Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 30(3): 261-277.e8, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36889311

RESUMO

Pulmonary fibrosis is a typical sequela of coronavirus disease 2019 (COVID-19), which is linked with a poor prognosis for COVID-19 patients. However, the underlying mechanism of pulmonary fibrosis induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. Here, we demonstrated that the nucleocapsid (N) protein of SARS-CoV-2 induced pulmonary fibrosis by activating pulmonary fibroblasts. N protein interacted with the transforming growth factor ß receptor I (TßRI), to disrupt the interaction of TßRI-FK506 Binding Protein12 (FKBP12), which led to activation of TßRI to phosphorylate Smad3 and boost expression of pro-fibrotic genes and secretion of cytokines to promote pulmonary fibrosis. Furthermore, we identified a compound, RMY-205, that bound to Smad3 to disrupt TßRI-induced Smad3 activation. The therapeutic potential of RMY-205 was strengthened in mouse models of N protein-induced pulmonary fibrosis. This study highlights a signaling pathway of pulmonary fibrosis induced by N protein and demonstrates a novel therapeutic strategy for treating pulmonary fibrosis by a compound targeting Smad3.


Assuntos
COVID-19 , Fibrose Pulmonar , Animais , Camundongos , COVID-19/complicações , Fibrose , Proteínas do Nucleocapsídeo/uso terapêutico , Fibrose Pulmonar/complicações , Fibrose Pulmonar/tratamento farmacológico , SARS-CoV-2
2.
J Virol ; 87(12): 6829-39, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23576501

RESUMO

Severe fever with thrombocytopenia syndrome is an emerging infectious disease caused by a novel bunyavirus (SFTSV). Lack of vaccines and inadequate therapeutic treatments have made the spread of the virus a global concern. Viral nucleocapsid protein (N) is essential for its transcription and replication. Here, we present the crystal structures of N from SFTSV and its homologs from Buenaventura (BUE) and Granada (GRA) viruses. The structures reveal that phleboviral N folds into a compact core domain and an extended N-terminal arm that mediates oligomerization, such as tetramer, pentamer, and hexamer of N assemblies. Structural superimposition indicates that phleboviral N adopts a conserved architecture and uses a similar RNA encapsidation strategy as that of RVFV-N. The RNA binding cavity runs along the inner edge of the ring-like assembly. A triple mutant of SFTSV-N, R64D/K67D/K74D, almost lost its ability to bind RNA in vitro, is deficient in its ability to transcribe and replicate. Structural studies of the mutant reveal that both alterations in quaternary assembly and the charge distribution contribute to the loss of RNA binding. In the screening of inhibitors Suramin was identified to bind phleboviral N specifically. The complex crystal structure of SFTSV-N with Suramin was refined to a 2.30-Å resolution. Suramin was found sitting in the putative RNA binding cavity of SFTSV-N. The inhibitory effect of Suramin on SFTSV replication was confirmed in Vero cells. Therefore, a common Suramin-based therapeutic approach targeting SFTSV-N and its homologs could be developed for containing phleboviral outbreaks.


Assuntos
Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/uso terapêutico , Febre por Flebótomos/tratamento farmacológico , Phlebovirus/efeitos dos fármacos , Suramina/química , Suramina/uso terapêutico , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Cristalização , Modelos Moleculares , Dados de Sequência Molecular , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Febre por Flebótomos/virologia , Dobramento de Proteína , RNA Viral/genética , RNA Viral/metabolismo , Análise de Sequência de DNA , Relação Estrutura-Atividade , Suramina/metabolismo , Células Vero , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA