Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Biochem Genet ; 59(4): 1018-1032, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33634374

RESUMO

Since the incidence and mortality of colorectal cancer (CRC) are increasing in recent years, the research on the pathogenesis of colorectal cancer has attracted more and more attention. Here, our results confirmed that the mRNA expression level and proteins accumulation of TUFT1 were significantly increased in CRC tissues from late-stage CRC patients (III + IV) (p < 0.001), indicated by qPCR and IHC assay. The TUFT1 expression was positively correlated with tumor stage by analyzing 126 specimens from CRC patients. Next, we found that up-regulation of TUFT1 enhanced the migration and invasion of LoVo cells, whereas the down-regulation of TUFT1 observably weakened the migration and invasion of SW837 cells, indicating that TUFT1 promotes the metastasis of CRC cells. In addition, TUFT1 overexpression increased the number of mammary spheres and vincristine resistance of LoVo cells by sphere formation assay and measuring the IC50 value, suggesting the TUFT1 promotes stemness and the vincristine resistance of CRC cells. Finally, we found that TUFT1 overexpression increased p-AKT in LoVo cells, while down-regulation of TUFT1 decreased the p-AKT levels in SW837 cells. Therefore, we determined that the function of TUFT1 in CRC depends on PI3K/AKT pathway. Taken together, these data demonstrated that TUFI1 facilitates metastasis, stemness, and vincristine resistance of colorectal cancer cells via activation of PI3K/AKT pathway, which might act as a promising therapeutic target for CRC.


Assuntos
Neoplasias Colorretais/metabolismo , Proteínas do Esmalte Dentário/fisiologia , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Células HT29 , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Vincristina/uso terapêutico
2.
Hum Cell ; 30(3): 181-191, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28470386

RESUMO

Enamel matrix derivative (EMD) containing a variety of protein fractions has been used for periodontal tissue regeneration. It is suggested that the proteins contained in EMD positively influence gingival fibroblasts migration and proliferation. Effects of EMD as well as of porcine recombinated 21.3-kDa amelogenin (prAMEL) and 5.3-kDa tyrosine-rich amelogenin peptide (prTRAP) on human gingival fibroblast (HGF-1, ATCC; USA) cell line were investigated. Real-time cell analysis (xCELLigence system; Roche Applied Science) was performed to determine the effects of EMD, prAMEL and prTRAP (12.5-50 µg/mL) on HGF-1 cell proliferation and migration. The effect of treatment on cell cycle was determined using flow cytometry. EMD significantly increased HGF-1 cell proliferation after 24- and 48-h incubation. Individually, prAMEL and prTRAP also increased HGF-1 cell proliferation; however, the difference was significant only for prAMEL 50 µg/mL. prAMEL and TRAP significantly increased HGF-1 cell migration after 60- and 72-h incubation. Cell cycle analysis showed significant decrease of the percentage of cells in the G0/G1 phase and a buildup of cells in the S and M phase observed after EMD and prAMEL stimulation. This process was ligand and concentration-dependent. The various molecular components in the enamel matrix derivative might contribute to the reported effects on gingival tissue regeneration; however, biologic effects of prAMEL and prTRAP individually were different from that of EMD.


Assuntos
Amelogenina/farmacologia , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas do Esmalte Dentário/farmacologia , Fibroblastos/citologia , Gengiva/citologia , Amelogenina/química , Células Cultivadas , Proteínas do Esmalte Dentário/fisiologia , Relação Dose-Resposta a Droga , Gengiva/fisiologia , Humanos , Proteínas Recombinantes/farmacologia , Regeneração/efeitos dos fármacos , Estimulação Química
3.
Odontology ; 105(1): 116-121, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27262724

RESUMO

The aim of this study was to examine the effect of 16 amino acids of the N-terminal region of human ameloblastin (16N-AMBN) synthetic peptide, on the proliferation and differentiation of MC3T3-E1 cells and bone regeneration. While 16N-AMBN did not affect the proliferation, it induced mRNA expression of type I collagen, alkaline phosphatase (ALP), bone sialoprotein, and osteocalcin. 16N-AMBN also stimulated ALP activity and promoted mineralized nodule formation. On the other hand, these activities were inhibited by anti-16N-AMBN antibody. Treatment of rat calvarial bone defects with 16N-AMBN resulted in almost complete healing compared to that of the control treatments. These findings suggest that 16N-AMBN may be applicable for regeneration therapy of bone defects.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Proteínas do Esmalte Dentário/fisiologia , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Humanos , Sialoproteína de Ligação à Integrina/metabolismo , Osteocalcina/metabolismo , Ratos , Crânio/cirurgia , Cicatrização/efeitos dos fármacos
4.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 52(10): 615-619, 2017 Oct 09.
Artigo em Chinês | MEDLINE | ID: mdl-29972935

RESUMO

Periodontal regeneration is a great challenge faced by clinical treatment, and traditional therapies are not effective in regenerating periodontal tissues. Bioinductive biomaterials are materials that are able to induce the regeneration of damaged tissues, and they can induce the migration of stem cells or precursor cells to the defect site to proliferate, differentiate for tissue regeneration. For example, the osteoinductive biomaterials are able to induce regeneration of alveolar bone. In this review, the writer combined the recent advances of both clinical and scientific field, and summarize the application of bioinductive biomaterials includingautogenous bone, human derived growth factors, enamel matrix proteins and platelet-rich fibrin.


Assuntos
Materiais Biocompatíveis , Periodonto/fisiologia , Regeneração/fisiologia , Regeneração Óssea/fisiologia , Movimento Celular , Proliferação de Células , Proteínas do Esmalte Dentário/fisiologia , Regeneração Tecidual Guiada Periodontal , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Fibrina Rica em Plaquetas/fisiologia , Células-Tronco/fisiologia , Cicatrização
5.
Int J Oral Sci ; 8(2): 98-109, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27281036

RESUMO

FAM20A has been studied to a very limited extent. Mutations in human FAM20A cause amelogenesis imperfecta, gingival fibromatosis and kidney problems. It would be desirable to systemically analyse the expression of FAM20A in dental tissues and to assess the pathological changes when this molecule is specifically nullified in individual tissues. Recently, we generated mice with a Fam20A-floxed allele containing the beta-galactosidase reporter gene. We analysed FAM20A expression in dental tissues using X-Gal staining, immunohistochemistry and in situ hybridization, which showed that the ameloblasts in the mouse mandibular first molar began to express FAM20A at 1 day after birth, and the reduced enamel epithelium in erupting molars expressed a significant level of FAM20A. By breeding K14-Cre mice with Fam20A(flox/flox) mice, we created K14-Cre;Fam20A(flox/flox) (conditional knock out, cKO) mice, in which Fam20A was inactivated in the epithelium. We analysed the dental tissues of cKO mice using X-ray radiography, histology and immunohistochemistry. The molar enamel matrix in cKO mice was much thinner than normal and was often separated from the dentinoenamel junction. The Fam20A-deficient ameloblasts were non-polarized and disorganized and were detached from the enamel matrix. The enamel abnormality in cKO mice was consistent with the diagnosis of amelogenesis imperfecta. The levels of enamelin and matrix metalloproteinase 20 were lower in the ameloblasts and enamel of cKO mice than the normal mice. The cKO mice had remarkable delays in the eruption of molars and hyperplasia of the gingival epithelium. The findings emphasize the essential roles of FAM20A in the development of dental and oral tissues.


Assuntos
Amelogênese Imperfeita/genética , Proteínas do Esmalte Dentário/fisiologia , Proteínas/fisiologia , Erupção Dentária , Ameloblastos , Amelogênese , Amelogênese Imperfeita/metabolismo , Animais , Galactosídeos , Humanos , Indóis , Camundongos , Camundongos Knockout
6.
J Dent Res ; 95(9): 1042-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27146703

