Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nat Commun ; 15(1): 2359, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504097

RESUMO

Genetic mechanisms of blood pressure (BP) regulation remain poorly defined. Using kidney-specific epigenomic annotations and 3D genome information we generated and validated gene expression prediction models for the purpose of transcriptome-wide association studies in 700 human kidneys. We identified 889 kidney genes associated with BP of which 399 were prioritised as contributors to BP regulation. Imputation of kidney proteome and microRNAome uncovered 97 renal proteins and 11 miRNAs associated with BP. Integration with plasma proteomics and metabolomics illuminated circulating levels of myo-inositol, 4-guanidinobutanoate and angiotensinogen as downstream effectors of several kidney BP genes (SLC5A11, AGMAT, AGT, respectively). We showed that genetically determined reduction in renal expression may mimic the effects of rare loss-of-function variants on kidney mRNA/protein and lead to an increase in BP (e.g., ENPEP). We demonstrated a strong correlation (r = 0.81) in expression of protein-coding genes between cells harvested from urine and the kidney highlighting a diagnostic potential of urinary cell transcriptomics. We uncovered adenylyl cyclase activators as a repurposing opportunity for hypertension and illustrated examples of BP-elevating effects of anticancer drugs (e.g. tubulin polymerisation inhibitors). Collectively, our studies provide new biological insights into genetic regulation of BP with potential to drive clinical translation in hypertension.


Assuntos
Hipertensão , Proteoma , Humanos , Pressão Sanguínea/genética , Proteoma/genética , Proteoma/metabolismo , Transcriptoma/genética , Multiômica , Hipertensão/metabolismo , Rim/metabolismo , Proteínas de Transporte de Sódio-Glucose/genética , Proteínas de Transporte de Sódio-Glucose/metabolismo
2.
Nat Commun ; 14(1): 7511, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980423

RESUMO

Sodium-dependent glucose transporters (SGLTs) couple a downhill Na+ ion gradient to actively transport sugars. Here, we investigate the impact of the membrane potential on vSGLT structure and function using sugar uptake assays, double electron-electron resonance (DEER), electrostatic calculations, and kinetic modeling. Negative membrane potentials, as present in all cell types, shift the conformational equilibrium of vSGLT towards an outward-facing conformation, leading to increased sugar transport rates. Electrostatic calculations identify gating charge residues responsible for this conformational shift that when mutated reduce galactose transport and eliminate the response of vSGLT to potential. Based on these findings, we propose a comprehensive framework for sugar transport via vSGLT, where the cellular membrane potential facilitates resetting of the transporter after cargo release. This framework holds significance not only for SGLTs but also for other transporters and channels.


Assuntos
Simportadores , Simportadores/metabolismo , Açúcares , Glucose , Potenciais da Membrana , Galactose/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Transporte de Sódio-Glucose/genética , Proteínas de Transporte de Sódio-Glucose/química , Proteínas de Transporte de Sódio-Glucose/metabolismo , Sódio/metabolismo , Conformação Proteica
3.
Nat Rev Rheumatol ; 19(6): 331-342, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37041269

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease that has diverse clinical manifestations, ranging from restricted cutaneous involvement to life-threatening systemic organ involvement. The heterogeneity of pathomechanisms that lead to SLE contributes to between-patient variation in clinical phenotype and treatment response. Ongoing efforts to dissect cellular and molecular heterogeneity in SLE could facilitate the future development of stratified treatment recommendations and precision medicine, which is a considerable challenge for SLE. In particular, some genes involved in the clinical heterogeneity of SLE and some phenotype-related loci (STAT4, IRF5, PDGF genes, HAS2, ITGAM and SLC5A11) have an association with clinical features of the disease. An important part is also played by epigenetic varation (in DNA methylation, histone modifications and microRNAs) that influences gene expression and affects cell function without modifying the genome sequence. Immune profiling can help to identify an individual's specific response to a therapy and can potentially predict outcomes, using techniques such as flow cytometry, mass cytometry, transcriptomics, microarray analysis and single-cell RNA sequencing. Furthermore, the identification of novel serum and urinary biomarkers would enable the stratification of patients according to predictions of long-term outcomes and assessments of potential response to therapy.


Assuntos
Lúpus Eritematoso Sistêmico , MicroRNAs , Humanos , Medicina de Precisão , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/genética , MicroRNAs/genética , Fenótipo , Metilação de DNA , Proteínas de Transporte de Sódio-Glucose/genética
4.
Nutrients ; 13(6)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207686

RESUMO

Here, we performed a genome-wide search for methylation sites that contribute to the risk of obesity. We integrated methylation quantitative trait locus (mQTL) data with BMI GWAS information through a SNP-based multiomics approach to identify genomic regions where mQTLs for a methylation site co-localize with obesity risk SNPs. We then tested whether the identified site contributed to BMI through Mendelian randomization. We identified multiple methylation sites causally contributing to the risk of obesity. We validated these findings through a replication stage. By integrating expression quantitative trait locus (eQTL) data, we noted that lower methylation at cg21178254 site upstream of CCNL1 contributes to obesity by increasing the expression of this gene. Higher methylation at cg02814054 increases the risk of obesity by lowering the expression of MAST3, whereas lower methylation at cg06028605 contributes to obesity by decreasing the expression of SLC5A11. Finally, we noted that rare variants within 2p23.3 impact obesity by making the cg01884057 site more susceptible to methylation, which consequently lowers the expression of POMC, ADCY3 and DNAJC27. In this study, we identify methylation sites associated with the risk of obesity and reveal the mechanism whereby a number of these sites exert their effects. This study provides a framework to perform an omics-wide association study for a phenotype and to understand the mechanism whereby a rare variant causes a disease.


Assuntos
Metilação de DNA/genética , Epigenoma/genética , Predisposição Genética para Doença/genética , Obesidade/genética , Adenilil Ciclases/genética , Índice de Massa Corporal , Ciclinas/genética , Epigenômica/métodos , Estudo de Associação Genômica Ampla , Proteínas de Choque Térmico HSP40/genética , Humanos , Análise da Randomização Mendeliana , Proteínas Associadas aos Microtúbulos/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Pró-Opiomelanocortina/genética , Proteínas Serina-Treonina Quinases/genética , Locos de Características Quantitativas , Fatores de Risco , Proteínas de Transporte de Sódio-Glucose/genética , Proteínas rab de Ligação ao GTP/genética
5.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205045

RESUMO

SGLT-2i's exert direct anti-inflammatory and anti-oxidative effects on resting endothelial cells. However, endothelial cells are constantly exposed to mechanical forces such as cyclic stretch. Enhanced stretch increases the production of reactive oxygen species (ROS) and thereby impairs endothelial barrier function. We hypothesized that the SGLT-2i's empagliflozin (EMPA), dapagliflozin (DAPA) and canagliflozin (CANA) exert an anti-oxidative effect and alleviate cyclic stretch-induced endothelial permeability in human coronary artery endothelial cells (HCAECs). HCAECs were pre-incubated with one of the SGLT-2i's (1 µM EMPA, 1 µM DAPA and 3 µM CANA) for 2 h, followed by 10% stretch for 24 h. HCAECs exposed to 5% stretch were considered as control. Involvement of ROS was measured using N-acetyl-l-cysteine (NAC). The sodium-hydrogen exchanger 1 (NHE1) and NADPH oxidases (NOXs) were inhibited by cariporide, or GKT136901, respectively. Cell permeability and ROS were investigated by fluorescence intensity imaging. Cell permeability and ROS production were increased by 10% stretch; EMPA, DAPA and CANA decreased this effect significantly. Cariporide and GKT136901 inhibited stretch-induced ROS production but neither of them further reduced ROS production when combined with EMPA. SGLT-2i's improve the barrier dysfunction of HCAECs under enhanced stretch and this effect might be mediated through scavenging of ROS. Anti-oxidative effect of SGLT-2i's might be partially mediated by inhibition of NHE1 and NOXs.


Assuntos
Células Endoteliais/efeitos dos fármacos , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Transporte de Sódio-Glucose/antagonistas & inibidores , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores , Compostos Benzidrílicos/farmacologia , Canagliflozina/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Endoteliais/metabolismo , Glucosídeos/farmacologia , Guanidinas/farmacologia , Humanos , Inflamação/genética , Inflamação/patologia , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , Estresse Oxidativo/genética , Pirazóis/farmacologia , Piridonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Transporte de Sódio-Glucose/genética , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Trocador 1 de Sódio-Hidrogênio/genética , Estresse Mecânico , Sulfonas/farmacologia
6.
Nat Cell Biol ; 23(7): 733-744, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34155381

RESUMO

Intestinal organoids derived from single cells undergo complex crypt-villus patterning and morphogenesis. However, the nature and coordination of the underlying forces remains poorly characterized. Here, using light-sheet microscopy and large-scale imaging quantification, we demonstrate that crypt formation coincides with a stark reduction in lumen volume. We develop a 3D biophysical model to computationally screen different mechanical scenarios of crypt morphogenesis. Combining this with live-imaging data and multiple mechanical perturbations, we show that actomyosin-driven crypt apical contraction and villus basal tension work synergistically with lumen volume reduction to drive crypt morphogenesis, and demonstrate the existence of a critical point in differential tensions above which crypt morphology becomes robust to volume changes. Finally, we identified a sodium/glucose cotransporter that is specific to differentiated enterocytes that modulates lumen volume reduction through cell swelling in the villus region. Together, our study uncovers the cellular basis of how cell fate modulates osmotic and actomyosin forces to coordinate robust morphogenesis.


