Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105575, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110034

RESUMO

The carboxy-terminal tail of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope protein (E) contains a PDZ-binding motif (PBM) which is crucial for coronavirus pathogenicity. During SARS-CoV-2 infection, the viral E protein is expressed within the Golgi apparatus membrane of host cells with its PBM facing the cytoplasm. In this work, we study the molecular mechanisms controlling the presentation of the PBM to host PDZ (PSD-95/Dlg/ZO-1) domain-containing proteins. We show that at the level of the Golgi apparatus, the PDZ-binding motif of the E protein is not detected by E C-terminal specific antibodies nor by the PDZ domain-containing protein-binding partner. Four alanine substitutions upstream of the PBM in the central region of the E protein tail is sufficient to generate immunodetection by anti-E antibodies and trigger robust recruitment of the PDZ domain-containing protein into the Golgi organelle. Overall, this work suggests that the presentation of the PBM to the cytoplasm is under conformational regulation mediated by the central region of the E protein tail and that PBM presentation probably does not occur at the surface of Golgi cisternae but likely at post-Golgi stages of the viral cycle.


Assuntos
Proteínas do Envelope de Coronavírus , Citoplasma , SARS-CoV-2 , Humanos , Motivos de Aminoácidos , Proteínas do Envelope de Coronavírus/química , Proteínas do Envelope de Coronavírus/metabolismo , COVID-19/patologia , COVID-19/virologia , Citoplasma/metabolismo , Citoplasma/virologia , Complexo de Golgi/química , Complexo de Golgi/metabolismo , Guanilato Quinases/metabolismo , Domínios PDZ , Ligação Proteica , Conformação Proteica , Transporte Proteico , SARS-CoV-2/química , SARS-CoV-2/metabolismo
2.
Biochemistry ; 61(21): 2280-2294, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36219675

RESUMO

The SARS-CoV-2 envelope (E) protein is a viroporin associated with the acute respiratory symptoms of COVID-19. E forms cation-selective ion channels that assemble in the lipid membrane of the endoplasmic reticulum Golgi intermediate compartment. The channel activity of E is linked to the inflammatory response of the host cell to the virus. Like many viroporins, E is thought to oligomerize with a well-defined stoichiometry. However, attempts to determine the E stoichiometry have led to inconclusive results and suggested mixtures of oligomers whose exact nature might vary with the detergent used. Here, we employ 19F solid-state nuclear magnetic resonance and the centerband-only detection of exchange (CODEX) technique to determine the oligomeric number of E's transmembrane domain (ETM) in lipid bilayers. The CODEX equilibrium value, which corresponds to the inverse of the oligomeric number, indicates that ETM assembles into pentamers in lipid bilayers, without any detectable fraction of low-molecular-weight oligomers. Unexpectedly, at high peptide concentrations and in the presence of the lipid phosphatidylinositol, the CODEX data indicate that more than five 19F spins are within a detectable distance of about 2 nm, suggesting that the ETM pentamers cluster in the lipid bilayer. Monte Carlo simulations that take into account peptide-peptide and peptide-lipid interactions yielded pentamer clusters that reproduced the CODEX data. This supramolecular organization is likely important for E-mediated virus assembly and budding and for the channel function of the protein.


Assuntos
Proteínas do Envelope de Coronavírus , Bicamadas Lipídicas , SARS-CoV-2 , Bicamadas Lipídicas/química , Domínios Proteicos , Proteínas Viroporinas , Proteínas do Envelope de Coronavírus/química
3.
J Phys Chem B ; 126(20): 3648-3658, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35580331

RESUMO

Aggregates of α-synuclein are thought to be the disease-causing agent in Parkinson's disease. Various case studies have hinted at a correlation between COVID-19 and the onset of Parkinson's disease. For this reason, we use molecular dynamics simulations to study whether amyloidogenic regions in SARS-COV-2 proteins can initiate and modulate aggregation of α-synuclein. As an example, we choose the nine-residue fragment SFYVYSRVK (SK9), located on the C-terminal of the envelope protein of SARS-COV-2. We probe how the presence of SK9 affects the conformational ensemble of α-synuclein monomers and the stability of two resolved fibril polymorphs. We find that the viral protein fragment SK9 may alter α-synuclein amyloid formation by shifting the ensemble toward aggregation-prone and preferentially rod-like fibril seeding conformations. However, SK9 has only a small effect on the stability of pre-existing or newly formed fibrils. A potential mechanism and key residues for potential virus-induced amyloid formation are described.


Assuntos
Proteínas Amiloidogênicas , Proteínas do Envelope de Coronavírus , Doença de Parkinson , Fragmentos de Peptídeos , alfa-Sinucleína , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , COVID-19/virologia , Proteínas do Envelope de Coronavírus/química , Proteínas do Envelope de Coronavírus/metabolismo , Humanos , Doença de Parkinson/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , SARS-CoV-2/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
4.
Proteins ; 90(5): 1102-1114, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35119706

RESUMO

Coronaviruses, especially severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), present an ongoing threat to human wellbeing. Consequently, elucidation of molecular determinants of their function and interaction with the host is an important task. Whereas some of the coronaviral proteins are extensively characterized, others remain understudied. Here, we use molecular dynamics simulations to analyze the structure and dynamics of the SARS-CoV-2 envelope (E) protein (a viroporin) in the monomeric form. The protein consists of the hydrophobic α-helical transmembrane domain (TMD) and amphiphilic α-helices H2 and H3, connected by flexible linkers. We show that TMD has a preferable orientation in the membrane, while H2 and H3 reside at the membrane surface. Orientation of H2 is strongly influenced by palmitoylation of cysteines Cys40, Cys43, and Cys44. Glycosylation of Asn66 affects the orientation of H3. We also observe that the monomeric E protein both generates and senses the membrane curvature, preferably localizing with the C-terminus at the convex regions of the membrane; the protein in the pentameric form displays these properties as well. Localization to curved regions may be favorable for assembly of the E protein oligomers, whereas induction of curvature may facilitate the budding of the viral particles. The presented results may be helpful for a better understanding of the function of the coronaviral E protein and viroporins in general, and for overcoming the ongoing SARS-CoV-2 pandemic.


Assuntos
COVID-19 , Proteínas do Envelope de Coronavírus/química , SARS-CoV-2 , Humanos , Domínios Proteicos , Proteínas do Envelope Viral/química
5.
J Phys Chem Lett ; 12(51): 12249-12255, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34928612

RESUMO

SARS-CoV-2 and other coronaviruses pose major threats to global health, yet computational efforts to understand them have largely overlooked the process of budding, a key part of the coronavirus life cycle. When expressed together, coronavirus M and E proteins are sufficient to facilitate budding into the ER-Golgi intermediate compartment (ERGIC). To help elucidate budding, we ran atomistic molecular dynamics (MD) simulations using the Feig laboratory's refined structural models of the SARS-CoV-2 M protein dimer and E protein pentamer. Our MD simulations consisted of M protein dimers and E protein pentamers in patches of membrane. By examining where these proteins induced membrane curvature in silico, we obtained insights around how the budding process may occur. Multiple M protein dimers acted together to induce global membrane curvature through protein-lipid interactions while E protein pentamers kept the membrane planar. These results could eventually help guide development of antiviral therapeutics that inhibit coronavirus budding.


Assuntos
Proteínas do Envelope de Coronavírus/metabolismo , Simulação de Dinâmica Molecular , SARS-CoV-2/fisiologia , Proteínas da Matriz Viral/metabolismo , COVID-19/patologia , COVID-19/virologia , Proteínas do Envelope de Coronavírus/química , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Multimerização Proteica , Transporte Proteico , SARS-CoV-2/isolamento & purificação , Proteínas da Matriz Viral/química
6.
Sci Rep ; 11(1): 20383, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650130