RESUMO

Amelogenin and ameloblastin are 2 extracellular matrix proteins that are essential for the proper development of enamel. We recently reported that amelogenin and ameloblastin colocalized during the secretory stage of enamel formation when nucleation of enamel crystallites occurs. Direct interactions between the 2 proteins have been also demonstrated in our in vitro studies. Here, we explore interactions between their fragments during enamel maturation. We applied in vivo immunofluorescence imaging, quantitative co-localization analysis, and a new FRET (fluorescence resonance energy transfer) technique to demonstrate ameloblastin and amelogenin interaction in the maturing mouse enamel. Using immunochemical analysis of protein samples extracted from 8-d-old (P8) first molars from mice as a model for maturation-stage enamel, we identified the ~17-kDa ameloblastin (Ambn-N) and the TRAP (tyrosine-rich amelogenin peptide) fragments. We used Ambn-N18 and Ambn-M300 antibodies raised against the N-terminal and C-terminal segments of ameloblastin, as well as Amel-FL and Amel-C19 antibodies against full-length recombinant mouse amelogenin (rM179) and C-terminal amelogenin, respectively. In transverse sections, co-localization images of N-terminal fragments of amelogenin and ameloblastin around the prism boundary revealed the "fish net" pattern of the enamel matrix. Using in vivo FRET microscopy, we further demonstrated spatial interactions between amelogenin and ameloblastin N-terminal fragments. In the maturing mouse enamel, the association of these residual protein fragments created a discontinuity between enamel rods, which we suggest is important for support and maintenance of enamel rods and eventual contribution to unique enamel mechanical properties. We present data that support cooperative functions of enamel matrix proteins in mediating the structural hierarchy of enamel and that contribute to our efforts to design and develop enamel biomimetic material.


Assuntos
Amelogenina/metabolismo , Proteínas do Esmalte Dentário/metabolismo , Esmalte Dentário/crescimento & desenvolvimento , Amelogenina/fisiologia , Animais , Esmalte Dentário/metabolismo , Proteínas do Esmalte Dentário/fisiologia , Transferência Ressonante de Energia de Fluorescência , Camundongos , Dente Molar/ultraestrutura , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas
7.
J Periodontol ; 87(6): 645-53, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26832834

RESUMO

BACKGROUND: Connective tissue grafts (CTGs) and coronally advanced flaps (CAFs) do not regenerate periodontal attachment apparatus when used to treat gingival recessions (GRs). Instead of generating new bone, cementum, and inserting periodontal ligament fibers, CTG+CAF repairs through a long epithelial junction and connective tissue attachment. Enamel matrix derivatives (EMDs) have demonstrated proof-of-principle that periodontal regeneration can be achieved, although data are limited. METHODS: Three patients, each requiring extraction of four premolars before orthodontic treatment, were enrolled in a randomized, open-label study. Two months after induction of Miller Class I and II GR, each patient received EMD+CAF for three teeth and CTG+CAF for one tooth for root coverage. Nine months after root coverage, all four premolars from each of the three patients were surgically extracted en bloc for histologic and microcomputed tomography (micro-CT) analysis, looking for evidence of periodontal regeneration. Standard clinical measurements, radiographs, and intraoral photographs were taken over prescribed time points. RESULTS: Seven of the nine teeth treated with EMD+CAF demonstrated varying degrees of periodontal regeneration, detailed through histology with new bone, cementum, and inserting fibers. Micro-CT corroborated these findings. None of the three teeth treated with CTG+CAF showed periodontal regeneration. Clinical measurements were comparable for both treatments. One instance of root resorption and ankylosis was noted with EMD+CAF. CONCLUSIONS: EMD+CAF continues to show histologic evidence of periodontal regeneration via human histology, this being the largest study (nine teeth) examining its effect when treating GR. The mechanism of action, ideal patient profile, and criteria leading to predictable regeneration are in need of further exploration.


Assuntos
Tecido Conjuntivo , Proteínas do Esmalte Dentário/fisiologia , Retração Gengival , Microtomografia por Raio-X , Estudos de Casos e Controles , Humanos , Estudos Prospectivos , Raiz Dentária , Resultado do Tratamento
8.
Proc Natl Acad Sci U S A ; 112(34): 10669-72, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26240350

RESUMO

Paleoanthropologists and vertebrate paleontologists have for decades debated the etiology of tooth wear and its implications for understanding the diets of human ancestors and other extinct mammals. The debate has recently taken a twist, calling into question the efficacy of dental microwear to reveal diet. Some argue that endogenous abrasives in plants (opal phytoliths) are too soft to abrade enamel, and that tooth wear is caused principally by exogenous quartz grit on food. If so, variation in microwear among fossil species may relate more to habitat than diet. This has important implications for paleobiologists because microwear is a common proxy for diets of fossil species. Here we reexamine the notion that particles softer than enamel (e.g., silica phytoliths) do not wear teeth. We scored human enamel using a microfabrication instrument fitted with soft particles (aluminum and brass spheres) and an atomic force microscope (AFM) fitted with silica particles under fixed normal loads, sliding speeds, and spans. Resulting damage was measured by AFM, and morphology and composition of debris were determined by scanning electron microscopy with energy-dispersive X-ray spectroscopy. Enamel chips removed from the surface demonstrate that softer particles produce wear under conditions mimicking chewing. Previous models posited that such particles rub enamel and create ridges alongside indentations without tissue removal. We propose that although these models hold for deformable metal surfaces, enamel works differently. Hydroxyapatite crystallites are "glued" together by proteins, and tissue removal requires only that contact pressure be sufficient to break the bonds holding enamel together.


Assuntos
Proteínas do Esmalte Dentário/fisiologia , Dieta , Alimentos/efeitos adversos , Dente Molar/ultraestrutura , Paleodontologia/métodos , Abrasão Dentária/patologia , Alumínio , Cobre , Esmalte Dentário/fisiologia , Esmalte Dentário/ultraestrutura , Fricção , Dureza , Humanos , Técnicas In Vitro , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microesferas , Modelos Biológicos , Nanosferas/efeitos adversos , Tamanho da Partícula , Ligação Proteica , Dióxido de Silício , Espectrometria por Raios X , Propriedades de Superfície , Abrasão Dentária/etiologia , Zinco
9.
Med Sci (Paris) ; 31(5): 515-21, 2015 May.
Artigo em Francês | MEDLINE | ID: mdl-26059302

RESUMO

Enamel is a unique tissue in vertebrates, acellular, formed on a labile scaffolding matrix and hypermineralized. The ameloblasts are epithelial cells in charge of amelogenesis. They secrete a number of matrix proteins degraded by enzymes during enamel mineralization. This ordered cellular and extracellular events imply that any genetic or environmental perturbation will produce indelible and recognizable defects. The specificity of defects will indicate the affected cellular process. Thus, depending on the specificity of alterations, the teratogenic event can be retrospectively established. Advances in the field allow to use enamel defects as diagnostic tools for molecular disorders. The multifunctionality of enamel peptides is presently identified from their chemical roles in mineralization to cell signaling, constituting a source of concrete innovations in regenerative medicine.


Assuntos
Esmalte Dentário/fisiologia , Ameloblastos/citologia , Ameloblastos/metabolismo , Amelogênese/fisiologia , Animais , Esmalte Dentário/química , Esmalte Dentário/efeitos dos fármacos , Esmalte Dentário/ultraestrutura , Hipoplasia do Esmalte Dentário/genética , Hipoplasia do Esmalte Dentário/fisiopatologia , Proteínas do Esmalte Dentário/fisiologia , Durapatita/química , Órgão do Esmalte/fisiologia , Fluorose Dentária/etiologia , Humanos , Técnicas de Diagnóstico Molecular , Nanosferas , Peptídeo Hidrolases/fisiologia , Teratogênicos/farmacologia , Calcificação de Dente/fisiologia
11.
Rev. Ateneo Argent. Odontol ; 54(2): 9-14, 2015. ilus
Artigo em Espanhol | LILACS | ID: lil-776099

RESUMO

La hipoplasia del esmalte es una anomalía estructural originada por la formación incompleta o defectuosa de la matriz del esmalte dentario. Se manifiesta como defectos macroscópicos que varían desde línas tenues hasta cavidades de diferentes tamaños. Las propuestas terapéuticas son variadas y abarcan desde la remineralización de la lesión hasta la exodoncia de la pieza afectada. Frente a los reiterados fracasos de las restauraciones en molares hipoplásicos debido al pobre patrón de grabado que presentan, el objetivo de este trabajo es mostrar una alternativa para el tratamiento restaurador de estas piezas dentarias, mejorando la adhesión.


Assuntos
Humanos , Feminino , Criança , Colágeno , Dentina , Condicionamento Ácido do Dente/métodos , Hipoplasia do Esmalte Dentário/terapia , Dente Molar/patologia , Ácidos Fosfóricos/química , Fluoretos Tópicos/uso terapêutico , Higiene Bucal/educação , Hipoclorito de Sódio/química , Planejamento de Assistência ao Paciente , Proteínas do Esmalte Dentário/fisiologia , Colagem Dentária/métodos , Restauração Dentária Permanente/métodos
12.
PLoS One ; 9(9): e105672, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25197981

RESUMO

Genome-wide microarrays have suggested that Emdogain regulates TGF-ß target genes in gingival and palatal fibroblasts. However, definitive support for this contention and the extent to which TGF-ß signaling contributes to the effects of Emdogain has remained elusive. We therefore studied the role of the TGF-ß receptor I (TGF-ßRI) kinase to mediate the effect of Emdogain on palatal fibroblasts. Palatal fibroblasts were exposed to Emdogain with and without the inhibitor for TGF-ßRI kinase, SB431542. Emdogain caused 39 coding genes to be differentially expressed in palatal fibroblasts by microarray analysis (p<0.05; >10-fold). Importantly, in the presence of the TGF-ßRI kinase inhibitor SB431542, Emdogain failed to cause any significant changes in gene expression. Consistent with this mechanism, three independent TGF-ßRI kinase inhibitors and a TGF-ß neutralizing antibody abrogated the increased expression of IL-11, a selected Emdogain target gene. The MAPK inhibitors SB203580 and U0126 lowered the impact of Emdogain on IL-11 expression. The data support that TGF-ßRI kinase activity is necessary to mediate the effects of Emdogain on gene expression in vitro.


Assuntos
Proteínas do Esmalte Dentário/fisiologia , Regulação da Expressão Gênica/fisiologia , Palato/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Sequência de Bases , Receptores de Proteínas Morfogenéticas Ósseas/fisiologia , Células Cultivadas , Primers do DNA , Humanos , Interleucina-11/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Palato/citologia , Palato/enzimologia , Receptor do Fator de Crescimento Transformador beta Tipo I , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Smad3/fisiologia
13.
PLoS One ; 9(6): e99626, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24933156

RESUMO

Research on enamel matrix proteins (EMPs) is centered on understanding their role in enamel biomineralization and their bioactivity for tissue engineering. While therapeutic application of EMPs has been widely documented, their expression and biological function in non-enamel tissues is unclear. Our first aim was to screen for amelogenin (AMELX) and ameloblastin (AMBN) gene expression in mandibular bones and soft tissues isolated from adult mice (15 weeks old). Using RT-PCR, we showed mRNA expression of AMELX and AMBN in mandibular alveolar and basal bones and, at low levels, in several soft tissues; eyes and ovaries were RNA-positive for AMELX and eyes, tongues and testicles for AMBN. Moreover, in mandibular tissues AMELX and AMBN mRNA levels varied according to two parameters: 1) ontogenic stage (decreasing with age), and 2) tissue-type (e.g. higher level in dental epithelial cells and alveolar bone when compared to basal bone and dental mesenchymal cells in 1 week old mice). In situ hybridization and immunohistodetection were performed in mandibular tissues using AMELX KO mice as controls. We identified AMELX-producing (RNA-positive) cells lining the adjacent alveolar bone and AMBN and AMELX proteins in the microenvironment surrounding EMPs-producing cells. Western blotting of proteins extracted by non-dissociative means revealed that AMELX and AMBN are not exclusive to mineralized matrix; they are present to some degree in a solubilized state in mandibular bone and presumably have some capacity to diffuse. Our data support the notion that AMELX and AMBN may function as growth factor-like molecules solubilized in the aqueous microenvironment. In jaws, they might play some role in bone physiology through autocrine/paracrine pathways, particularly during development and stress-induced remodeling.