Assuntos
Diferenciação Celular , Linhagem da Célula , Mucosa Intestinal/fisiologia , Mecanotransdução Celular , Osmorregulação , Celulas de Paneth/fisiologia , Células-Tronco/fisiologia , Animais , Movimento Celular , Células Cultivadas , Simulação por Computador , Feminino , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Vídeo , Modelos Biológicos , Morfogênese , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Organoides , Pressão Osmótica , Celulas de Paneth/metabolismo , Proteínas de Transporte de Sódio-Glucose/genética , Proteínas de Transporte de Sódio-Glucose/metabolismo , Células-Tronco/metabolismo , Estresse Mecânico , Fatores de Tempo
7.
Eur J Pharmacol ; 904: 174169, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33984301

RESUMO

Diabetes, characterized by high glucose levels, has been listed to be one of the world's major causes of death. Around 1.6 million deaths are attributed to this disease each year. Persistent hyperglycemic conditions in diabetic patients affect various organs of the body leading to diabetic complications and worsen the disease condition. Current treatment strategies for diabetes include biguanides, sulfonylureas, alpha-glucosidase inhibitors, thiazolidinediones, insulin and its analogs, DPP-4(dipeptidyl peptidase-4) and GLP-1 (glucagon-like peptide) analogs. However, many side effects contributing to the devastation of the disease are associated with them. Sodium glucose co-transporter-2 (SGLT2) inhibition has been reported to be new insulin-independent approach to diabetes therapy. It blocks glucose uptake in the kidneys by inhibiting SGLT2 transporters, thereby promoting glycosuria. Dapagliflozin, empagliflozin and canagliflozin are the most widely used SGLT2 inhibitors. They are effective in controlling blood glucose and HbA1c levels with few side effects including hypoglycemia or weight gain which makes them preferable to other anti-diabetic drugs. However, treatment is found to be associated with inter-individual drug response to SGLT2 inhibitors and adverse drug reactions which are also affected by genetic variations. There have been very few pharmacogenetics trials of these drugs. This review discusses the various SGLT2 inhibitors, their pharmacokinetics, pharmacodynamics and genetic variation influencing the inter-individual drug response.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Hipoglicemiantes/farmacologia , Hipoglicemiantes/farmacocinética , Farmacogenética , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacocinética , Animais , Glucose/metabolismo , Humanos , Hipoglicemiantes/efeitos adversos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/fisiologia , Proteínas de Transporte de Sódio-Glucose/antagonistas & inibidores , Proteínas de Transporte de Sódio-Glucose/genética , Proteínas de Transporte de Sódio-Glucose/fisiologia , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos
8.
Life Sci ; 267: 118974, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33385407

RESUMO

AIM: We aimed to determine whether the sodium/glucose cotransporter family member SGLT3, a proposed glucose sensor, is expressed in the intestine and/or kidney, and if its expression is altered in mouse models of obesity and in humans before and after weight-loss surgery. MAIN METHODS: We used in-situ hybridization and quantitative PCR to determine whether the Sglt3 isoforms 3a and 3b were expressed in the intestine and kidney of C57, leptin-deficient ob/ob, and diabetic BTBR ob/ob mice. Western blotting and immunohistochemistry were also used to assess SGLT3 protein levels in jejunal biopsies from obese patients before and after weight-loss Roux-en-Y gastric bypass surgery (RYGB), and in lean healthy controls. KEY FINDINGS: Sglt3a/3b mRNA was detected in the small intestine (duodenum, jejunum and ileum), but not in the large intestine or kidneys of mice. Both isoforms were detected in epithelial cells (confirmed using intestinal organoids). Expression of Sglt3a/3b mRNA in duodenum and jejunum was significantly lower in ob/ob and BTBR ob/ob mice than in normal-weight littermates. Jejunal SGLT3 protein levels in aged obese patients before RYGB were lower than in lean individuals, but substantially upregulated 6 months post-RYGB. SIGNIFICANCE: Our study shows that Sglt3a/3b is expressed primarily in epithelial cells of the small intestine in mice. Furthermore, we observed an association between intestinal mRNA Sglt3a/3b expression and obesity in mice, and between jejunal SGLT3 protein levels and obesity in humans. Further studies are required to determine the possible role of SGLT3 in obesity.


