Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.948
Filtrar
1.
BMC Oral Health ; 24(1): 630, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811865

RESUMO

INTRODUCTION: This longitudinal study assessed the association between salivary protein composition and the clinical onset/severity of oral mucositis (OM) in patients with head and neck tumours treated with intensity-modulated-radiotherapy (IMRT). METHODS: Saliva samples/clinical data were obtained from 40 head and neck cancer patients treated at Guy's Hospital before -IMRT(T0) and after-IMRT (T1 = 6 m, T2 = 12 m) (ethics approval/consent). Salivary flow rate, total protein concentration, and secretion rate were determined from saliva samples and compared with pre-treatment values. OM was assessed, total/specific salivary proteins, including mucin 5B and 7, IgA, cystatin-S, albumin, and α-amylase, were quantified. RESULTS: 95% patients experienced OM during IMRT, with 33 subjects reaching grade 2&3. At T1, there was a significant reduction in salivary flow rate, total protein secretion rate, α-amylase and cystatin-S compared to baseline. Remarkably IMRT did not significantly alter mucin 5B and 7, or the IgA secretion rate at any time point. At T1, all the analyzed proteins were associated with the OM outcomes. In addition, there was a significant inverse correlation between IgA concentration at T0 and the severity of OM during IMRT. CONCLUSION: This study revealed significant associations between several salivary proteins and OM in patients with head and neck cancer undergoing IMRT. Further longitudinal studies are needed to confirm these results. CLINICAL SIGNIFICANCE: The study contributes to the understanding of certain salivary proteins association with OM. This could be the first step towards identifying potential salivary markers that could offer perspectives for personalized medicine approaches to improve their quality of life (QoL). RESEARCH QUESTION: What is the association between salivary proteins and the occurrence and severity of OM in head and neck cancer patients? AIM: To assess the association between salivary protein composition with the clinical onset/severity of oral mucositis (OM) in head and neck cancer patients treated with intensity modulated radiotherapy. NULL HYPOTHESIS: There is no association between salivary proteins and onset/severity of OM in HNC patients.


Assuntos
Neoplasias de Cabeça e Pescoço , Radioterapia de Intensidade Modulada , Proteínas e Peptídeos Salivares , Estomatite , Humanos , Estudos Longitudinais , Neoplasias de Cabeça e Pescoço/radioterapia , Estomatite/etiologia , Estomatite/metabolismo , Masculino , Proteínas e Peptídeos Salivares/análise , Feminino , Pessoa de Meia-Idade , Radioterapia de Intensidade Modulada/efeitos adversos , Idoso , Saliva/metabolismo , Adulto , alfa-Amilases/análise , alfa-Amilases/metabolismo
2.
J Med Life ; 17(2): 205-209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38813360

RESUMO

Periodontitis is an infection-driven inflammatory condition of the periodontium. Neutrophils are one of the most important first-line immune cells that protect against pathogen microorganisms in the saliva, but they may also mediate tissue death in inflammatory disorders. The aim of our study was to estimate salivary levels of azurocidin and extracellular azurophilic granules cluster of differentiation (CD63) as biomarkers of neutrophil activation in patients with periodontal diseases and to study the correlation between the levels of these two biomarkers and clinical periodontal parameters. The study included 60 patients with periodontal disease (30 patients with periodontitis and 30 with gingivitis) and 25 healthy controls. The assessed parameters were bleeding on probing, the plaque index, clinical attachment loss, and probing pocket depth. Saliva samples were taken from each study participant, and azurocidin and CD63 levels were measured using ELISA. Azurocidin and CD63 levels were significantly higher in patients with periodontitis and patients with gingivitis than in controls (P < 0.05), and significantly higher in patients with periodontitis than in patients with gingivitis (P < 0.05). Moreover, we found a significant positive correlation between the two biomarkers with clinical attachment loss in the periodontitis group. This study has shown that increased salivary azurocidin and extracellular CD63 levels are associated with enhanced innate response in periodontal disease and can be considered biomarkers of neutrophil activation.


