Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Elife ; 102021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33847563

RESUMO

Septins are conserved cytoskeletal proteins that regulate cell cortex mechanics. The mechanisms of their interactions with the plasma membrane remain poorly understood. Here, we show by cell-free reconstitution that binding to flat lipid membranes requires electrostatic interactions of septins with anionic lipids and promotes the ordered self-assembly of fly septins into filamentous meshworks. Transmission electron microscopy reveals that both fly and mammalian septin hexamers form arrays of single and paired filaments. Atomic force microscopy and quartz crystal microbalance demonstrate that the fly filaments form mechanically rigid, 12- to 18-nm thick, double layers of septins. By contrast, C-terminally truncated septin mutants form 4-nm thin monolayers, indicating that stacking requires the C-terminal coiled coils on DSep2 and Pnut subunits. Our work shows that membrane binding is required for fly septins to form ordered arrays of single and paired filaments and provides new insights into the mechanisms by which septins may regulate cell surface mechanics.


Assuntos
Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Lipídeos de Membrana/metabolismo , Septinas/metabolismo , Animais , Animais Geneticamente Modificados , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , Proteínas de Drosophila/genética , Proteínas de Drosophila/ultraestrutura , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestrutura , Humanos , Bicamadas Lipídicas , Lipídeos de Membrana/química , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/ultraestrutura , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Técnicas de Microbalança de Cristal de Quartzo , Septinas/genética , Septinas/ultraestrutura , Relação Estrutura-Atividade
2.
PLoS Biol ; 18(11): e3000925, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33216759

RESUMO

Lifeact is a short actin-binding peptide that is used to visualize filamentous actin (F-actin) structures in live eukaryotic cells using fluorescence microscopy. However, this popular probe has been shown to alter cellular morphology by affecting the structure of the cytoskeleton. The molecular basis for such artefacts is poorly understood. Here, we determined the high-resolution structure of the Lifeact-F-actin complex using electron cryo-microscopy (cryo-EM). The structure reveals that Lifeact interacts with a hydrophobic binding pocket on F-actin and stretches over 2 adjacent actin subunits, stabilizing the DNase I-binding loop (D-loop) of actin in the closed conformation. Interestingly, the hydrophobic binding site is also used by actin-binding proteins, such as cofilin and myosin and actin-binding toxins, such as the hypervariable region of TccC3 (TccC3HVR) from Photorhabdus luminescens and ExoY from Pseudomonas aeruginosa. In vitro binding assays and activity measurements demonstrate that Lifeact indeed competes with these proteins, providing an explanation for the altering effects of Lifeact on cell morphology in vivo. Finally, we demonstrate that the affinity of Lifeact to F-actin can be increased by introducing mutations into the peptide, laying the foundation for designing improved actin probes for live cell imaging.


Assuntos
Actinas/química , Proteínas dos Microfilamentos/química , Actinas/metabolismo , Actinas/ultraestrutura , Animais , Toxinas Bacterianas/química , Sítios de Ligação , Ligação Competitiva , Cofilina 1/química , Cofilina 1/ultraestrutura , Microscopia Crioeletrônica , Corantes Fluorescentes/química , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/ultraestrutura , Microscopia Confocal , Modelos Moleculares , Miosinas/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/ultraestrutura , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Coelhos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura
3.
J Mol Biol ; 432(23): 6028-6041, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33058875

RESUMO

Linker of nucleoskeleton and cytoskeleton (LINC) complexes are molecular tethers that span the nuclear envelope (NE) and physically connect the nucleus to the cytoskeleton. They transmit mechanical force across the NE in processes such as nuclear anchorage, nuclear migration, and homologous chromosome pairing during meiosis. LINC complexes are composed of KASH proteins traversing the outer nuclear membrane, and SUN proteins crossing the inner nuclear membrane. Humans have several SUN- and KASH-containing proteins, yet what governs their proper engagement is poorly understood. To investigate this question, we solved high resolution crystal structures of human SUN2 in complex with the KASH-peptides of Nesprin3, Nesprin4, and KASH5. In comparison to the published structures of SUN2-KASH1/2 we observe alternative binding modes for these KASH peptides. While the core interactions between SUN and the C-terminal residues of the KASH peptide are similar in all five complexes, the extended KASH-peptide adopts at least two different conformations. The much-improved resolution allows for a more detailed analysis of other elements critical for KASH interaction, including the KASH-lid and the cation loop, and a possible self-locked state for unbound SUN. In summary, we observe distinct differences between the examined SUN-KASH complexes. These differences may have an important role in regulating the SUN-KASH network.