Assuntos
Obesidade/metabolismo , Proteínas de Transporte de Sódio-Glucose/genética , Adulto , Animais , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Derivação Gástrica , Expressão Gênica , Humanos , Insulina/metabolismo , Resistência à Insulina , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Jejuno/metabolismo , Leptina/deficiência , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Obesidade/genética , Isoformas de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Transporte de Sódio-Glucose/biossíntese , Proteínas de Transporte de Sódio-Glucose/metabolismo , Transcriptoma , Redução de Peso
9.
J Clin Endocrinol Metab ; 106(2): e875-e890, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-33165596

RESUMO

CONTEXT: Perturbed inositol physiology in insulin-resistant conditions has led to proposals of inositol supplementation for gestational diabetes (GDM) prevention, but placental inositol biology is poorly understood. OBJECTIVE: Investigate associations of maternal glycemia with placental inositol content, determine glucose effects on placental expression of inositol enzymes and transporters, and examine relations with birthweight. DESIGN AND PARTICIPANTS: Case-control study of placentae from term singleton pregnancies (GDM n = 24, non-GDM n = 26), and culture of another 9 placentae in different concentrations of glucose and myo-inositol for 48 hours. MAIN OUTCOME MEASURES: Placental inositol was quantified by the Megazyme assay. Relative expression of enzymes involved in myo-inositol metabolism and plasma membrane inositol transport was determined by quantitative RT-PCR and immunoblotting. Linear regression analyses were adjusted for maternal age, body mass index, ethnicity, gestational age, and sex. RESULTS: Placental inositol content was 17% lower in GDM compared with non-GDM. Higher maternal mid-gestation glycemia were associated with lower placental inositol. Increasing fasting glycemia was associated with lower protein levels of the myo-inositol synthesis enzyme, IMPA1, and the inositol transporters, SLC5A11 and SLC2A13, the expression of which also correlated with placental inositol content. In vitro, higher glucose concentrations reduced IMPA1 and SLC5A11 mRNA expression. Increasing fasting glycemia positively associated with customized birthweight percentile as expected in cases with low placental inositol, but this association was attenuated with high placental inositol. CONCLUSION: Glycemia-induced dysregulation of placental inositol synthesis and transport may be implicated in reduced placental inositol content in GDM, and this may in turn be permissive to accelerated fetal growth.


Assuntos
Diabetes Gestacional/metabolismo , Glucose/farmacologia , Inositol/metabolismo , Monoéster Fosfórico Hidrolases/genética , Placenta/metabolismo , Adulto , Glicemia/fisiologia , Estudos de Casos e Controles , Células Cultivadas , Diabetes Gestacional/sangue , Diabetes Gestacional/genética , Regulação para Baixo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/efeitos dos fármacos , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Recém-Nascido , Masculino , Monoéster Fosfórico Hidrolases/efeitos dos fármacos , Monoéster Fosfórico Hidrolases/metabolismo , Placenta/patologia , Gravidez , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas de Transporte de Sódio-Glucose/efeitos dos fármacos , Proteínas de Transporte de Sódio-Glucose/genética , Proteínas de Transporte de Sódio-Glucose/metabolismo
10.
Pflugers Arch ; 472(9): 1385-1399, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32809061

RESUMO

Glucose transporters are essential for the heart to sustain its function. Due to its nature as a high energy-consuming organ, the heart needs to catabolize a huge quantity of metabolic substrates. For optimized energy production, the healthy heart constantly switches between various metabolites in accordance with substrate availability and hormonal status. This metabolic flexibility is essential for the maintenance of cardiac function. Glucose is part of the main substrates catabolized by the heart and its use is fine-tuned via complex molecular mechanisms that include the regulation of the glucose transporters GLUTs, mainly GLUT4 and GLUT1. Besides GLUTs, glucose can also be transported by cotransporters of the sodium-glucose cotransporter (SGLT) (SLC5 gene) family, in which SGLT1 and SMIT1 were shown to be expressed in the heart. This SGLT-mediated uptake does not seem to be directly linked to energy production but is rather associated with intracellular signalling triggering important processes such as the production of reactive oxygen species. Glucose transport is markedly affected in cardiac diseases such as cardiac hypertrophy, diabetic cardiomyopathy and heart failure. These alterations are not only fingerprints of these diseases but are involved in their onset and progression. The present review will depict the importance of glucose transport in healthy and diseased heart, as well as proposed therapies targeting glucose transporters.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Cardiopatias/metabolismo , Miocárdio/metabolismo , Proteínas de Transporte de Sódio-Glucose/metabolismo , Animais , Proteínas Facilitadoras de Transporte de Glucose/genética , Cardiopatias/genética , Humanos , Proteínas de Transporte de Sódio-Glucose/genética
11.
Pflugers Arch ; 472(9): 1401-1406, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32529300

RESUMO

Glucose uptake into lymphocytes is accomplished by non-concentrative glucose carriers of the GLUT family (GLUT1, GLUT3, GLUT4, GLUT6) and/or by the Na+-coupled glucose carrier SGLT1. The latter accumulates glucose against glucose gradients and is still effective at very low extracellular glucose concentrations. Signaling involved in SGLT1 expression and activity includes protein kinase A (PKA), protein kinase C (PKC), serum- and glucocorticoid-inducible kinase (SGK1), AMP-activated kinase (AMPK), and Janus kinases (JAK2 and JAK3). Glucose taken up is partially stored as glycogen. In hypoxic environments, such as in tumors as well as infected and inflamed tissues, lymphocytes depend on energy production from glycogen-dependent glycolysis. The lack of SGLT1 may compromise glycogen storage and thus lymphocyte survival and function in hypoxic tissues. Accordingly, in mice, genetic knockout of sglt1 compromised bacterial clearance following Listeria monocytogenes infection leading to an invariably lethal course of the disease. Whether the effect was due to the lack of sglt1 in lymphocytes or in other cell types still remains to be determined. Clearly, additional experimental effort is required to define the role of glucose transport by GLUTs and particularly by SGLT1 for lymphocyte survival and function, as well as orchestration of the host defense against tumors and bacterial infections.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Linfócitos/metabolismo , Proteínas de Transporte de Sódio-Glucose/metabolismo , Animais , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Humanos , Proteínas Quinases/metabolismo , Transdução de Sinais , Proteínas de Transporte de Sódio-Glucose/genética
12.
Pflugers Arch ; 472(9): 1249-1272, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32394191

RESUMO

The fine-tuning of glucose uptake mechanisms is rendered by various glucose transporters with distinct transport characteristics. In the pancreatic islet, facilitative diffusion glucose transporters (GLUTs), and sodium-glucose cotransporters (SGLTs) contribute to glucose uptake and represent important components in the glucose-stimulated hormone release from endocrine cells, therefore playing a crucial role in blood glucose homeostasis. This review summarizes the current knowledge about cell type-specific expression profiles as well as proven and putative functions of distinct GLUT and SGLT family members in the human and rodent pancreatic islet and further discusses their possible involvement in onset and progression of diabetes mellitus. In context of GLUTs, we focus on GLUT2, characterizing the main glucose transporter in insulin-secreting ß-cells in rodents. In addition, we discuss recent data proposing that other GLUT family members, namely GLUT1 and GLUT3, render this task in humans. Finally, we summarize latest information about SGLT1 and SGLT2 as representatives of the SGLT family that have been reported to be expressed predominantly in the α-cell population with a suggested functional role in the regulation of glucagon release.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteínas de Transporte de Sódio-Glucose/metabolismo , Animais , Proteínas Facilitadoras de Transporte de Glucose/genética , Humanos , Proteínas de Transporte de Sódio-Glucose/genética
13.
Fish Physiol Biochem ; 46(3): 1039-1052, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32062828

RESUMO

Glucose and fructose play a central role in the metabolism and cellular homeostasis of organisms. Their absorption is co-mediated by two families of glucose transporters, Na+-coupled glucose co-transporters (SGLTs) and facilitative Na+-independent sugar carriers (GLUTs), in the intestine. However, limited information has been available on these transporters in fish. Therefore, we studied glut2, sglt1, and sglt4 genes in grass carp (Ctenopharyngodon idellus). The full-length cDNAs of glut2 was 2308 bp, with an open reading frame (ORF) of 503 amino acids (AAs). The full-length cDNAs of sglt1 was 2890 bp, with an ORF of 658 AAs. Additionally, the full-length cDNAs of sglt4 was 2090 bp, with an ORF encoding 659 AAs. The three deduced AA sequences showed high homology between grass carp and other cyprinid fish species. Based on homology modeling, three-dimensional models of GLUT2, SGLT1, and SGLT4 proteins were created and transmembrane domains were noted. glut2, sglt1, and sglt4 were abundantly expressed in the anterior and mid intestine. In particular, glut2 was markedly expressed in liver (P < 0.05). Additionally, the results indicated that different stocking densities (0.9 or 5.9 kg m-2) did not alter intestinal section-dependent expression patterns of the three transporter genes. However, high stocking density impacted segmental mRNA expression levels. This work demonstrated that mRNA expression of sugar transporter genes in the fish intestine was segment specific, and crowding stress may affect the activity of intestinal sugar transporters. These results provided new insights into the relationship between crowding stress and intestinal sugar transporters in fish.


Assuntos
Carpas/genética , Proteínas de Peixes/genética , Transportador de Glucose Tipo 2/genética , Proteínas de Transporte de Sódio-Glucose/genética , Sequência de Aminoácidos , Animais , Aquicultura/métodos , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Proteínas de Peixes/química , Frutose , Glucose , Transportador de Glucose Tipo 2/química , Mucosa Intestinal/metabolismo , Rim/metabolismo , Fígado/metabolismo , Filogenia , Proteínas de Transporte de Sódio-Glucose/química
14.
Am J Physiol Regul Integr Comp Physiol ; 318(2): R245-R255, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31746628

