamate dyshomeostasis, and review their fundamental and translational relevance. We discuss the most recent advances in the EAATs research in human and animal models, along with numerous questions that remain open for debate and critical appraisal. Contrary to the widely held view on EAATs as a promising therapeutic target for management of refractory epilepsy as well as other neurological and psychiatric conditions related to glutamatergic hyperactivity and glutamate-induced cytotoxicity, we stress that the true relevance of EAAT2 as a target for medical intervention remains to be fully appreciated and verified. Despite decades of research, the emerging properties and functional characteristics of glutamate transporters and their relationship with neurophysiological and behavioral correlates of epilepsy challenge the current perception of this disease and fit unambiguously in neither EAATs functional deficit nor in reversal models. We stress the pressing need for new approaches and models for research and restoration of the physiological activity of glutamate transporters and synaptic transmission to achieve much needed therapeutic effects. The complex mechanism of EAATs regulation by multiple factors, including changes in the electrochemical environment and ionic gradients related to epileptic hyperactivity, impose major therapeutic challenges. As a final note, we consider the evolving views and present a cautious perspective on the key areas of future progress in the field towards better management and treatment of refractory disease forms.


Assuntos
Anticonvulsivantes/farmacologia , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Animais , Encéfalo/fisiopatologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Ácido Glutâmico/metabolismo , Humanos , Transmissão Sináptica/efeitos dos fármacos
16.
Respir Res ; 21(1): 208, 2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32771007

RESUMO

BACKGROUND: The carotid body (CB) plays a critical role in cyclic intermittent hypoxia (CIH)-induced chemosensitivity; however, the underlying mechanism remains uncertain. We have demonstrated the presence of multiple inotropic glutamate receptors (iGluRs) in CB, and that CIH exposure alters the level of some iGluRs in CB. This result implicates glutamatergic signaling in the CB response to hypoxia. The glutamatergic neurotransmission is not only dependent on glutamate and glutamate receptors, but is also dependent on glutamate transporters, including vesicular glutamate transporters (VGluTs) and excitatory amino acid transporters (EAATs). Here, we have further assessed the expression and distribution of VGluTs and EAATs in human and rat CB and the effect of CIH exposure on glutamate transporters expression. METHODS: The mRNA of VGluTs and EAATs in the human CB were detected by RT-PCR. The protein expression of VGluTs and EAATs in the human and rat CB were detected by Western blot. The distribution of VGluT3, EAAT2 and EAAT3 were observed by immunohistochemistry staining and immunofluorescence staining. Male Sprague-Dawley (SD) rats were exposed to CIH (FIO2 10-21%, 3 min/3 min for 8 h per day) for 2 weeks. The unpaired Student's t-test was performed. RESULTS: Here, we report on the presence of mRNAs for VGluT1-3 and EAAT1-3 in human CB, which is consistent with our previous results in rat CB. The proteins of VGluT1 and 3, EAAT2 and 3, but not VGluT2 and EAAT1, were detected with diverse levels in human and rat CB. Immunostaining showed that VGluT3, the major type of VGluTs in CB, was co-localized with tyrosine hydroxylase (TH) in type I cells. EAAT2 and EAAT3 were distributed not only in type I cells, but also in glial fibrillary acidic protein (GFAP) positive type II cells. Moreover, we found that exposure of SD rats to CIH enhanced the protein level of EAAT3 as well as TH, but attenuated the levels of VGluT3 and EAAT2 in CB. CONCLUSIONS: Our study suggests that glutamate transporters are expressed in the CB, and that glutamate transporters may contribute to glutamatergic signaling-dependent carotid chemoreflex to CIH.