RESUMO

SARS-CoV-2 continues to infect an ever-expanding number of people, resulting in an increase in the number of deaths globally. With the emergence of new variants, there is a corresponding decrease in the currently available vaccine efficacy, highlighting the need for greater insights into the viral epitope profile for both vaccine design and assessment. In this study, three immunodominant linear B cell epitopes in the SARS-CoV-2 spike receptor-binding domain (RBD) were identified by immunoinformatics prediction, and confirmed by ELISA with sera from Macaca fascicularis vaccinated with a SARS-CoV-2 RBD subunit vaccine. Further immunoinformatics analyses of these three epitopes gave rise to a method of linear B cell epitope prediction and selection. B cell epitopes in the spike (S), membrane (M), and envelope (E) proteins were subsequently predicted and confirmed using convalescent sera from COVID-19 infected patients. Immunodominant epitopes were identified in three regions of the S2 domain, one region at the S1/S2 cleavage site and one region at the C-terminus of the M protein. Epitope mapping revealed that most of the amino acid changes found in variants of concern are located within B cell epitopes in the NTD, RBD, and S1/S2 cleavage site. This work provides insights into B cell epitopes of SARS-CoV-2 as well as immunoinformatics methods for B cell epitope prediction, which will improve and enhance SARS-CoV-2 vaccine development against emergent variants.


Assuntos
COVID-19/imunologia , Epitopos de Linfócito B/imunologia , Epitopos Imunodominantes/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Proteínas da Matriz Viral/imunologia , Animais , COVID-19/prevenção & controle , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Biologia Computacional , Proteínas do Envelope de Coronavírus/química , Proteínas do Envelope de Coronavírus/imunologia , Epitopos de Linfócito B/química , Humanos , Imunoensaio , Epitopos Imunodominantes/química , Macaca , Modelos Moleculares , Glicoproteína da Espícula de Coronavírus/química , Proteínas da Matriz Viral/química
7.
Mol Syst Biol ; 17(9): e10079, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34519429

RESUMO

We modeled 3D structures of all SARS-CoV-2 proteins, generating 2,060 models that span 69% of the viral proteome and provide details not available elsewhere. We found that ˜6% of the proteome mimicked human proteins, while ˜7% was implicated in hijacking mechanisms that reverse post-translational modifications, block host translation, and disable host defenses; a further ˜29% self-assembled into heteromeric states that provided insight into how the viral replication and translation complex forms. To make these 3D models more accessible, we devised a structural coverage map, a novel visualization method to show what is-and is not-known about the 3D structure of the viral proteome. We integrated the coverage map into an accompanying online resource (https://aquaria.ws/covid) that can be used to find and explore models corresponding to the 79 structural states identified in this work. The resulting Aquaria-COVID resource helps scientists use emerging structural data to understand the mechanisms underlying coronavirus infection and draws attention to the 31% of the viral proteome that remains structurally unknown or dark.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Interações Hospedeiro-Patógeno/genética , Processamento de Proteína Pós-Traducional , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Sítios de Ligação , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Biologia Computacional/métodos , Proteínas do Envelope de Coronavírus/química , Proteínas do Envelope de Coronavírus/genética , Proteínas do Envelope de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Humanos , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Mimetismo Molecular , Neuropilina-1/química , Neuropilina-1/genética , Neuropilina-1/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas/métodos , Multimerização Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Proteínas Viroporinas/química , Proteínas Viroporinas/genética , Proteínas Viroporinas/metabolismo , Replicação Viral
8.
J Chem Theory Comput ; 17(10): 6483-6490, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34516136

RESUMO

SARS-CoV-2 that caused COVID-19 has spread since the end of 2019. Its major effects resulted in over four million deaths around the whole world by August 2021. Therefore, understanding virulence mechanisms is important to prevent future outbreaks and for COVID-19 drug development. The envelope (E) protein is an important structural protein, affecting virus assembly and budding. The E protein pentamer is a viroporin, serving as an ion transferring channel in cells. In this work, we applied molecular dynamic simulations and topological and electrostatic analyses to study the effects of palmitoylation on the E protein pentamer. The results indicate that the cation transferring direction is more from the lumen to the cytosol. The structure of the palmitoylated E protein pentamer is more stable while the loss of palmitoylation caused the pore radius to reduce and even collapse. The electrostatic forces on the two sides of the palmitoylated E protein pentamer are more beneficial to attract cations in the lumen and to release cations into the cytosol. The results indicate the importance of palmitoylation, which can help the drug design for the treatment of COVID-19.