Assuntos
Biomarcadores , Doenças Periodontais , Saliva , Humanos , Saliva/metabolismo , Masculino , Feminino , Adulto , Biomarcadores/metabolismo , Doenças Periodontais/metabolismo , Doenças Periodontais/patologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Pessoa de Meia-Idade , Estudos de Casos e Controles , Gengivite/metabolismo , Gengivite/patologia , Periodontite/metabolismo , Periodontite/patologia , Proteínas e Peptídeos Salivares/metabolismo , Neutrófilos/metabolismo , Neutrófilos/patologia , Proteínas Sanguíneas
4.
Protein Sci ; 33(6): e4999, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723106

RESUMO

Ticks produce chemokine-binding proteins, known as evasins, in their saliva to subvert the host's immune response. Evasins bind to chemokines and thereby inhibit the activation of their cognate chemokine receptors, thus suppressing leukocyte recruitment and inflammation. We recently described subclass A3 evasins, which, like other class A evasins, exclusively target CC chemokines but appear to use a different binding site architecture to control target selectivity among CC chemokines. We now describe the structural basis of chemokine recognition by the class A3 evasin EVA-ACA1001. EVA-ACA1001 binds to almost all human CC chemokines and inhibits receptor activation. Truncation mutants of EVA-ACA1001 showed that, unlike class A1 evasins, both the N- and C-termini of EVA-ACA1001 play minimal roles in chemokine binding. To understand the structural basis of its broad chemokine recognition, we determined the crystal structure of EVA-ACA1001 in complex with the human chemokine CCL16. EVA-ACA1001 forms backbone-backbone interactions with the CC motif of CCL16, a conserved feature of all class A evasin-chemokine complexes. A hydrophobic pocket in EVA-ACA1001, formed by several aromatic side chains and the unique disulfide bond of class A3 evasins, accommodates the residue immediately following the CC motif (the "CC + 1 residue") of CCL16. This interaction is shared with EVA-AAM1001, the only other class A3 evasins characterized to date, suggesting it may represent a common mechanism that accounts for the broad recognition of CC chemokines by class A3 evasins.


Assuntos
Modelos Moleculares , Humanos , Animais , Carrapatos/química , Carrapatos/metabolismo , Cristalografia por Raios X , Sítios de Ligação , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/genética , Ligação Proteica , Quimiocinas/química , Quimiocinas/metabolismo , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/metabolismo
5.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731798

RESUMO

Aphids are insect pests that suck phloem sap and introduce salivary proteins into plant tissues through saliva secretion. The effector of salivary proteins plays a key role in the modulation of host plant defense responses and enhancing aphid host adaptation. Based on previous transcriptome sequencing results, a candidate effector cyclin-dependent kinase-like (CDK) was identified from the grain aphid Sitobion avenae. In this study, the function of SaCDK in wheat defense response and the adaptation of S. avenae was investigated. Our results showed that the transient overexpression of SaCDK in tobacco Nicotiana benthamiana suppressed cell death triggered by mouse pro-apoptotic protein-BAX or Phytophthora infestans PAMP-INF1. SaCDK, delivered into wheat cells through a Pseudomonas fluorescens-mediated bacterial type III secretion system, suppressed callose deposition in wheat seedlings, and the overexpression of SaCDK in wheat significantly decreased the expression levels of salicylic acid and jasmonic acid signaling pathway-related genes phenylalanine ammonia lyase (PAL), pathogenesis-related 1 protein (PR1), lipoxygenase (LOX) and Ω-3 fatty acid desaturase (FAD). In addition, aphid bioassay results showed that the survival and fecundity of S. avenae were significantly increased while feeding on the wheat plants carrying SaCDK. Taken together, our findings demonstrate that the salivary protein SaCDK is involved in inhibiting host defense response and improving its host adaptation, which lays the foundation to uncover the mechanism of the interaction of cereal aphids and host plants.


Assuntos
Afídeos , Triticum , Animais , Afídeos/fisiologia , Triticum/parasitologia , Triticum/genética , Triticum/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Proteínas e Peptídeos Salivares/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Adaptação Fisiológica , Doenças das Plantas/parasitologia , Regulação da Expressão Gênica de Plantas , Nicotiana/parasitologia , Nicotiana/genética , Ciclopentanos/metabolismo , Oxilipinas
6.
Front Immunol ; 15: 1368066, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751433

RESUMO

Introduction: Aedes spp. are the most prolific mosquito vectors in the world. Found on every continent, they can effectively transmit various arboviruses, including the dengue virus which continues to cause outbreaks worldwide and is spreading into previously non-endemic areas. The lack of widely available dengue vaccines accentuates the importance of targeted vector control strategies to reduce the dengue burden. High-throughput tools to estimate human-mosquito contact and evaluate vector control interventions are lacking. We propose a novel serological tool that allows rapid screening of human cohorts for exposure to potentially infectious mosquitoes. Methods: We tested 563 serum samples from a longitudinal pediatric cohort study previously conducted in Cambodia. Children enrolled in the study were dengue-naive at baseline and were followed biannually for dengue incidence for two years. We used Western blotting and enzyme-linked immunosorbent assays to identify immunogenic Aedes aegypti salivary proteins and measure total anti-Ae. aegypti IgG. Results: We found a correlation (rs=0.86) between IgG responses against AeD7L1 and AeD7L2 recombinant proteins and those to whole salivary gland homogenate. We observed seasonal fluctuations of AeD7L1+2 IgG responses and no cross-reactivity with Culex quinquefasciatus and Anopheles dirus mosquitoes. The baseline median AeD7L1+2 IgG responses for young children were higher in those who developed asymptomatic versus symptomatic dengue. Discussion: The IgG response against AeD7L1+2 recombinant proteins is a highly sensitive and Aedes specific marker of human exposure to Aedes bites that can facilitate standardization of future serosurveys and epidemiological studies by its ability to provide a robust estimation of human-mosquito contact in a high-throughput fashion.