Assuntos
Proteínas de Ciclo Celular/ultraestrutura , Proteínas de Membrana/ultraestrutura , Proteínas dos Microfilamentos/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Nucléolo Celular/genética , Nucléolo Celular/ultraestrutura , Pareamento Cromossômico/genética , Cristalografia por Raios X , Citoesqueleto/genética , Citoesqueleto/ultraestrutura , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Meiose/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Membrana Nuclear/genética , Membrana Nuclear/ultraestrutura , Matriz Nuclear/genética , Matriz Nuclear/ultraestrutura , Peptídeos/química , Peptídeos/genética , Conformação Proteica
4.
Nat Commun ; 11(1): 4818, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968060

RESUMO

Migrating cells move across diverse assemblies of extracellular matrix (ECM) that can be separated by micron-scale gaps. For membranes to protrude and reattach across a gap, actin filaments, which are relatively weak as single filaments, must polymerize outward from adhesion sites to push membranes towards distant sites of new adhesion. Here, using micropatterned ECMs, we identify T-Plastin, one of the most ancient actin bundling proteins, as an actin stabilizer that promotes membrane protrusions and enables bridging of ECM gaps. We show that T-Plastin widens and lengthens protrusions and is specifically enriched in active protrusions where F-actin is devoid of non-muscle myosin II activity. Together, our study uncovers critical roles of the actin bundler T-Plastin to promote protrusions and migration when adhesion is spatially-gapped.


Assuntos
Movimento Celular/fisiologia , Extensões da Superfície Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Sistemas CRISPR-Cas , Adesão Celular , Linhagem Celular , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Técnicas de Inativação de Genes , Humanos , Cinética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/ultraestrutura , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/ultraestrutura , Miosinas/metabolismo , Pseudópodes/metabolismo , Receptor EphB2
5.
Nat Commun ; 10(1): 5078, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699995

RESUMO

A multiprotein complex polarisome nucleates actin cables for polarized cell growth in budding yeast and filamentous fungi. However, the dynamic regulations of polarisome proteins in polymerizing actin under physiological and stress conditions remains unknown. We identify a previously functionally unknown polarisome member, actin-interacting-protein 5 (Aip5), which promotes actin assembly synergistically with formin Bni1. Aip5-C terminus is responsible for its activities by interacting with G-actin and Bni1. Through N-terminal intrinsically disordered region, Aip5 forms high-order oligomers and generate cytoplasmic condensates under the stresses conditions. The molecular dynamics and reversibility of Aip5 condensates are regulated by scaffolding protein Spa2 via liquid-liquid phase separation both in vitro and in vivo. In the absence of Spa2, Aip5 condensates hamper cell growth and actin cable structures under stress treatment. The present study reveals the mechanisms of actin assembly for polarity establishment and the adaptation in stress conditions to protect actin assembly by protein phase separation.


Assuntos
Actinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Actinas/ultraestrutura , Crescimento Celular , Polaridade Celular , Cristalografia por Raios X , Proteínas dos Microfilamentos/ultraestrutura , Polimerização , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/ultraestrutura
6.
J Biol Chem ; 294(46): 17383-17394, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31597702

RESUMO

The second WW domain (WW2) of the kidney and brain scaffolding protein, KIBRA, has an isoleucine (Ile-81) rather than a second conserved tryptophan and is primarily unstructured. However, it adopts the canonical triple-stranded antiparallel ß-sheet structure of WW domains when bound to a two-PPXY motif peptide of the synaptic protein Dendrin. Here, using a series of biophysical experiments, we demonstrate that the WW2 domain remains largely disordered when bound to a 69-residue two-PPXY motif polypeptide of the synaptic and podocyte protein synaptopodin (SYNPO). Isothermal titration calorimetry and CD experiments revealed that the interactions of the disordered WW2 domain with SYNPO are significantly weaker than SYNPO's interactions with the well-folded WW1 domain and that an I81W substitution in the WW2 domain neither enhances binding affinity nor induces substantial WW2 domain folding. In the tandem polypeptide, the two WW domains synergized, enhancing the overall binding affinity with the I81W variant tandem polypeptide 2-fold compared with the WT polypeptide. Solution NMR results showed that SYNPO binding induces small but definite chemical shift perturbations in the WW2 domain, confirming the disordered state of the WW2 domain in this complex. These analyses also disclosed that SYNPO binds the tandem WW domain polypeptide in an antiparallel manner, that is, the WW1 domain binds the second PPXY motif of SYNPO. We propose a binding model consisting of a bipartite interaction mode in which the largely disordered WW2 forms a "fuzzy" complex with SYNPO. This binding mode may be important for specific cellular functions.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas dos Microfilamentos/química , Ligação Proteica/genética , Domínios WW/genética , Motivos de Aminoácidos/genética , Sequência de Aminoácidos/genética , Aminoácidos/química , Aminoácidos/genética , Calorimetria , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Isoleucina/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/ultraestrutura , Peptídeos/química , Peptídeos/genética , Dobramento de Proteína , Estrutura Terciária de Proteína
8.
Brain Struct Funct ; 224(3): 1301-1314, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30706162

RESUMO

Microglia represent resident immune cells of the central nervous system (CNS), which have been shown to be involved in the pathophysiology of practically every neuropathology. As microglia were described to participate in the formation of the astroglial glia limitans around CNS vessels, they are part of the neurovascular unit (NVU). Since the NVU is a highly specialized structure, being functionally and morphologically adapted to differing demands in the arterial, capillary, and venous segments, the present study was aimed to systematically investigate the microglial contribution to the glia limitans along the vascular tree. Thereby, the microglial participation in the glia limitans was demonstrated for arteries, capillaries, and veins by immunoelectron microscopy in wild-type mice. Furthermore, analysis by confocal laser scanning microscopy revealed the highest density of microglial endfeet contacting the glial basement membrane around capillaries, with significantly lower densities around arteries and veins. Importantly, this pattern appeared to be unaltered in the setting of experimental autoimmune encephalomyelitis (EAE) in CX3CR1CreERT2:R26-Tomato reporter mice, although perivascular infiltrates of blood-borne leukocytes predominantly occur at the level of post-capillary venules. However, EAE animals exhibited significantly increased contact sizes of individual microglial endfeet around arteries and veins. Noteworthy, under EAE conditions, the upregulation of MHC-II was not limited to microglia of the glia limitans of veins showing infiltrates of leukocytes, but also appeared at the capillary level. As a microglial contribution to the glia limitans was also observed in human brain tissue, these findings may help characterizing microglial alterations within the NVU in various neuropathologies.


Assuntos
Artérias/patologia , Capilares/patologia , Encefalomielite Autoimune Experimental/patologia , Neuroglia/patologia , Veias/fisiologia , Actinas/metabolismo , Animais , Artérias/metabolismo , Artérias/fisiologia , Artérias/ultraestrutura , Encéfalo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/ultraestrutura , Capilares/metabolismo , Capilares/ultraestrutura , Colágeno Tipo IV/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/genética , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Laminina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/ultraestrutura , Microscopia Eletrônica , Microscopia de Fluorescência , Neuroglia/metabolismo , Neuroglia/ultraestrutura , Veias/metabolismo , Veias/patologia , Veias/ultraestrutura
9.
Anat Rec (Hoboken) ; 301(12): 1986-1990, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30312025