Assuntos
Amelogenina/fisiologia , Proteínas do Esmalte Dentário/fisiologia , Mandíbula/metabolismo , Amelogenina/análise , Amelogenina/deficiência , Amelogenina/genética , Animais , Proteínas do Esmalte Dentário/análise , Proteínas do Esmalte Dentário/genética , Difusão , Células Epiteliais/metabolismo , Proteínas do Olho/análise , Proteínas do Olho/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Mandíbula/crescimento & desenvolvimento , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Proteínas Musculares/análise , Proteínas Musculares/fisiologia , Especificidade de Órgãos , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , Solubilidade , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Língua/crescimento & desenvolvimento , Língua/metabolismo , Vísceras/crescimento & desenvolvimento , Vísceras/metabolismo
14.
J Periodontol ; 85(2): e9-e17, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23919251

RESUMO

BACKGROUND: Although enamel matrix derivative (EMD) has demonstrated the ability to promote angiogenesis and osteogenesis both in vitro and in vivo, the specific elements within the EMD compound responsible for these effects remain unknown. METHODS: Nine different protein pools from a commercially produced EMD were collected based on molecular weight. Six of these pools, along with the complete EMD unfractionated compound and positive and negative controls, were tested for their ability to induce bone formation in a calvarial induction assay. Immunocytochemistry of phosphorylated SMAD1/5/8 (phospho-SMAD), osterix, and vascular endothelial growth factor A (VEGF-A) was carried out at selected time points. Finally, proteomic analysis was completed to determine the specific protein-peptide content of the various osteoinductive pools. RESULTS: One of the lower-molecular-weight pools tested, pool 7, showed bone induction responses significantly greater than those of the other pools and the complete EMD compound and was concentration dependent. Dynamic bone formation rate analysis demonstrated that pool 7 was optimally active at the 5- to 10-µg concentration. It was demonstrated that EMD and pool 7 induced phospho-SMAD, osterix, and VEGF-A, which is indicative of increased bone morphogenetic protein (BMP) signaling. Proteomic composition analysis demonstrated that pool 7 had the highest concentration of the biologically active amelogenin-leucine-rich amelogenin peptide and ameloblastin 17-kDa peptides. CONCLUSIONS: These studies demonstrate that the low-molecular-weight protein pools (7 to 17 kDa) within EMD have greater osteoinductive potential than the commercially available complete EMD compound and that the mechanism of action, in part, is through increased BMP signaling and increased osterix and VEGF-A. With this information, selected components of EMD can now be formulated for optimal osteo- and angio-genesis.


Assuntos
Proteínas do Esmalte Dentário/análise , Amelogenina/análise , Animais , Proteínas Morfogenéticas Ósseas/efeitos dos fármacos , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Proteínas do Esmalte Dentário/fisiologia , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas , Camundongos , Modelos Animais , Peso Molecular , Osteogênese/efeitos dos fármacos , Osso Parietal/efeitos dos fármacos , Periósteo/efeitos dos fármacos , Proteoma/análise , Proteína Smad1/análise , Proteína Smad1/farmacologia , Proteína Smad5/análise , Proteína Smad5/farmacologia , Proteína Smad8/análise , Proteína Smad8/farmacologia , Fator de Transcrição Sp7 , Fatores de Transcrição/análise , Fatores de Transcrição/farmacologia , Fator A de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/farmacologia
15.
Int J Oral Maxillofac Implants ; 28(6): e487-93, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278946

RESUMO

Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.


Assuntos
Tecido Adiposo/citologia , Células-Tronco Mesenquimais/fisiologia , Células-Tronco Multipotentes/fisiologia , Periodonto/fisiologia , Regeneração/fisiologia , Engenharia Tecidual/métodos , Animais , Proteínas do Esmalte Dentário/fisiologia , Cães , Regeneração Tecidual Guiada Periodontal/métodos , Humanos , Modelos Animais , Neovascularização Fisiológica , Periodonto/irrigação sanguínea , Ratos , Cicatrização
16.
Periodontol 2000 ; 63(1): 59-66, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23931054

RESUMO

Two novel proteins - odontogenic ameloblast-associated protein and amelotin - have recently been identified in maturation-stage ameloblasts and in the junctional epithelium. This article reviews the structure and function of the junctional epithelium, the pattern of expression of odontogenic ameloblast-associated and amelotin proteins and the potential involvement of these proteins in the formation and regeneration of the junctional epithelium.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas do Esmalte Dentário/fisiologia , Inserção Epitelial/anatomia & histologia , Amiloide , Membrana Basal/anatomia & histologia , Membrana Basal/fisiologia , Inserção Epitelial/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Regulação da Expressão Gênica , Hemidesmossomos/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Neoplasias , Ligamento Periodontal/anatomia & histologia , Ligamento Periodontal/fisiologia , Regeneração/fisiologia
17.
Periodontol 2000 ; 63(1): 102-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23931057