Assuntos
Aedes , Dengue , Proteínas de Insetos , Mosquitos Vetores , Proteínas e Peptídeos Salivares , Humanos , Aedes/imunologia , Aedes/virologia , Animais , Proteínas e Peptídeos Salivares/imunologia , Criança , Mosquitos Vetores/imunologia , Mosquitos Vetores/virologia , Dengue/imunologia , Dengue/transmissão , Proteínas de Insetos/imunologia , Feminino , Pré-Escolar , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Masculino , Camboja , Estudos Longitudinais , Vírus da Dengue/imunologia , Adolescente , Mordeduras e Picadas de Insetos/imunologia
7.
Cells ; 13(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38786051

RESUMO

The inhibition of endocannabinoid hydrolysis by enzymatic inhibitors may interfere with mechanisms underlying migraine-related pain. The dual FAAH/MAGL inhibitor AKU-005 shows potent inhibitory activity in vitro. Here, we assessed the effect of AKU-005 in a migraine animal model based on nitroglycerin (NTG) administration. Male rats were treated with AKU-005 (0.5 mg/kg, i.p.) or vehicle 3 h after receiving NTG (10 mg/kg, i.p.) or NTG vehicle. One hour later, rats were subjected to the open field test followed by the orofacial formalin test. At the end of the test, we collected serum samples for assessing calcitonin gene-related peptide (CGRP) levels as well as meninges, trigeminal ganglia, and brain areas to assess mRNA levels of CGRP and pro-inflammatory cytokines, and endocannabinoid and related lipid levels. AKU-005 reduced NTG-induced hyperalgesia during the orofacial formalin test but did not influence NTG-induced changes in the open field test. It significantly reduced serum levels of CGRP, CGRP, and pro-inflammatory cytokine mRNA levels in the meninges, trigeminal ganglia, and central areas. Surprisingly, AKU-005 caused no change in endocannabinoids and related lipids in the regions evaluated. The present findings suggest that AKU-005 may have anti-migraine effects by reducing CGRP synthesis and release and the associated inflammatory events. This effect, however, does not seem mediated via an interference with the endocannabinoid pathway.


Assuntos
Amidoidrolases , Peptídeo Relacionado com Gene de Calcitonina , Hiperalgesia , Gânglio Trigeminal , Animais , Masculino , Hiperalgesia/tratamento farmacológico , Ratos , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Amidoidrolases/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/sangue , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/metabolismo , Ratos Sprague-Dawley , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Endocanabinoides/metabolismo , Nitroglicerina/farmacologia , Modelos Animais de Doenças , Citocinas/metabolismo , Citocinas/sangue , Transtornos de Enxaqueca/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Oligopeptídeos , Proteínas e Peptídeos Salivares
8.
ACS Appl Mater Interfaces ; 16(20): 25977-25993, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38741563

RESUMO

Environmental pollution with plastic polymers has become a global problem, leaving no continent and habitat unaffected. Plastic waste is broken down into smaller parts by environmental factors, which generate micro- and nanoplastic particles (MNPPs), ultimately ending up in the human food chain. Before entering the human body, MNPPs make their first contact with saliva in the human mouth. However, it is unknown what proteins attach to plastic particles and whether such protein corona formation is affected by the particle's biophysical properties. To this end, we employed polystyrene MNPPs of two different sizes and three different charges and incubated them individually with saliva donated by healthy human volunteers. Particle zeta potential and size analyses were performed using dynamic light scattering complemented by nanoliquid chromatography high-resolution mass spectrometry (nLC/HRMS) to qualitatively and quantitatively reveal the protein soft and hard corona for each particle type. Notably, protein profiles and relative quantities were dictated by plastic particle size and charge, which in turn affected their hydrodynamic size, polydispersity, and zeta potential. Strikingly, we provide evidence of the latter to be dynamic processes depending on exposure times. Smaller particles seemed to be more reactive with the surrounding proteins, and cultures of the particles with five different cell lines (HeLa, HEK293, A549, HepG2, and HaCaT) indicated protein corona effects on cellular metabolic activity and genotoxicity. In summary, our data suggest nanoplastic size and surface chemistry dictate the decoration by human saliva proteins, with important implications for MNPP uptake in humans.