Assuntos
Corpo Carotídeo/metabolismo , Células Quimiorreceptoras/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/biossíntese , Proteínas Vesiculares de Transporte de Glutamato/biossíntese , Sistema X-AG de Transporte de Aminoácidos/análise , Sistema X-AG de Transporte de Aminoácidos/biossíntese , Sistema X-AG de Transporte de Aminoácidos/genética , Animais , Corpo Carotídeo/química , Células Quimiorreceptoras/química , Expressão Gênica , Proteínas de Transporte de Glutamato da Membrana Plasmática/análise , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Proteínas Vesiculares de Transporte de Glutamato/análise , Proteínas Vesiculares de Transporte de Glutamato/genética
18.
J Neurophysiol ; 123(6): 2122-2135, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32347148

RESUMO

Peripheral viscerosensory afferent signals are transmitted to the nucleus tractus solitarii (nTS) via release of glutamate. Following release, glutamate is removed from the extrasynaptic and synaptic cleft via excitatory amino acid transporters (EAATs), thus limiting glutamate receptor activation or over activation, and maintaining its working range. We have shown that EAAT block with the antagonist threo-ß-benzyloxyaspartic acid (TBOA) depolarized nTS neurons and increased spontaneous excitatory postsynaptic current (sEPSC) frequency yet reduced the amplitude of afferent (TS)-evoked EPSCs (TS-EPSCs). Interestingly, chronic intermittent hypoxia (CIH), a model of obstructive sleep apnea (OSA), produces similar synaptic responses as EAAT block. We hypothesized EAAT expression or function are downregulated after CIH, and this reduction in glutamate removal contributes to the observed neurophysiological responses. To test this hypothesis, we used brain slice electrophysiology and imaging of glutamate release and TS-afferent Ca2+ to compare nTS properties of rats exposed to 10 days of normoxia (Norm; 21%O2) or CIH. Results show that EAAT blockade with (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]-amino]phenyl]methoxy]-l-aspartic acid (TFB-TBOA) in Norm caused neuronal depolarization, generation of an inward current, and increased spontaneous synaptic activity. The latter augmentation was eliminated by inclusion of tetrodotoxin in the perfusate. TS stimulation during TFB-TBOA also elevated extracellular glutamate and decreased presynaptic Ca2+ and TS-EPSC amplitude. In CIH, the effects of EAAT block are eliminated or attenuated. CIH reduced EAAT expression in nTS, which may contribute to the attenuated function seen in this condition. Therefore, CIH reduces EAAT influence on synaptic and neuronal activity, which may lead to the physiological consequences seen in OSA and CIH.NEW & NOTEWORTHY Removal of excitatory amino acid transporter (EAAT) restraint increases spontaneous synaptic activity yet decreases afferent [tractus solitarius (TS)]-driven excitatory postsynaptic current (EPSC) amplitude. In the chronic intermittent hypoxia model of obstructive sleep apnea, this restraint is lost due to reduction in EAAT expression and function. Thus EAATs are important in controlling elevated glutamatergic signaling, and loss of such control results in maladaptive synaptic signaling.


Assuntos
Astrócitos/fisiologia , Células Quimiorreceptoras/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Ácido Glutâmico/metabolismo , Hipóxia , Transdução de Sinais/fisiologia , Apneia Obstrutiva do Sono , Núcleo Solitário , Animais , Modelos Animais de Doenças , Proteínas de Transporte de Glutamato da Membrana Plasmática/antagonistas & inibidores , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Apneia Obstrutiva do Sono/metabolismo , Apneia Obstrutiva do Sono/fisiopatologia , Núcleo Solitário/metabolismo , Núcleo Solitário/fisiopatologia
19.
Mult Scler Relat Disord ; 41: 102007, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32092504

RESUMO

BACKGROUND: High affinity sodium-dependent Excitatory Amino Acid Transporters (EAAT), present in glial and neuron cells, clear around 90% of the synaptic cleft released glutamate, and their impaired activity seem to be critical for many neurodegenerative disorders, including Multiple Sclerosis (MS). These transporters are also present in human platelets, and they show molecular and biochemical characteristics similar to those in the CNS. OBJECTIVES: The aim of this study was to investigate whether EAAT-dependent uptake is present also at the peripheral level in blood of MS patients. Moreover, since platelets (plt) and peripheral blood mononuclear cells (PBMC) share the same intra-corporeal fluid, they might be reciprocally influenced, and the glutamate uptake modulation might be useful as a peripheral "trait-marker" to characterize different clinical courses of MS RESULTS: : Reduced uptake values were found in MS patients compared to healthy controls (HC), as well as significant differences were found across MS clinical courses. Representative saturation curves showed that Vmax was significantly decreased for patients compared to HC. Conversely, dissociation constant of the two reactions appeared similar for MS and HC subjects. Furthermore, clinical forms of MS with mild (benign) prognosis was not affected as fa as concern EAAT uptake. Gender, age, and drug treatments did not impact glutamate uptake efficiency. Interestingly, a negative correlation between EAAT activity and percentage of Th1 cells (CD4+IFNγ+ and CD4+TBET+IFNγ+ cells) was observed, suggesting a relationship between EAAT impairment and a pro-inflammatory environment. CONCLUSIONS: Interestingly, as shown in the CNS, a relationship between clinical, inflammatory MS features and glutamate clearance can be also assessed in platelets. Moreover, glutamate uptake activity might be an useful biomarker to characterize patients with benign prognosis.


Assuntos
Plaquetas/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Ácido Glutâmico/metabolismo , Inflamação , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Células Th1 , Adulto , Feminino , Humanos , Inflamação/sangue , Inflamação/imunologia , Inflamação/fisiopatologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/sangue , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Crônica Progressiva/fisiopatologia , Esclerose Múltipla Recidivante-Remitente/sangue , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/fisiopatologia
20.
J Psychiatr Res ; 123: 151-158, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32065951

RESUMO

Excitatory amino acid transporter (EAAT)1 and EAAT2 mediate glutamatergic neurotransmission and prevent excitotoxicity through binding and transportation of glutamate into glia. These EAATs may be regulated by metabotropic glutamate receptor 5 (mGluR5), which is also expressed by glia. Whilst we have data from an Affymetrix™ Human Exon 1.0 ST Array showing higher levels of EAAT1 mRNA (+36%) in Brodmann's are (BA)9 of subjects with schizophrenia, there is evidence that EAAT1 and EAAT2, as well as mGluR5 levels, are altered in the cortex of subjects with the disorder. Hence, we measured mRNA levels of these genes in other cortical regions in subjects with that disorder. EAAT1, EAAT2 and mGluR5 mRNA were measured, in triplicate, using Quantitative PCR in BA10 and BA46 from subjects with schizophrenia (n = 20) and age and sex matched controls (n = 18). Levels of mRNA were normalised to the geometric mean of two reference genes, transcription factor B1, mitochondrial (TFB1M) and S-phase kinase-associated protein 1A (SKP1A), for which mRNA did not vary between diagnostic groups in either region. Normalised levels of EAAT1 and EAAT2 mRNA were significantly higher in BA10 (EAAT1: U = 58, p = 0.0002; EAAT2 U = 70, p = 0.0009), but not BA46 (EAAT1: U = 122, p = 0.09; EAAT2: U = 136, p = 0.21), from subjects with schizophrenia compared to controls. mGluR5 levels in BA10 (U = 173, p=0.85) and BA46 (U = 178, p = 0.96) did not vary by cohort. Our data suggests that region-specific increases in cortical EAAT1 and EAAT2 mRNA are involved in schizophrenia pathophysiology and that disrupted glutamate uptake in schizophrenia may be of particular significance in BA10.


Assuntos
Transportador 1 de Aminoácido Excitatório , Esquizofrenia , Sistema X-AG de Transporte de Aminoácidos , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Ácido Glutâmico , Humanos , Córtex Pré-Frontal/metabolismo , RNA Mensageiro , Esquizofrenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...