RESUMO

The actin cytoskeleton has long been recognized as a crucial sub-cellular filament system that is responsible for governing fundamental events ranging from cell division and muscle contraction to whole cell motility and the maintenance of tissue integrity. Consequently, it is not surprising that this network is the focus of over 100,000 different manuscripts. Alterations in the actin cytoskeleton lead to an assortment of diseases and serve as a target for a variety of pathogens. Here we have brought together a collection of primary research articles and reviews that underscore the broad influence this filament system has on organisms. Anat Rec, 301:1986-1990, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Citoesqueleto de Actina/fisiologia , Citoesqueleto de Actina/ultraestrutura , Actinas/fisiologia , Actinas/ultraestrutura , Movimento Celular/fisiologia , Citoesqueleto de Actina/química , Actinas/análise , Animais , Humanos , Proteínas dos Microfilamentos/análise , Proteínas dos Microfilamentos/ultraestrutura
10.
J Comp Neurol ; 526(2): 205-215, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28815590

RESUMO

Juxtanodin (JN, also known as ermin) was initially identified as an actin cytoskeleton-related oligodendroglial protein in the rat central nervous system. It was subsequently also found in the rat olfactory neuroepithelium, especially at the apical junctional belt of the sustentacular cells. We further examined JN expression and functional roles in the retina using fluorescence histochemistry, confocal microscopy, immuno-electron microscopy, molecular biology, and cell culture. Prominent JN expression was found in the photoreceptor-supporting retinal pigment epithelium (RPE), especially in a zone corresponding to the apices of RPE cells, at the roots of the RPE microvilli, and at the base of RPE cells next to the Bruch's membrane. Partial co-localization of JN immunoreactivity with F-actin (labeled with phalloidin) was observed at the apices and bases of RPE cells. No JN was detected in other cell types of the retina. In cultured human RPE cell line ARPE-19, expression of extrinsic JN up-regulated formation of actin cytoskeleton stress fibers, caused redistribution of more F-actin fibers to the cell periphery, and promoted spreading/enlargement of transfected cells. These findings suggest possible roles of JN in RPE molecular transport, phagocytosis and formation of outer blood-retinal barrier, or possible involvement of JN expression perturbations in pathogenesis of such retinal disorders as proliferative vitreoretinopathy and age-related macular degeneration.


Assuntos
Citoesqueleto de Actina/metabolismo , Tamanho Celular , Células Epiteliais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Epitélio Pigmentado da Retina/citologia , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Animais , Antígeno CD11b/metabolismo , Linhagem Celular Transformada , Células Epiteliais/citologia , Células Epiteliais/ultraestrutura , Feminino , Humanos , Masculino , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/ultraestrutura , Microscopia Confocal , Microscopia Imunoeletrônica , Proteínas do Tecido Nervoso/metabolismo , Fagocitose/genética , Ratos , Ratos Wistar , Retina/anatomia & histologia , Transfecção , Tubulina (Proteína)/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
11.
Methods Cell Biol ; 137: 253-266, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28065310

RESUMO

Cytokinesis requires the interplay between the cytoskeleton and plasma membrane. Emerging evidence indicates that some cytokinetic components are essential for the postcytokinetic events such as epithelium organization and neural development. We have recently developed live cell imaging and conditional knockout techniques to visualize cytokinetic proteins in Caenorhabditis elegans Q neuroblasts and separate their postcytokinetic functions from cytokinetic ones. Here we describe how the fluorescent reporter strains and conditional knockout C. elegans are generated and how live cell imaging of Q neuroblast development are performed in our laboratory. Using these protocols, we uncovered a novel role of Anillin in stabilizing the actin network during neuronal migration and neurite outgrowth, and the postcytokinetic fate of midbody, which is released into the extracellular space and degraded by the adjacent macrophage using an apoptotic mimicry. These protocols could also be applicable to study other cellular processes in C. elegans or adapted to other model organisms, to provide better insights into their developmental basis.


Assuntos
Membrana Celular/ultraestrutura , Citocinese/genética , Epitélio/ultraestrutura , Imagem Molecular/métodos , Actinas/ultraestrutura , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/ultraestrutura , Membrana Celular/genética , Movimento Celular/genética , Citoesqueleto/ultraestrutura , Técnicas de Inativação de Genes/métodos , Proteínas dos Microfilamentos/ultraestrutura , Células-Tronco Neurais/ultraestrutura , Neurogênese/genética
12.
Elife ; 52016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27852434

RESUMO

The similarity of eukaryotic actin to crenactin, a filament-forming protein from the crenarchaeon Pyrobaculum calidifontis supports the theory of a common origin of Crenarchaea and Eukaryotes. Monomeric structures of crenactin and actin are similar, although their filament architectures were suggested to be different. Here we report that crenactin forms bona fide double helical filaments that show exceptional similarity to eukaryotic F-actin. With cryo-electron microscopy and helical reconstruction we solved the structure of the crenactin filament to 3.8 Å resolution. When forming double filaments, the 'hydrophobic plug' loop in crenactin rearranges. Arcadin-2, also encoded by the arcade gene cluster, binds tightly with its C-terminus to the hydrophobic groove of crenactin. Binding is reminiscent of eukaryotic actin modulators such as cofilin and thymosin ß4 and arcadin-2 is a depolymeriser of crenactin filaments. Our work further supports the theory of shared ancestry of Eukaryotes and Crenarchaea.


Assuntos
Citoesqueleto de Actina/química , Fatores de Despolimerização de Actina/química , Actinas/química , Proteínas de Bactérias/genética , Proteínas dos Microfilamentos/genética , Citoesqueleto de Actina/ultraestrutura , Fatores de Despolimerização de Actina/ultraestrutura , Actinas/ultraestrutura , Microscopia Crioeletrônica , Citoesqueleto/química , Citoesqueleto/ultraestrutura , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/ultraestrutura , Conformação Proteica , Estrutura Secundária de Proteína , Pyrobaculum/química
13.
Nat Cell Biol ; 17(11): 1504-11, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26458246

RESUMO

Purified actin filaments depolymerize slowly, and cytosolic conditions strongly favour actin assembly over disassembly, which has left our understanding of how actin filaments are rapidly turned over in vivo incomplete. One mechanism for driving filament disassembly is severing by factors such as Cofilin. However, even after severing, pointed-end depolymerization remains slow and unable to fully account for observed rates of actin filament turnover in vivo. Here we describe a mechanism by which Twinfilin and Cyclase-associated protein work in concert to accelerate depolymerization of actin filaments by 3-fold and 17-fold at their barbed and pointed ends, respectively. This mechanism occurs even under assembly conditions, allowing reconstitution and direct visualization of individual filaments undergoing tunable, accelerated treadmilling. Further, we use specific mutations to demonstrate that this activity is critical for Twinfilin function in vivo. These findings fill a major gap in our knowledge of cellular disassembly mechanisms, and suggest that depolymerization and severing may be deployed separately or together to control the dynamics and architecture of distinct actin networks.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Catálise , Cofilina 1/genética , Cofilina 1/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/ultraestrutura , Humanos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/ultraestrutura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência/métodos , Mutação , Polimerização , Coelhos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Tempo , Imagem com Lapso de Tempo/métodos
14.
Redox Biol ; 5: 101-113, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25911998

RESUMO

Excessive ultraviolet radiation (UVR) exposure of the skin is associated with adverse clinical outcomes. Although both exogenous sunscreens and endogenous tissue components (including melanins and tryptophan-derived compounds) reduce UVR penetration, the role of endogenous proteins in absorbing environmental UV wavelengths is poorly defined. Having previously demonstrated that proteins which are rich in UVR-absorbing amino acid residues are readily degraded by broadband UVB-radiation (containing UVA, UVB and UVC wavelengths) here we hypothesised that UV chromophore (Cys, Trp and Tyr) content can predict the susceptibility of structural proteins in skin and the eye to damage by physiologically relevant doses (up to 15.4 J/cm(2)) of solar UVR (95% UVA, 5% UVB). We show that: i) purified suspensions of UV-chromophore-rich fibronectin dimers, fibrillin microfibrils and ß- and γ-lens crystallins undergo solar simulated radiation (SSR)-induced aggregation and/or decomposition and ii) exposure to identical doses of SSR has minimal effect on the size or ultrastructure of UV chromophore-poor tropoelastin, collagen I, collagen VI microfibrils and α-crystallin. If UV chromophore content is a factor in determining protein stability in vivo, we would expect that the tissue distribution of Cys, Trp and Tyr-rich proteins would correlate with regional UVR exposure. From bioinformatic analysis of 244 key structural proteins we identified several biochemically distinct, yet UV chromophore-rich, protein families. The majority of these putative UV-absorbing proteins (including the late cornified envelope proteins, keratin associated proteins, elastic fibre-associated components and ß- and γ-crystallins) are localised and/or particularly abundant in tissues that are exposed to the highest doses of environmental UVR, specifically the stratum corneum, hair, papillary dermis and lens. We therefore propose that UV chromophore-rich proteins are localised in regions of high UVR exposure as a consequence of an evolutionary pressure to express sacrificial protein sunscreens which reduce UVR penetration and hence mitigate tissue damage.


Assuntos
Antioxidantes/metabolismo , Pele/metabolismo , Animais , Bovinos , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Colágeno Tipo VI/química , Colágeno Tipo VI/metabolismo , Colágeno Tipo VI/ultraestrutura , Eletroforese em Gel de Poliacrilamida , Matriz Extracelular/metabolismo , Fibrilinas , Fibronectinas/química , Fibronectinas/metabolismo , Humanos , Melaninas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/ultraestrutura , Microscopia de Força Atômica , Pele/efeitos da radiação , Tropoelastina/química , Tropoelastina/metabolismo , Raios Ultravioleta , alfa-Cristalinas/química , alfa-Cristalinas/metabolismo
15.
Nat Struct Mol Biol ; 21(12): 1075-81, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25362487

RESUMO

Essential cellular processes involving the actin cytoskeleton are regulated by auxiliary proteins that can sense the nucleotide state of actin. Here we report cryo-EM structures for ADP-bound and ADP-beryllium fluoride (ADP-BeFx, an ADP-Pi mimic)-bound actin filaments in complex with the ß-propeller domain of yeast coronin 1 (crn1), at 8.6-Å resolution. Our structures reveal the main differences in the interaction of coronin with the two nucleotide states of F-actin. We derived pseudoatomic models by fitting the atomic structures of actin and coronin into the EM envelopes and confirmed the identified interfaces on actin by chemical cross-linking, fluorescence spectroscopy and actin mutagenesis. The models offer a structural explanation for the nucleotide-dependent effects of coronin on cofilin-assisted remodeling of F-actin.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Difosfato de Adenosina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Saccharomyces cerevisiae/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/ultraestrutura , Sequência de Aminoácidos , Animais , Berílio/metabolismo , Microscopia Crioeletrônica , Fluoretos/metabolismo , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/ultraestrutura , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Coelhos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestrutura
16.
J Struct Biol ; 187(2): 194-205, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24878663

RESUMO

c-Cbl-associated protein (CAP) is an important cytoskeletal adaptor protein involved in the regulation of adhesion turnover. The interaction between CAP and vinculin is critical for the recruitment of CAP to focal adhesions. The tandem SH3 domains (herein termed SH3a and SH3b) of CAP are responsible for its interaction with vinculin. However, the structural mechanism underlying the interaction between CAP and vinculin is poorly understood. In this manuscript, we report the solution structure of the tandem SH3 domains of CAP. Our NMR and ITC data indicate that the SH3a and SH3b domains of CAP simultaneously bind to a long proline-rich region of vinculin with different binding specificities. Furthermore, the crystal structures of the individual SH3a and SH3b domains complexed with their substrate peptides indicate that Q807(SH3a) and D881(SH3b) are the critical residues determining the different binding specificities of the SH3 domains. Based on the obtained structural information, a model of the SH3ab-vinculin complex was generated using MD simulation and SAXS data.


Assuntos
Adesões Focais/química , Proteínas dos Microfilamentos/química , Vinculina/química , Domínios de Homologia de src , Sítios de Ligação , Citoesqueleto/química , Citoesqueleto/ultraestrutura , Adesões Focais/ultraestrutura , Humanos , Proteínas dos Microfilamentos/ultraestrutura , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Vinculina/ultraestrutura
17.
PLoS Comput Biol ; 10(5): e1003638, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24854339

RESUMO

The high concentration of macromolecules in the crowded cellular interior influences different thermodynamic and kinetic properties of proteins, including their structural stabilities, intermolecular binding affinities and enzymatic rates. Moreover, various structural biology methods, such as NMR or different spectroscopies, typically involve samples with relatively high protein concentration. Due to large sampling requirements, however, the accuracy of classical molecular dynamics (MD) simulations in capturing protein behavior at high concentration still remains largely untested. Here, we use explicit-solvent MD simulations and a total of 6.4 µs of simulated time to study wild-type (folded) and oxidatively damaged (unfolded) forms of villin headpiece at 6 mM and 9.2 mM protein concentration. We first perform an exhaustive set of simulations with multiple protein molecules in the simulation box using GROMOS 45a3 and 54a7 force fields together with different types of electrostatics treatment and solution ionic strengths. Surprisingly, the two villin headpiece variants exhibit similar aggregation behavior, despite the fact that their estimated aggregation propensities markedly differ. Importantly, regardless of the simulation protocol applied, wild-type villin headpiece consistently aggregates even under conditions at which it is experimentally known to be soluble. We demonstrate that aggregation is accompanied by a large decrease in the total potential energy, with not only hydrophobic, but also polar residues and backbone contributing substantially. The same effect is directly observed for two other major atomistic force fields (AMBER99SB-ILDN and CHARMM22-CMAP) as well as indirectly shown for additional two (AMBER94, OPLS-AAL), and is possibly due to a general overestimation of the potential energy of protein-protein interactions at the expense of water-water and water-protein interactions. Overall, our results suggest that current MD force fields may distort the picture of protein behavior in biologically relevant crowded environments.


Assuntos
Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/ultraestrutura , Modelos Químicos , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Estresse Mecânico
18.
J Chem Phys ; 140(19): 194906, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24852562

RESUMO

Nucleated polymerisation phenomena are general linear growth processes that underlie the formation of a range of biofilaments in nature, including actin and tubulin that are key components of the cellular cytoskeleton. The conventional theoretical framework for describing this process is the Oosawa model that takes into account homogeneous nucleation coupled to linear growth. In his original work, Oosawa provided an analytical solution to the total mass concentration of filaments; the time evolution of the full length distribution has, however, been challenging to access, in large part due to the nonlinear nature of the rate equations inherent in the description of such phenomena and to date analytical solutions for the filament distribution are known only in certain special cases. Here, by exploiting a technique based on the method of matched asymptotics, we present an analytical treatment of the Oosawa model that describes the shape of the length distribution of biofilaments reversibly growing through primary nucleation and filament elongation. Our work highlights the power of matched asymptotics for obtaining closed-form analytical solutions to nonlinear master equations in biophysics and allows us to identify the key time scales that characterize biological polymerization processes.


Assuntos
Algoritmos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/ultraestrutura , Modelos Químicos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Coloides , Simulação por Computador , Dimerização , Entropia , Pressão Osmótica , Estresse Mecânico
19.
J Neurosci ; 34(1): 305-12, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24381291

RESUMO

The precise morphology of the mechanosensitive hair bundle requires seamless integration of actin and microtubule networks. Here, we identify Acf7a (actin crosslinking family protein 7a) as a protein positioned to bridge these distinct cytoskeletal networks in hair cells. By imaging Acf7a-Citrine fusion protein in zebrafish and immunolabeling of vestibular and cochlear mouse hair cells, we show that Acf7a and ACF7 circumscribe, underlie, and are interwoven into the cuticular plate (CP), and they also encircle the basal body of the kinocilium. In cochlear hair cells, ACF7 localization is graded, with the highest concentration near each fonticulus--an area free of F-actin in the region of the CP that contains the basal body. During hair-cell development and regeneration, Acf7a precedes formation of the hair bundle and CP. Finally, electron tomography demonstrates that the ends of microtubules insert into the CP and are decorated with filamentous linkers connecting microtubules to the CP. These observations are consistent with ACF7 being a linker protein, which may shape the cytoskeleton of the hair cell early during hair-bundle genesis.


