Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 294(6): 1924-1935, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30541922

RESUMO

Infection with Plasmodium species parasites causes malaria. Plasmodium parasites are purine auxotrophic. They import purines via an equilibrative nucleoside transporter (ENT). In P. falciparum, the most virulent species, the equilibrative nucleoside transporter 1 (PfENT1) represents the primary purine uptake pathway. This transporter is a potential target for the development of antimalarial drugs. In the absence of a high-resolution structure for either PfENT1 or a homologous ENT, we used the substituted cysteine accessibility method (SCAM) to investigate the membrane-spanning domain structure of PfENT1 to identify potential inhibitor-binding sites. We previously used SCAM to identify water-accessible residues that line the permeation pathway in transmembrane segment 11 (TM11). TM2 and TM10 lie adjacent to TM11 in an ab initio model of a homologous Leishmania donovani nucleoside transporter. To identify TM2 and TM10 residues in PfENT1 that are at least transiently on the water-accessible transporter surface, we assayed the reactivity of single cysteine-substitution mutants with three methanethiosulfonate (MTS) derivatives. Cysteines substituted for 12 of 14 TM2 segment residues reacted with MTS-ethyl-ammonium-biotin (MTSEA-biotin). At eight positions, MTSEA-biotin inhibited transport, and at four positions substrate transport was potentiated. On an α helical wheel projection of TM2, the four positions where potentiation occurred were located in a cluster on one side of the helix. In contrast, although MTSEA-biotin inhibited 9 of 10 TM10 cysteine-substituted mutants, the reactive residues did not form a pattern consistent with either an α helix or ß sheet. These results may help identify the binding site(s) of PfENT1 inhibitors.


Assuntos
Substituição de Aminoácidos/genética , Permeabilidade da Membrana Celular/genética , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/antagonistas & inibidores , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/química , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Antimaláricos , Sítios de Ligação , Transporte Biológico , Cisteína , Desenho de Fármacos , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/genética , Plasmodium falciparum , Proteínas de Protozoários/genética , Purinas/metabolismo , Solubilidade , Água/química
2.
Proc Natl Acad Sci U S A ; 113(48): E7691-E7700, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27856760

RESUMO

Ring-shaped hexameric helicases and translocases support essential DNA-, RNA-, and protein-dependent transactions in all cells and many viruses. How such systems coordinate ATPase activity between multiple subunits to power conformational changes that drive the engagement and movement of client substrates is a fundamental question. Using the Escherichia coli Rho transcription termination factor as a model system, we have used solution and crystallographic structural methods to delineate the range of conformational changes that accompany distinct substrate and nucleotide cofactor binding events. Small-angle X-ray scattering data show that Rho preferentially adopts an open-ring state in solution and that RNA and ATP are both required to cooperatively promote ring closure. Multiple closed-ring structures with different RNA substrates and nucleotide occupancies capture distinct catalytic intermediates accessed during translocation. Our data reveal how RNA-induced ring closure templates a sequential ATP-hydrolysis mechanism, provide a molecular rationale for how the Rho ATPase domains distinguishes between distinct RNA sequences, and establish structural snapshots of substepping events in a hexameric helicase/translocase.


Assuntos
DNA Helicases/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/química , Trifosfato de Adenosina/química , Domínio Catalítico , Hidrólise , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Estrutura Quaternária de Proteína , RNA Bacteriano/química
3.
Curr Opin Struct Biol ; 25: 16-24, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24878340

RESUMO

Ring-shaped nucleic acid translocases and helicases catalyze the directed and processive movement of nucleic acid strands to support essential transactions such as replication, transcription, and chromosome partitioning. Assembled typically as hexamers, ring helicase/translocase systems use coordinated cycles of nucleoside triphosphate (NTP) hydrolysis to translocate extended DNA or RNA substrates through a central pore. Ring formation presents a topological challenge to the engagement of substrate oligonucleotides, and is frequently overcome by distinct loading strategies for shepherding specific motors onto their respective substrates. Recent structural studies that capture different loading intermediates have begun to reveal how different helicase/translocase rings either assemble around substrates or crack open to allow DNA or RNA strand entry, and how dedicated chaperones facilitate these events in some instances. Both prevailing mechanistic models and remaining knowledge gaps are discussed.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/química , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo , Chaperonas Moleculares/metabolismo
4.
Extremophiles ; 17(4): 697-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23712905