RESUMO

As broadly demonstrated for the formation of a functional skeleton, proper mineralization of periodontal alveolar bone and teeth - where calcium phosphate crystals are deposited and grow within an extracellular matrix - is essential for dental function. Mineralization defects in tooth dentin and cementum of the periodontium invariably lead to a weak (soft or brittle) dentition in which teeth become loose and prone to infection and are lost prematurely. Mineralization of the extremities of periodontal ligament fibers (Sharpey's fibers) where they insert into tooth cementum and alveolar bone is also essential for the function of the tooth-suspensory apparatus in occlusion and mastication. Molecular determinants of mineralization in these tissues include mineral ion concentrations (phosphate and calcium), pyrophosphate, small integrin-binding ligand N-linked glycoproteins and matrix vesicles. Amongst the enzymes important in regulating these mineralization determinants, two are discussed at length here, with clinical examples given, namely tissue-nonspecific alkaline phosphatase and phosphate-regulating gene with homologies to endopeptidases on the X chromosome. Inactivating mutations in these enzymes in humans and in mouse models lead to the soft bones and teeth characteristic of hypophosphatasia and X-linked hypophosphatemia, respectively, where the levels of local and systemic circulating mineralization determinants are perturbed. In X-linked hypophosphatemia, in addition to renal phosphate wasting causing low circulating phosphate levels, phosphorylated mineralization-regulating small integrin-binding ligand N-linked glycoproteins, such as matrix extracellular phosphoglycoprotein and osteopontin, and the phosphorylated peptides proteolytically released from them, such as the acidic serine- and aspartate-rich-motif peptide, may accumulate locally to impair mineralization in this disease.


Assuntos
Processo Alveolar/fisiologia , Calcificação Fisiológica/fisiologia , Proteínas do Esmalte Dentário/fisiologia , Matriz Extracelular/fisiologia , Raquitismo Hipofosfatêmico Familiar/fisiopatologia , Hipofosfatasia/fisiopatologia , Ligamento Periodontal/fisiologia , Fosfatase Alcalina/fisiologia , Processo Alveolar/enzimologia , Animais , Fosfatos de Cálcio/metabolismo , Difosfatos/metabolismo , Modelos Animais de Doenças , Endopeptidases/fisiologia , Matriz Extracelular/enzimologia , Humanos , Ligamento Periodontal/enzimologia
18.
J Dent Res ; 92(7): 622-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23625374

RESUMO

Enamel-related gene products (ERPs) are detected in non-enamel tissues such as bone. We hypothesized that, if functional, ERP expression corresponds with distinct events during osteoblast differentiation and affects bone development and mineralization. In mouse calvariae and MC3T3 cells, expression profiles of enamel-related gene products (ERPs) correlated with key events in post-natal calvarial development and MC3T3 cell mineralization. Developing skulls from both Amel- and Ambn-deficient animals were approximately 15% shorter when compared with those of wild-type controls, and their sutures remained patent for a longer period of time. Analysis of Amel- and Ambn-deficient calvariae and calvarial osteoblast cultures revealed a dramatic reduction in mineralized nodules, a significant reduction in Runx2, Sp7, Ibsp, and Msx2 expression, and a reduction in Alx4 in Amel-deficient calvariae vs. an increase in Alx4 in Ambn-deficient calvariae. Analysis of these data indicates that ERP expression follows defined developmental profiles and affects osteoblast differentiation, mineralization, and calvarial bone development. We propose that, in parallel to their role in the developing enamel matrix, ERPs have retained an evolutionary conserved function related to the biomineralization of bones.


Assuntos
Proteínas do Esmalte Dentário/análise , Crânio/crescimento & desenvolvimento , Células 3T3 , Amelogenina/análise , Animais , Desenvolvimento Ósseo/genética , Calcificação Fisiológica/genética , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Colágeno Tipo I/análise , Cadeia alfa 1 do Colágeno Tipo I , Sequência Conservada/genética , Subunidade alfa 1 de Fator de Ligação ao Core/análise , Suturas Cranianas/crescimento & desenvolvimento , Proteínas do Esmalte Dentário/fisiologia , Proteínas de Homeodomínio/análise , Sialoproteína de Ligação à Integrina/análise , Peptídeos e Proteínas de Sinalização Intracelular , Calicreínas/análise , Metaloproteinase 20 da Matriz/análise , Camundongos , Osteoblastos/fisiologia , Proteínas/análise , Fator de Transcrição Sp7 , Fatores de Transcrição/análise , Dedos de Zinco/genética
19.
Oral Dis ; 19(2): 169-79, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22863294

RESUMO

OBJECTIVE: Amelogenins are the most abundant matrix proteins in enamel. Among the amelogenin isoforms, full-length amelogenin (M180) and leucine-rich amelogenin peptide (LRAP) are expressed in various tissues and are implicated as signalling molecules in mesenchymal cells. Here, we examined the effects of M180 and LRAP on a chondrogenic cell line, ATDC5, to investigate the role of amelogenins in chondrogenesis. MATERIALS AND METHODS: Recombinant mouse M180- or LRAP-protein-containing medium or control medium was mixed with a chondrogenesis-stimulating medium, and changes in the phenotype, gene expression levels and cell proliferation of cultured ATDC5 cells were analysed. RESULTS: The addition of amelogenins increased alkaline phosphatase activity and glycosaminoglycan secretion at 14 and 21 days of culture, respectively, as compared with the control. Quantitative PCR (Q-PCR) analysis revealed that LRAP increased the gene expression levels of Runx2, Col2a1 and Aggrecan at 7 days of differentiation. Moreover, both M180 and LRAP significantly increased the gene expression levels of ALP, Aggrecan, Col10a1 and osteopontin at 28 days of culture. Bromodeoxyuridine assay and Q-PCR analysis for Wnt signalling indicated that both M180 and LRAP reduced proliferation, but induced the cell differentiation possibly through altered non-canonical Wnt signalling. CONCLUSION: M180 and LRAP accelerate chondrogenic differentiation and maturation of ATDC5 cells.


Assuntos
Amelogenina/fisiologia , Condrogênese/fisiologia , Proteínas do Esmalte Dentário/fisiologia , Animais , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Camundongos , Isoformas de Proteínas
20.
Eur Cell Mater ; 22: 56-66; discussion 66-7, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21761392

RESUMO

Ameloblastin (AMBN) is an enamel matrix protein produced by ameloblasts. It has been suggested that AMBN might also be implicated in craniofacial bone formation. Our objective was to determine whether AMBN has an effect on osteogenic mineralisation and influences bone remodelling and repair. MC3T3-E1 cells were screened for endogenous expression of enamel proteins using real time PCR. Various osteogenic cells were infected with lentivirus encoding for AMBN and protein expression was verified using immunochemistry. Cultures were stained with alizarin red and mineralisation was quantified. Healing bone was probed for expression of AMBN by DNA microarray analysis. Tooth extraction, experimental tooth movement (ETM), and creation of a non-critical size bone defect in the tibia (BDT) were carried out in wild type and AMBN(Δ5-6) mutant mice. Tissues were processed for immunolabelling of AMBN and Bril, an osteoblast specific protein associated with active bone formation. MC3T3-E1 cells and healing bone showed no significant expression of AMBN. Overexpression of AMBN in osteogenic cultures induced no noticeable changes in mineralisation. In wild type mice, AMBN was immunodetected in ameloblasts and enamel, but not in normal bone, and at sites where bone remodelling and repair were induced. Bone remodelling during ETM and BDT repair in AMBN(Δ5-6) mice were not significantly different from that in wild type animals. Our results suggest that AMBN does not influence osteogenic activity in vitro under the conditions used, and does not participate in craniofacial bone remodelling under mechanical stress and in repair of non-critical size bone defects.


Assuntos
Regeneração Óssea , Remodelação Óssea , Proteínas do Esmalte Dentário/fisiologia , Cicatrização , Ameloblastos/citologia , Ameloblastos/metabolismo , Animais , Calcificação Fisiológica , Camundongos , Camundongos Mutantes , Tíbia/lesões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...