Assuntos
Proteínas do Envelope de Coronavírus/química , Lipoilação , Antivirais/química , Antivirais/farmacologia , Cátions/química , Biologia Computacional , Citosol/química , Desenho de Fármacos , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Análise de Componente Principal , Prótons , Eletricidade Estática
9.
Nat Commun ; 12(1): 3433, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103506

RESUMO

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has created global health and economic emergencies. SARS-CoV-2 viruses promote their own spread and virulence by hijacking human proteins, which occurs through viral protein recognition of human targets. To understand the structural basis for SARS-CoV-2 viral-host protein recognition, here we use cryo-electron microscopy (cryo-EM) to determine a complex structure of the human cell junction protein PALS1 and SARS-CoV-2 viral envelope (E) protein. Our reported structure shows that the E protein C-terminal DLLV motif recognizes a pocket formed exclusively by hydrophobic residues from the PDZ and SH3 domains of PALS1. Our structural analysis provides an explanation for the observation that the viral E protein recruits PALS1 from lung epithelial cell junctions. In addition, our structure provides novel targets for peptide- and small-molecule inhibitors that could block the PALS1-E interactions to reduce E-mediated virulence.


Assuntos
Proteínas do Envelope de Coronavírus/química , Proteínas do Envelope de Coronavírus/metabolismo , Junções Intercelulares/metabolismo , Proteínas de Membrana/metabolismo , Núcleosídeo-Fosfato Quinase/metabolismo , Sequência de Aminoácidos , Proteínas do Envelope de Coronavírus/ultraestrutura , Microscopia Crioeletrônica , Humanos , Domínios Proteicos , SARS-CoV-2/fisiologia , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
10.
Commun Biol ; 4(1): 724, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117354

RESUMO

SARS-CoV-2 infection leads to coronavirus disease 2019 (COVID-19), which is associated with severe and life-threatening pneumonia and respiratory failure. However, the molecular basis of these symptoms remains unclear. SARS-CoV-1 E protein interferes with control of cell polarity and cell-cell junction integrity in human epithelial cells by binding to the PALS1 PDZ domain, a key component of the Crumbs polarity complex. We show that C-terminal PDZ binding motifs of SARS-CoV-1 and SARS-CoV-2 E proteins bind the PALS1 PDZ domain with 29.6 and 22.8 µM affinity, whereas the related sequence from MERS-CoV did not bind. We then determined crystal structures of PALS1 PDZ domain bound to both SARS-CoV-1 and SARS-CoV-2 E protein PDZ binding motifs. Our findings establish the structural basis for SARS-CoV-1/2 mediated subversion of Crumbs polarity signalling and serve as a platform for the development of small molecule inhibitors to suppress SARS-CoV-1/2 mediated disruption of polarity signalling in epithelial cells.


Assuntos
Proteínas do Envelope de Coronavírus/química , Proteínas do Envelope de Coronavírus/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Núcleosídeo-Fosfato Quinase/química , Núcleosídeo-Fosfato Quinase/metabolismo , Domínios PDZ , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Ligação Proteica
11.
Virulence ; 12(1): 1209-1226, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34030593

RESUMO

New SARS-CoV-2 mutants have been continuously indentified with enhanced transmission ever since its outbreak in early 2020. As an RNA virus, SARS-CoV-2 has a high mutation rate due to the low fidelity of RNA polymerase. To study the single nucleotide polymorphisms (SNPs) dynamics of SARS-CoV-2, 158 SNPs with high confidence were identified by deep meta-transcriptomic sequencing, and the most common SNP type was C > T. Analyses of intra-host population diversity revealed that intra-host quasispecies' composition varies with time during the early onset of symptoms, which implicates viral evolution during infection. Network analysis of co-occurring SNPs revealed the most abundant non-synonymous SNP 22,638 in the S glycoprotein RBD region and 28,144 in the ORF8 region. Furthermore, SARS-CoV-2 variations differ in an individual's respiratory tissue (nose, throat, BALF, or sputum), suggesting independent compartmentalization of SARS-CoV-2 populations in patients. The positive selection analysis of the SARS-CoV-2 genome uncovered the positive selected amino acid G251V on ORF3a. Alternative allele frequency spectrum (AAFS) of all variants revealed that ORF8 could bear alternate alleles with high frequency. Overall, the results show the quasispecies' profile of SARS-CoV-2 in the respiratory tract in the first two months after the outbreak.