RESUMO

The DNA-translocator ATPase PilF of Thermus thermophilus HB27 is a hexamer built by six identical subunits. Despite the presence of a conserved zinc-binding site in every subunit, only one zinc atom per hexamer was found. Re-examination of the zinc content of PilF purified from cells grown in complex media with different lots of yeast extract revealed six zinc atoms per hexamer. These data demonstrate that the low zinc content reported before was most likely a result of zinc depletion of the yeast extract used.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/química , Thermus thermophilus/enzimologia , Zinco/análise , Proteínas de Bactérias/metabolismo , Sítios de Ligação , DNA/metabolismo , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
5.
Mol Biochem Parasitol ; 169(1): 40-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19818813

RESUMO

Plasmodium falciparum is a purine auxotroph. The transport of purine nucleosides and nucleobases from the host erythrocyte to the parasite cytoplasm is essential to support parasite growth. P. falciparum equilibrative nucleoside transporter 1 (PfENT1) is a major route for purine transport across the parasite plasma membrane. Malarial parasites are sensitive to inhibitors of purine salvage pathway enzymes. The immucillin class of purine nucleoside phosphorylase inhibitors and the adenosine analog, tubercidin, block growth of P. falciparum under in vitro culture conditions. We sought to determine whether these inhibitors utilize PfENT1 to gain access to the parasite cytosol. There is considerable controversy in the literature regarding the K(m) and/or K(i) for purine transport by PfENT1 in the Xenopus oocyte expression system. We show that oocytes metabolize adenosine but not hypoxanthine. For adenosine, metabolism is the rate limiting step in oocyte uptake assays, making hypoxanthine the preferred substrate for PfENT1 transport studies in oocytes. We demonstrate that the K(i) for PfENT1 transport of hypoxanthine and adenosine is in the 300-700microM range. Effects of substrate metabolism on uptake studies may explain conflicting results in the literature regarding the PfENT1 adenosine transport K(m). PfENT1 transports the tubercidin class of compounds. None of the immucillin compounds tested inhibited PfENT1 transport of [(3)H]hypoxanthine or [(3)H]adenosine. Although nucleobases are transported, modifications of the ribose ring in corresponding nucleoside analogs affect substrate recognition by PfENT1. These results provide new insights into PfENT1 and the mechanism by which purine salvage pathway inhibitors are transported into the parasite cytoplasm.


Assuntos
Inibidores Enzimáticos/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/antagonistas & inibidores , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Purinas/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Cinética , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/química , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/genética , Oócitos/química , Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Plasmodium falciparum/química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Nucleosídeos de Purina/farmacologia , Purinas/química , Pirimidinonas/farmacologia , Tubercidina/farmacologia
6.
Nucleic Acids Res ; 36(17): 5552-61, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18755708

RESUMO

Proteins that participate in the import of cytosolic tRNAs into mitochondria have been identified in several eukaryotic species, but the details of their interactions with tRNA and other proteins are unknown. In the kinetoplastid protozoon Leishmania tropica, multiple proteins are organized into a functional import complex. RIC8A, a tRNA-binding subunit of this complex, has a C-terminal domain that functions as subunit 6b of ubiquinol cytochrome c reductase (complex III). We show that the N-terminal domain, unique to kinetoplastid protozoa, is structurally similar to the appended S15/NS1 RNA-binding domain of aminoacyl tRNA synthetases, with a helix-turn-helix motif. Structure-guided mutagenesis coupled with in vitro assays showed that helix alpha1 contacts tRNA whereas helix alpha2 targets the protein for assembly into the import complex. Inducible expression of a helix 1-deleted variant in L. tropica resulted in formation of an inactive import complex, while the helix 2-deleted variant was unable to assemble in vivo. Moreover, a protein-interaction assay showed that the C-terminal domain makes allosteric contacts with import receptor RIC1 complexed with tRNA. These results help explain the origin of the bifunctionality of RIC8A, and the allosteric changes accompanying docking and release of tRNA during import.


Assuntos
Leishmania tropica/metabolismo , Proteínas Mitocondriais/química , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/química , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/química , Sítio Alostérico , Sequência de Aminoácidos , Animais , Leishmania tropica/genética , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Mutagênese , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/genética , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Transporte de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...