RESUMO

The mucosal-to-serosal flux of 14C 3-O-methyl-d-glucose was compared against the electrogenic transport of d-glucose across ex vivo intestinal segments of Nile tilapia, rainbow trout, and pig in Ussing chambers. The difference in affinities (Km "fingerprints") between pig flux and electrogenic transport of glucose, and the absence of this difference in tilapia and trout, suggest two absorptive pathways in the pig and one in the fish species examined. More specifically, the total mucosal-to-serosal flux revealed a super high-affinity, high-capacity (sHa/Hc) total glucose transport system in tilapia; a super high-affinity, low-capacity (sHa/Lc) total glucose transport system in trout and a low-affinity, low-capacity (La/Lc) total glucose transport system in pig. Comparatively, electrogenic glucose absorption revealed similar Km in both fish species, with a super high-affinity, high capacity (sHa/Hc) system in tilapia; a super high-affinity/super low-capacity (sHa/sLc) system in trout; but a different Km fingerprint in the pig, with a high-affinity, low-capacity (Ha/Lc) system. This was supported by different responses to inhibitors of sodium-dependent glucose transporters (SGLTs) and glucose transporter type 2 (GLUT2) administered on the apical side between species. More specifically, tilapia flux was inhibited by SGLT inhibitors, but not the GLUT2 inhibitor, whereas trout lacked response to inhibitors. In contrast, the pig responded to inhibition by both SGLT and GLUT2 inhibitors with a higher expression of GLUT2. Altogether, it would appear that two pathways are working together in the pig, allowing it to have continued absorption at high glucose concentrations, whereas this is not present in both tilapia and trout.


Assuntos
3-O-Metilglucose/metabolismo , Proteínas de Peixes/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Absorção Intestinal , Mucosa Intestinal/metabolismo , Jejuno/metabolismo , Proteínas de Transporte de Sódio-Glucose/metabolismo , Animais , Ciclídeos , Feminino , Transportador de Glucose Tipo 2/genética , Potenciais da Membrana , Oncorhynchus mykiss , Proteínas de Transporte de Sódio-Glucose/genética , Especificidade da Espécie , Sus scrofa
15.
Biol Reprod ; 102(2): 456-474, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31616913

RESUMO

Survival and growth of the bovine conceptus (embryo and associated extraembryonic membranes) are dependent on endometrial secretions or histotroph found in the uterine lumen. Previously, serial embryo transfer was used to classify heifers as high fertile (HF), subfertile (SF), or infertile (IF). Here, we investigated specific histotroph components [glucose, prostaglandins (PGs), and lipids] in the uterine lumen of day 17 pregnant and open fertility-classified heifers. Concentrations of glucose in the uterine lumen were increased by pregnancy but did not differ among fertility-classified heifers. Differences in expression of genes encoding glucose transporters and involved with glycolysis and gluconeogenesis were observed between conceptuses collected from HF and SF heifers. In the uterine lumen, PGE2 and PGF2α were increased by pregnancy, and HF heifers had higher concentrations of PGE2, PGF2α, and 6-keto-PFG1α than SF heifers. Differences were found in expression of genes regulating PG signaling, arachidonic acid metabolism, and peroxisome proliferator-activated receptor signaling among conceptuses and endometrium from fertility-classified heifers. Lipidomics was conducted exclusively in samples from HF heifers, and phosphatidylcholine was the main lipid class that increased in the uterine lumen by pregnancy. Expression of several lipid metabolism genes differed between HF and SF conceptuses, and a number of fatty acids were differentially abundant in the uterine lumen of pregnant HF and SF heifers. These results support the ideas that uterine luminal histotroph impacts conceptus survival and programs its development and is a facet of dysregulated conceptus-endometrial interactions that result in loss of the conceptus in SF cattle during the implantation period of pregnancy establishment.


Assuntos
Glucose/metabolismo , Lipídeos/análise , Prenhez/metabolismo , Prostaglandinas/metabolismo , Útero/metabolismo , Animais , Bovinos , Implantação do Embrião/fisiologia , Transferência Embrionária/veterinária , Desenvolvimento Embrionário/fisiologia , Endométrio/metabolismo , Feminino , Expressão Gênica , Gluconeogênese/genética , Glicólise/genética , Gravidez , Proteínas de Transporte de Sódio-Glucose/genética , Proteínas de Transporte de Sódio-Glucose/metabolismo
16.
Anim Sci J ; 90(9): 1200-1211, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31317623

RESUMO

The study aimed to evaluate nutrient digestibility and intestine gene expression in the progeny from cows supplemented during gestation and fed diets with or without rumen-protected fat (RPF) in the feedlot. Forty-eight Nellore steers, averaging 340 kg, were housed in individual pens and allotted in a completely randomized design using a 2 × 2 factorial arrangement (dams nutrition × RPF). Cows' supplementation started after 124 ± 21 days of gestation. The feedlot lasted 135 days and diets had the inclusion of zero or 6% of RPF. Digestibility was evaluated by total feces collection. Steers were slaughtered using the concussion technique and samples of pancreas and small intestine were collected immediately after the slaughter to analyze α-amylase activity, and the expression of SLC5A1, CD36, and CCK and villi morphometry. Feeding RPF increased nutrients digestibility (p < 0.01). There was no effect of maternal nutrition on digestibility and α-amylase activity in steers (p > 0.05). Duodenal expression of SLC5A1, CD36, and CCK increased in the progeny from restricted cows. In conclusion, protein restriction during mid to late gestation of dams has long-term effects on small-intestine length and on expression of membrane transporters genes in the duodenum of the progeny. However, maternal nutrition does not affect digestibility in the feedlot.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Dieta Hiperlipídica/veterinária , Dieta com Restrição de Proteínas/veterinária , Dieta/veterinária , Fenômenos Fisiológicos da Nutrição Materna , Prenhez , Animais , Bovinos , Digestão/fisiologia , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Transporte de Ácido Graxo/metabolismo , Feminino , Expressão Gênica , Intestino Delgado/anatomia & histologia , Intestino Delgado/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Gravidez , Proteínas de Transporte de Sódio-Glucose/genética , Proteínas de Transporte de Sódio-Glucose/metabolismo , alfa-Amilases/genética , alfa-Amilases/metabolismo
17.
Behav Processes ; 164: 133-142, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31051219

RESUMO

Starting in late 1980's, Bill Timberlake and associates conducted a series of experiments on anticipatory contrast which showed that rats' feeding decisions were regulated by the nutritive value of currently ingested and anticipated food. The effects of nutrient sensing on feeding regulation have been studied intensively in rodents, and recently, in the fruit fly Drosophila melanogaster. In this study, we developed a new behavioral test to study rapid feeding decisions of tethered flies within 6-8 s of ingestion. Using a two-phase experimental design, we presented individual flies one of four serial combinations of a non-nutritive sugar, arabinose, or a nutritive sugar, sucrose. Feeding decisions of wildtype (Canton-S) flies are altered both by immediate effects of nutrient sensing and 1-hour delayed effects of nutrient-feeding, and the two effects act additively to yield a signature pattern of behavioral contrast based on nutritive contrast. Feeding phenotype of flies that carry a mutation of the dSLC5A11 (cupcake) gene varied with the mutant allele and genetic background. Fasted dSLC5A11 mutants showed an overeating phenotype and a defect in short-term feeding regulation irrespective of the nutritive value of sugar. Flies that carried the dSLC5A111 allele showed differential feeding for arabinose and sucrose. However, dSLC5A112 allele yielded a conspicuous deficit in delayed effects of nutrient ingestion, but only when it was expressed on a Canton-S background. Our results suggest that dSLC5A11 might function to integrate external stimulus properties and internal state for feeding regulation and action selection.


Assuntos
Tomada de Decisões , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Comportamento Alimentar/fisiologia , Nutrientes/fisiologia , Proteínas de Transporte de Sódio-Glucose/genética , Proteínas de Transporte de Sódio-Glucose/fisiologia , Alelos , Animais , Arabinose , Drosophila melanogaster/genética , Mutação , Valor Nutritivo , Percepção/fisiologia , Fenótipo , Ratos , Sacarose , Fatores de Tempo
18.
Physiol Rep ; 7(9): e14090, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31062524

RESUMO

Kinetic characterization of electrogenic sodium-dependent transport in Ussing chambers of d-glucose and d-galactose demonstrated sigmoidal/Hill kinetics in the porcine jejunum and ileum, with the absence of transport in the distal colon. In the jejunum, a high-affinity, super-low-capacity (Ha/sLc) kinetic system accounted for glucose transport, and a low-affinity, low-capacity (La/Lc) kinetic system accounted for galactose transport. In contrast, the ileum demonstrated a high-affinity, super-high-capacity (Ha/sHc) glucose transport and a low-affinity, high-capacity (La/Hc) galactose transport systems. Jejunal glucose transport was not inhibited by dapagliflozin, but galactose transport was inhibited. Comparatively, ileal glucose and galactose transport were both sensitive to dapagliflozin. Genomic and gene expression analyses identified 10 of the 12 known SLC5A family members in the porcine jejunum, ileum, and distal colon. Dominant SGLT1 (SLC5A1) and SGLT3 (SLC5A4) expression was associated with the sigmoidal Ha/sLc glucose and La/Lc galactose transport systems in the jejunum. Comparatively, the dominant expression of SGLT1 (SLC5A1) in the ileum was only associated with Ha glucose and La galactose kinetic systems. However, the sigmoidal kinetics and overall high capacity (Hc) of transport is unlikely accounted for by SGLT1 (SLC5A1) alone. Finally, the absence of transport and lack of pharmacological inhibition in the colon was associated with the poor expression of SLC5A genes. Altogether, the results demonstrated intestinal segregation of monosaccharide transport fit different sigmoidal kinetic systems. This reveals multiple transporter populations in each system, supported by gene expression profiles and pharmacological inhibition. Overall, this work demonstrates a complexity to transporter involvement in intestinal electrogenic monosaccharide absorption systems not previously defined.


Assuntos
Mucosa Intestinal/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Monossacarídeos/metabolismo , Sus scrofa/metabolismo , Animais , Transporte Biológico/fisiologia , Colo/metabolismo , Galactose/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/fisiologia , Glucose/metabolismo , Íleo/metabolismo , Absorção Intestinal/fisiologia , Jejuno/metabolismo , Proteínas de Transporte de Sódio-Glucose/biossíntese , Proteínas de Transporte de Sódio-Glucose/genética , Transportador 1 de Glucose-Sódio/fisiologia
19.
Sci Rep ; 9(1): 5941, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30976018

RESUMO

Serum 1,5-anhydroglucitol (1,5-AG) is an emerging biomarker used to monitor glycemic control in persons with diabetes. We performed whole-exome sequencing, examining the association between rare, coding genetic variants and 1,5-AG among European ancestry (N = 6,589) and African ancestry (N = 2,309) participants without diagnosed diabetes in the Atherosclerosis Risk in Communities (ARIC) Study. Five variants representing 3 independent signals on chromosome 17 in SLC5A10, a glucose transporter not previously known to transport 1,5-AG, were associated with 1,5-AG levels up to 10.38 µg/mL lower per allele (1,5-AG range 3.4-32.8 µg/mL) in the European ancestry sample and validated in the African ancestry sample. Together these variants explained 6% of the variance in 1,5-AG. Two of these variants (rs61741107, p = 8.85E-56; rs148178887, p = 1.13E-36) were rare, nonsynonymous, and predicted to be damaging or deleterious by multiple algorithms. Gene-based SKAT-O analysis supported these results (SLC5A10 p = 5.13E-64 in European ancestry, validated in African ancestry, p = 0.006). Interestingly, these novel variants are not associated with other biomarkers of hyperglycemia or diabetes (p > 0.2). The large effect sizes and protein-altering, multiple independent signals suggest SLC5A10 may code for an important transporter of 1,5-AG in the kidney, with a potential nonglucose-related effect on 1,5-AG, impacting its clinical utility as a diabetes biomarker in this subpopulation.


Assuntos
Aterosclerose/patologia , Desoxiglucose/sangue , Polimorfismo de Nucleotídeo Único , Proteínas de Transporte de Sódio-Glucose/genética , Aterosclerose/sangue , Aterosclerose/genética , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Sequenciamento do Exoma
20.
Am J Physiol Renal Physiol ; 316(3): F473-F480, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30565998

RESUMO

Fructose consumption has increased because of widespread use of high-fructose corn syrup by the food industry. Renal proximal tubules are thought to reabsorb fructose. However, fructose reabsorption (Jfructose) by proximal tubules has not yet been directly demonstrated, nor the effects of dietary fructose on Jfructose. This segment expresses Na+- and glucose-linked transporters (SGLTs) 1, 2, 4, and 5 and glucose transporters (GLUTs) 2 and 5. SGLT4 and -5 transport fructose, but SGLT1 and -2 do not. Knocking out SGLT5 increases urinary fructose excretion. We hypothesize that Jfructose in the S2 portion of the proximal tubule is mediated by luminal entry via SGLT4/5 and basolateral exit by GLUT2 and that it is enhanced by a fructose-enriched diet. We measured Jfructose by proximal straight tubules from rats consuming either tap water (Controls) or 20% fructose (FRU). Basal Jfructose in Controls was 14.1 ± 1.5 pmol·mm-1·min-1. SGLT inhibition with phlorizin reduced Jfructose to 4.9 ± 1.4 pmol·mm-1·min-1 ( P < 0.008), whereas removal of Na+ diminished Jfructose by 86 ± 5% ( P < 0.0001). A fructose-enriched diet increased Jfructose from 12.8 ± 2.5 to 19.3 ± 0.5 pmol·mm-1·min-1, a 51% increase ( P < 0.03). Using immunofluorescence, we detected luminal SGLT4 and SGLT5 and basolateral GLUT2; GLUT5 was undetectable. The expression of apical transporters SGLT4 and SGLT5 was higher in FRU than in Controls [137 ± 10% ( P < 0.01) and 38 ± 14% ( P < 0.04), respectively]. GLUT2 was also elevated by 88 ± 27% ( P < 0.02) in FRU. We conclude that Jfructose by proximal tubules occurs primarily via Na+-linked cotransport processes, and a fructose-enriched diet enhances reabsorption. Transport across luminal and basolateral membranes is likely mediated by SGLT4/5 and GLUT2, respectively.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Carboidratos da Dieta/administração & dosagem , Frutose/administração & dosagem , Transportador de Glucose Tipo 2/metabolismo , Túbulos Renais Proximais/metabolismo , Proteínas de Transporte de Sódio-Glucose/metabolismo , Administração Oral , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Transportador de Glucose Tipo 2/genética , Túbulos Renais Proximais/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Proteínas de Transporte de Sódio-Glucose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...