Assuntos
Actinas/análise , Células Ciliadas Auditivas/química , Proteínas dos Microfilamentos/análise , Tubulina (Proteína)/análise , Máculas Acústicas , Actinas/ultraestrutura , Animais , Animais Geneticamente Modificados , Galinhas , Citoesqueleto/química , Citoesqueleto/ultraestrutura , Feminino , Células Ciliadas Auditivas/ultraestrutura , Masculino , Camundongos , Proteínas dos Microfilamentos/ultraestrutura , Especificidade da Espécie , Tubulina (Proteína)/ultraestrutura , Peixe-Zebra
20.
Adv Exp Med Biol ; 802: 31-47, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24443019

RESUMO

Collagens are the most abundant components of the extracellular matrix and many types of soft tissues. Elastin is another major component of certain soft tissues, such as arterial walls and ligaments. Many other molecules, though lower in quantity, function as essential components of the extracellular matrix in soft tissues. Some of these are reviewed in this chapter. Besides their basic structure, biochemistry and physiology, their roles in disorders of soft tissues are discussed only briefly as most chapters in this volume deal with relevant individual compounds. Fibronectin with its muldomain structure plays a role of "master organizer" in matrix assembly as it forms a bridge between cell surface receptors, e.g., integrins, and compounds such collagen, proteoglycans and other focal adhesion molecules. It also plays an essential role in the assembly of fibrillin-1 into a structured network. Laminins contribute to the structure of the extracellular matrix (ECM) and modulate cellular functions such as adhesion, differentiation, migration, stability of phenotype, and resistance towards apoptosis. Though the primary role of fibrinogen is in clot formation, after conversion to fibrin by thrombin, it also binds to a variety of compounds, particularly to various growth factors, and as such fibrinogen is a player in cardiovascular and extracellular matrix physiology. Elastin, an insoluble polymer of the monomeric soluble precursor tropoelastin, is the main component of elastic fibers in matrix tissue where it provides elastic recoil and resilience to a variety of connective tissues, e.g., aorta and ligaments. Elastic fibers regulate activity of TGFßs through their association with fibrillin microfibrils. Elastin also plays a role in cell adhesion, cell migration, and has the ability to participate in cell signaling. Mutations in the elastin gene lead to cutis laxa. Fibrillins represent the predominant core of the microfibrils in elastic as well as non-elastic extracellular matrixes, and interact closely with tropoelastin and integrins. Not only do microfibrils provide structural integrity of specific organ systems, but they also provide a scaffold for elastogenesis in elastic tissues. Fibrillin is important for the assembly of elastin into elastic fibers. Mutations in the fibrillin-1 gene are closely associated with Marfan syndrome. Fibulins are tightly connected with basement membranes, elastic fibers and other components of extracellular matrix and participate in formation of elastic fibers. Tenascins are ECM polymorphic glycoproteins found in many connective tissues in the body. Their expression is regulated by mechanical stress both during development and in adulthood. Tenascins mediate both inflammatory and fibrotic processes to enable effective tissue repair and play roles in pathogenesis of Ehlers-Danlos, heart disease, and regeneration and recovery of musculo-tendinous tissue. One of the roles of thrombospondin 1 is activation of TGFß. Increased expression of thrombospondin and TGFß activity was observed in fibrotic skin disorders such as keloids and scleroderma. Cartilage oligomeric matrix protein (COMP) or thrombospondin-5 is primarily present in the cartilage. High levels of COMP are present in fibrotic scars and systemic sclerosis of the skin, and in tendon, especially with physical activity, loading and post-injury. It plays a role in vascular wall remodeling and has been found in atherosclerotic plaques as well.


Assuntos
Tecido Conjuntivo/química , Tecido Conjuntivo/ultraestrutura , Matriz Extracelular/química , Matriz Extracelular/ultraestrutura , Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/ultraestrutura , Tecido Conjuntivo/metabolismo , Tecido Conjuntivo/fisiopatologia , Elastina/fisiologia , Elastina/ultraestrutura , Matriz Extracelular/metabolismo , Fibrilina-1 , Fibrilinas , Fibrinogênio/fisiologia , Fibrinogênio/ultraestrutura , Fibronectinas/fisiologia , Fibronectinas/ultraestrutura , Humanos , Laminina/fisiologia , Laminina/ultraestrutura , Proteínas dos Microfilamentos/fisiologia , Proteínas dos Microfilamentos/ultraestrutura , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Tenascina/fisiologia , Tenascina/ultraestrutura , Trombospondinas/fisiologia , Trombospondinas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...