Assuntos
Filogenia , Polimorfismo de Nucleotídeo Único , Quase-Espécies , SARS-CoV-2/classificação , SARS-CoV-2/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , COVID-19/virologia , Biologia Computacional , Proteínas do Envelope de Coronavírus/química , Proteínas do Envelope de Coronavírus/genética , Feminino , Frequência do Gene , Genoma Viral , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Adulto Jovem
12.
PLoS Pathog ; 17(5): e1009519, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34003853

RESUMO

SARS-CoV-2 is the novel coronavirus that is the causative agent of COVID-19, a sometimes-lethal respiratory infection responsible for a world-wide pandemic. The envelope (E) protein, one of four structural proteins encoded in the viral genome, is a 75-residue integral membrane protein whose transmembrane domain exhibits ion channel activity and whose cytoplasmic domain participates in protein-protein interactions. These activities contribute to several aspects of the viral replication-cycle, including virion assembly, budding, release, and pathogenesis. Here, we describe the structure and dynamics of full-length SARS-CoV-2 E protein in hexadecylphosphocholine micelles by NMR spectroscopy. We also characterized its interactions with four putative ion channel inhibitors. The chemical shift index and dipolar wave plots establish that E protein consists of a long transmembrane helix (residues 8-43) and a short cytoplasmic helix (residues 53-60) connected by a complex linker that exhibits some internal mobility. The conformations of the N-terminal transmembrane domain and the C-terminal cytoplasmic domain are unaffected by truncation from the intact protein. The chemical shift perturbations of E protein spectra induced by the addition of the inhibitors demonstrate that the N-terminal region (residues 6-18) is the principal binding site. The binding affinity of the inhibitors to E protein in micelles correlates with their antiviral potency in Vero E6 cells: HMA ≈ EIPA > DMA >> Amiloride, suggesting that bulky hydrophobic groups in the 5' position of the amiloride pyrazine ring play essential roles in binding to E protein and in antiviral activity. An N15A mutation increased the production of virus-like particles, induced significant chemical shift changes from residues in the inhibitor binding site, and abolished HMA binding, suggesting that Asn15 plays a key role in maintaining the protein conformation near the binding site. These studies provide the foundation for complete structure determination of E protein and for structure-based drug discovery targeting this protein.


Assuntos
Amilorida/farmacologia , Tratamento Farmacológico da COVID-19 , Proteínas do Envelope de Coronavírus/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Amilorida/farmacocinética , Animais , Antivirais/farmacologia , Sítios de Ligação/efeitos dos fármacos , COVID-19/virologia , Chlorocebus aethiops , Proteínas do Envelope de Coronavírus/química , Humanos , Canais Iônicos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Domínios Proteicos , Células Vero , Montagem de Vírus/efeitos dos fármacos
13.
Protein Sci ; 30(6): 1114-1130, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33813796

RESUMO

The COVID-19 epidemic is one of the most influential epidemics in history. Understanding the impact of coronaviruses (CoVs) on host cells is very important for disease treatment. The SARS-CoV-2 envelope (E) protein is a small structural protein involved in many aspects of the viral life cycle. The E protein promotes the packaging and reproduction of the virus, and deletion of this protein weakens or even abolishes the virulence. This review aims to establish new knowledge by combining recent advances in the study of the SARS-CoV-2 E protein and by comparing it with the SARS-CoV E protein. The E protein amino acid sequence, structure, self-assembly characteristics, viroporin mechanisms and inhibitors are summarized and analyzed herein. Although the mechanisms of the SARS-CoV-2 and SARS-CoV E proteins are similar in many respects, specific studies on the SARS-CoV-2 E protein, for both monomers and oligomers, are still lacking. A comprehensive understanding of this protein should prompt further studies on the design and characterization of effective targeted therapeutic measures.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Proteínas do Envelope de Coronavírus/antagonistas & inibidores , Proteínas do Envelope de Coronavírus/metabolismo , SARS-CoV-2/fisiologia , Sequência de Aminoácidos , Animais , Antivirais/química , COVID-19/metabolismo , COVID-19/virologia , Proteínas do Envelope de Coronavírus/química , Humanos , Modelos Moleculares , Conformação Proteica , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos , Alinhamento de Sequência , Proteínas Viroporinas/antagonistas & inibidores , Proteínas Viroporinas/química , Proteínas Viroporinas/metabolismo
15.
Genome ; 64(7): 665-678, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33788636

RESUMO

SARS-CoV-2 is mutating and creating divergent variants across the world. An in-depth investigation of the amino acid substitutions in the genomic signature of SARS-CoV-2 proteins is highly essential for understanding its host adaptation and infection biology. A total of 9587 SARS-CoV-2 structural protein sequences collected from 49 different countries are used to characterize protein-wise variants, substitution patterns (type and location), and major substitution changes. The majority of the substitutions are distinct, mostly in a particular location, and lead to a change in an amino acid's biochemical properties. In terms of mutational changes, envelope (E) and membrane (M) proteins are relatively more stable than nucleocapsid (N) and spike (S) proteins. Several co-occurrence substitutions are observed, particularly in S and N proteins. Substitution specific to active sub-domains reveals that heptapeptide repeat, fusion peptides, transmembrane in S protein, and N-terminal and C-terminal domains in the N protein are remarkably mutated. We also observe a few deleterious mutations in the above domains. The overall study on non-synonymous mutation in structural proteins of SARS-CoV-2 at the start of the pandemic indicates a diversity amongst virus sequences.


Assuntos
SARS-CoV-2/química , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética , Substituição de Aminoácidos , Aminoácidos/química , Proteínas do Envelope de Coronavírus/química , Proteínas do Envelope de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/genética , Humanos , Mutação , Taxa de Mutação , Fosfoproteínas/química , Fosfoproteínas/genética , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética
16.
Viruses ; 13(2)2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557213

RESUMO

Monitoring acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic diversity and emerging mutations in this ongoing pandemic is crucial for understanding its evolution and assuring the performance of diagnostic tests, vaccines, and therapies against coronavirus disease (COVID-19). This study reports on the amino acid (aa) conservation degree and the global and regional temporal evolution by epidemiological week for each residue of the following four structural SARS-CoV-2 proteins: spike, envelope, membrane, and nucleocapsid. All, 105,276 worldwide SARS-CoV-2 complete and partial sequences from 117 countries available in the Global Initiative on Sharing All Influenza Data (GISAID) from 29 December 2019 to 12 September 2020 were downloaded and processed using an in-house bioinformatics tool. Despite the extremely high conservation of SARS-CoV-2 structural proteins (>99%), all presented aa changes, i.e., 142 aa changes in 65 of the 75 envelope aa, 291 aa changes in 165 of the 222 membrane aa, 890 aa changes in 359 of the 419 nucleocapsid aa, and 2671 changes in 1132 of the 1273 spike aa. Mutations evolution differed across geographic regions and epidemiological weeks (epiweeks). The most prevalent aa changes were D614G (81.5%) in the spike protein, followed by the R203K and G204R combination (37%) in the nucleocapsid protein. The presented data provide insight into the genetic variability of SARS-CoV-2 structural proteins during the pandemic and highlights local and worldwide emerging aa changes of interest for further SARS-CoV-2 structural and functional analysis.


Assuntos
COVID-19/virologia , Proteínas do Envelope de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/genética , Evolução Molecular , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas da Matriz Viral/genética , Substituição de Aminoácidos , COVID-19/epidemiologia , Proteínas do Envelope de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/química , Variação Genética , Genoma Viral , Humanos , Mutação , Pandemias , Fosfoproteínas/química , Fosfoproteínas/genética , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Proteínas da Matriz Viral/química
17.
Int J Biol Macromol ; 172: 74-81, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33385461

RESUMO

COVID-19 is one of the fatal pandemic throughout the world. For cellular fusion, its antigenic peptides are presented by major histocompatibility complex (MHC) in humans. Therefore, exploration into residual interaction details of CoV2 with MHCs shall be a promising point for instigating the vaccine development. Envelope (E) protein, the smallest outer surface protein from SARS-CoV2 genome was found to possess the highest antigenicity and is therefore used to identify B-cell and T-cell epitopes. Four novel mutations (T55S, V56F, E69R and G70del) were observed in E-protein of SARS-CoV2 after evolutionary analysis. It showed a coil➔helix transition in the protein conformation. Antigenic variability of the epitopes was also checked to explore the novel mutations in the epitope region. It was found that the interactions were more when SARS-CoV2 E-protein interacted with MHC-I than with MHC-II through several ionic and H-bonds. Tyr42 and Tyr57 played a predominant role upon interaction with MHC-I. The higher ΔG values with lesser dissociation constant values also affirm the stronger and spontaneous interaction by SARS-CoV2 proteins with MHCs. On comparison with the consensus E-protein, SARS-CoV2 E-protein showed stronger interaction with the MHCs with lesser solvent accessibility. E-protein can therefore be targeted as a potential vaccine target against SARS-CoV2.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Proteínas do Envelope de Coronavírus/imunologia , Evolução Molecular , Simulação de Acoplamento Molecular , SARS-CoV-2/imunologia , Sequência de Aminoácidos , Proteínas do Envelope de Coronavírus/química , Proteínas do Envelope de Coronavírus/genética , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Humanos , Ligação de Hidrogênio , Cinética , Mutação/genética , Filogenia , Ligação Proteica , Solventes , Termodinâmica , Vacinas Virais/imunologia
18.
Exp Eye Res ; 203: 108433, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33400927

RESUMO

Although severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) infection have emerged globally, findings related to ocular involvement and reported cases are quite limited. Immune reactions against viral infections are closely related to viral and host proteins sequence similarity. Molecular Mimicry has been described for many different viruses; sequence similarities of viral and human tissue proteins may trigger autoimmune reactions after viral infections due to similarities between viral and human structures. With this study, we aimed to investigate the protein sequence similarity of SARS CoV-2 with retinal proteins and retinal pigment epithelium (RPE) surface proteins. Retinal proteins involved in autoimmune retinopathy and retinal pigment epithelium surface transport proteins were analyzed in order to infer their structural similarity to surface glycoprotein (S), nucleocapsid phosphoprotein (N), membrane glycoprotein (M), envelope protein (E), ORF1ab polyprotein (orf1ab) proteins of SARS CoV-2. Protein similarity comparisons, 3D protein structure prediction, T cell epitopes-MHC binding prediction, B cell epitopes-MHC binding prediction and the evaluation of the antigenicity of peptides assessments were performed. The protein sequence analysis was made using the Pairwise Sequence Alignment and the LALIGN program. 3D protein structure estimates were made using Swiss Model with default settings and analyzed with TM-align web server. T-cell epitope identification was performed using the Immune Epitope Database and Analysis (IEDB) resource Tepitool. B cell epitopes based on sequence characteristics of the antigen was performed using amino acid scales and HMMs with the BepiPred 2.0 web server. The predicted peptides/epitopes in terms of antigenicity were examined using the default settings with the VaxiJen v2.0 server. Analyses showed that, there is a meaningful similarities between 6 retinal pigment epithelium surface transport proteins (MRP-4, MRP-5, RFC1, SNAT7, TAUT and MATE) and the SARS CoV-2 E protein. Immunoreactive epitopic sites of these proteins which are similar to protein E epitope can create an immune stimulation on T cytotoxic and T helper cells and 6 of these 9 epitopic sites are also vaxiJen. These result imply that autoimmune cross-reaction is likely between the studied RPE proteins and SARS CoV-2 E protein. The structure of SARS CoV-2, its proteins and immunologic reactions against these proteins remain largely unknown. Understanding the structure of SARS CoV-2 proteins and demonstration of similarity with human proteins are crucial to predict an autoimmune response associated with immunity against host proteins and its clinical manifestations as well as possible adverse effects of vaccination.


Assuntos
Sequência de Aminoácidos , Doenças Autoimunes/virologia , Proteínas do Olho/química , Doenças Retinianas/virologia , SARS-CoV-2/química , Homologia de Sequência , Proteínas Virais/química , COVID-19/epidemiologia , Biologia Computacional , Proteínas do Envelope de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/química , Infecções Oculares Virais/virologia , Humanos , Glicoproteínas de Membrana/química , Fosfoproteínas/química , Poliproteínas/química , Epitélio Pigmentado da Retina/química , Proteínas da Matriz Viral/química
19.
J Med Virol ; 93(1): 499-505, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32633815

RESUMO

The initial cases of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) occurred in Wuhan, China, in December 2019 and swept the world by 23 June 2020 with 8 993 659 active cases, 469 587 deaths across 216 countries, areas or territories. This strongly implies global transmission occurred before the lockdown of China. However, the initial source's transmission routes of SARS-CoV-2 remain obscure and controversial. Research data suggest bat (RaTG13) and pangolin carried CoV were the proximal source of SARS-CoV-2. In this study, we used systematic phylogenetic analysis of Coronavirinae subfamily along with wild type human SARS-CoV, MERS-CoV, and SARS-CoV-2 strains. The key residues of the receptor-binding domain (RBD) and O-linked glycan were compared. SARS-CoV-2 strains were clustered with RaTG13 (97.41% identity), Pangolin-CoV (92.22% identity) and Bat-SL-CoV (80.36% identity), forms a new clade-2 in lineage B of beta-CoV. The alignments of RBD contact residues to ACE2 justified? Those SARS-CoV-2 strains sequences were 100% identical by each other, significantly varied in RaTG13 and pangolin-CoV. SARS-CoV-2 has a polybasic cleavage site with an inserted sequence of PRRA compared to RaTG13 and only PRR to pangolin. Only serine (Ser) in pangolin and both threonine (Thr) and serine (Ser) O-linked glycans were seen in RaTG13, suggesting that a detailed study needed in pangolin (Manis javanica) and bat (Rhinolophus affinis) related CoV.


Assuntos
Quirópteros/virologia , Coronavirus/genética , Pangolins/virologia , Polissacarídeos/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Animais , Sítios de Ligação , China , Controle de Doenças Transmissíveis , Proteínas do Envelope de Coronavírus/química , Proteínas do Envelope de Coronavírus/genética , Regulação Viral da Expressão Gênica , Especificidade de Hospedeiro , Humanos , Modelos Moleculares , Filogenia , Polissacarídeos/metabolismo , Conformação Proteica , Glicoproteína da Espícula de Coronavírus/química
20.
Phys Rev E ; 102(5-1): 052408, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33327170

RESUMO

Ion flow inside an ion channel can be described through continuum based Born-Poisson-Nernst-Planck (BPNP) equations in conjunction with the Lennard-Jones potential. Keeping in mind the ongoing pandemic, in this study, an attempt has been made to understand the selectivity and the current voltage relation of the COVID-19 E protein pentameric ion channel. Two ionic species, namely Na^{+} and Cl^{-}, have been considered here. E protein is one of the smallest structural protein which is embedded in the outer membrane of the virus. Once the virus is inside the host cell, this protein is expressed abundantly and is responsible for activities such as replication and budding of the virus. In the literature, we can find a few experimental studies focusing on understanding the activity of the channel formed by E proteins of different viruses. Here, we attempt the same study for the COVID-19 E protein ion channel through mathematical modeling. The channel geometry is calculated from the protein data bank file which was provided by NARLabs, Taiwan, using the hole program. Further, it was used to obtain the charge distribution using the pdbtopqr online program. The immersed boundary-lattice Boltzmann method (IB-LBM) has been implemented to numerically solve the system of equations in the channel generated by the protein data bank file. Further, an in-house code which operates on multiple GPUs and uses the cuda platform has been developed to achieve the goal of performing the current investigation.


Assuntos
Proteínas do Envelope de Coronavírus/química , Proteínas do Envelope de Coronavírus/metabolismo , Modelos Moleculares , Multimerização Proteica , Transporte Biológico , Estrutura Quaternária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...