Assuntos
Tamanho da Partícula , Poliestirenos , Saliva , Proteínas e Peptídeos Salivares , Propriedades de Superfície , Humanos , Saliva/química , Saliva/metabolismo , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/metabolismo , Poliestirenos/química , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Nanopartículas/química , Microplásticos/química
9.
Commun Biol ; 7(1): 649, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802531

RESUMO

Salivary complement inhibitors occur in many of the blood feeding arthropod species responsible for transmission of pathogens. During feeding, these inhibitors prevent the production of proinflammatory anaphylatoxins, which may interfere with feeding, and limit formation of the membrane attack complex which could damage arthropod gut tissues. Salivary inhibitors are, in many cases, novel proteins which may be pharmaceutically useful or display unusual mechanisms that could be exploited pharmaceutically. Albicin is a potent inhibitor of the alternative pathway of complement from the saliva of the malaria transmitting mosquito, Anopheles albimanus. Here we describe the cryo-EM structure of albicin bound to C3bBb, the alternative C3 convertase, a proteolytic complex that is responsible for cleavage of C3 and amplification of the complement response. Albicin is shown to induce dimerization of C3bBb, in a manner similar to the bacterial inhibitor SCIN, to form an inactive complex unable to bind the substrate C3. Size exclusion chromatography and structures determined after 30 minutes of incubation of C3b, factor B (FB), factor D (FD) and albicin indicate that FBb dissociates from the inhibited dimeric complex leaving a C3b-albicin dimeric complex which apparently decays more slowly.


Assuntos
Anopheles , Microscopia Crioeletrônica , Proteínas de Insetos , Animais , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Anopheles/metabolismo , Anopheles/imunologia , Anopheles/parasitologia , Complemento C3b/metabolismo , Complemento C3b/química , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/metabolismo , Modelos Moleculares
10.
Front Immunol ; 15: 1335307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633260

RESUMO

Introduction: Cutaneous leishmaniasis is a neglected vector-borne parasitic disease prevalent in 92 countries with approximately one million new infections annually. Interactions between vector saliva and the human host alter the response to infection and outcome of disease. Methods: To characterize the human immunological responses developed against saliva of Phlebotomus duboscqi, a Leishmania major (L. major) vector, we repeatedly exposed the arms of 14 healthy U.S volunteers to uninfected P. duboscqi bites. Blood was collected a week after each exposure and used to assess total IgG antibodies against the proteins of P. duboscqi salivary gland homogenate (SGH) and the levels of IFN-gamma and IL-10 from peripheral blood mononuclear cells (PBMCs) stimulated with SGH or recombinant sand fly proteins. We analyzed skin punch biopsies of the human volunteer arms from the insect bite site and control skin site after multiple P. duboscqi exposures (four volunteers) using immunohistochemical staining. Results: A variety of immediate insect bite skin reactions were observed. Late skin reactions to insect bites were characterized by macular hyperpigmentation and/or erythematous papules. Hematoxylin and eosin staining showed moderate mononuclear skin infiltrate with eosinophils in those challenged recently (within 2 months), eosinophils were not seen in biopsies with recall challenge (6 month post bites). An increase in plasma antigen-specific IgG responses to SGH was observed over time. Western Blot results showed strong plasma reactivity to five P. duboscqi salivary proteins. Importantly, volunteers developed a cellular immunity characterized by the secretion of IFN-gamma upon PBMC stimulation with P. duboscqi SGH and recombinant antigens. Discussion: Our results demonstrate that humans mounted a local and systemic immune response against P. duboscqi salivary proteins. Specifically, PduM02/SP15-like and PduM73/adenosine deaminase recombinant salivary proteins triggered a Th1 type immune response that might be considered in future development of a potential Leishmania vaccine.


Assuntos
Mordeduras e Picadas de Insetos , Phlebotomus , Animais , Humanos , Phlebotomus/parasitologia , Leucócitos Mononucleares , Imunidade Celular , Antígenos , Imunoglobulina G , Proteínas e Peptídeos Salivares
11.
PLoS Negl Trop Dis ; 18(4): e0011452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568999

RESUMO

BACKGROUND: Immune response of triatomines plays an important role in the success or failure of transmission of T. cruzi. Studies on parasite-vector interaction have shown the presence of trypanolytic factors and have been observed to be differentially expressed among triatomines, which affects the transmission of some T. cruzi strains or DTUs (Discrete Typing Units). METHODOLOGY/PRINCIPAL FINDINGS: Trypanolytic factors were detected in the hemolymph and saliva of R. prolixus against epimastigotes and trypomastigotes of the Y strain (T. cruzi II). To identify the components of the immune response that could be involved in this lytic activity, a comparative proteomic analysis was carried out, detecting 120 proteins in the hemolymph of R. prolixus and 107 in R. colombiensis. In salivary glands, 1103 proteins were detected in R. prolixus and 853 in R. colombiensis. A higher relative abundance of lysozyme, prolixin, nitrophorins, and serpin as immune response proteins was detected in the hemolymph of R. prolixus. Among the R. prolixus salivary proteins, a higher relative abundance of nitrophorins, lipocalins, and triabins was detected. The higher relative abundance of these immune factors in R. prolixus supports their participation in the lytic activity on Y strain (T. cruzi II), but not on Dm28c (T. cruzi I), which is resistant to lysis by hemolymph and salivary proteins of R. prolixus due to mechanisms of evading oxidative stress caused by immune factors. CONCLUSIONS/SIGNIFICANCE: The lysis resistance observed in the Dm28c strain would be occurring at the DTU I level. T. cruzi I is the DTU with the greatest geographic distribution, from the south of the United States to central Chile and Argentina, a distribution that could be related to resistance to oxidative stress from vectors. Likewise, we can say that lysis against strain Y could occur at the level of DTU II and could be a determinant of the vector inability of these species to transmit T. cruzi II. Future proteomic and transcriptomic studies on vectors and the interactions of the intestinal microbiota with parasites will help to confirm the determinants of successful or failed vector transmission of T. cruzi DTUs in different parts of the Western Hemisphere.


Assuntos
Doença de Chagas , Rhodnius , Trypanosoma cruzi , Animais , Trypanosoma cruzi/genética , Rhodnius/parasitologia , Hemolinfa , Proteômica , Glândulas Salivares , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo , Fatores Imunológicos/metabolismo
12.
Clin Oral Investig ; 28(5): 246, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38589630

RESUMO

OBJECTIVES: Opiorphin is an analgesic peptide released by salivary glands and capsaicin an agonist of TRPV1 receptors eliciting burning sensations. The primary objective of this study was to assess opiorphin release after stimulation of the tongue by capsaicin (STC). The secondary objectives were to compare opiorphin release after STC in 3 groups of subjects [healthy (CTRL), Burning Mouth Syndrome (BMS), painful Temporomandibular disorders (TMDp)] and pain evoked by STC in these 3 groups. MATERIALS AND METHODS: Salivary opiorphin was assessed with high-performance liquid chromatography at 3 different time points (baseline, after 5 min and 20 min of STC). Pain was self-reported on a (0-10) numeric rating scale. RESULTS: Three groups (N = 16) of adults were recruited at the Clinical Hospital Centre and School of Dental Medicine in Zagreb. Opiorphin levels were higher (1) in TMDp compared to CTRL in 1st (2.23 ± 1.72 pg/ul vs. 0.67 ± 0.44 pg/ul, p = 0.002) and 3rd sampling (2.44 ± 2.01 pg/ul vs. 0.74 ± 0.52 pg/ul, p = 0.020) and (2) within BMS group at 3rd sampling vs. baseline (p < 0.025). Pain scores were higher in BMS compared to TMDp (p < 0.025) and CTRL (p < 0.025). CONCLUSION: This study evidenced (1) a differential basal amount of opiorphin in two pain conditions and control subjects (2) a differential kinetic of release of opiorphin after STC in CTRL, BMS and TMDp (3) a differential pain perception after STC in BMS and TMDp vs. CTRL, which can provide a readout for animal models. CLINICAL RELEVANCE: The specific regulation of opiorphin release in patients with orofacial painful conditions provides valuable insights for clinicians and researchers in physiology and pathology and encourages further research in this area. TRIAL REGISTRATION: ClinicalTrials.gov NCT04694274. Registered on 01/05/2021.


Assuntos
Síndrome da Ardência Bucal , Capsaicina , Proteínas e Peptídeos Salivares , Adulto , Humanos , Dor Facial , Oligopeptídeos
13.
Sci Rep ; 14(1): 6225, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486094

RESUMO

Saliva, an oral secretion primarily originating from salivary glands (SGs), exert critical roles in the ongoing evolutionary interaction between insects and plants. However, identifying insect salivary components poses challenges due to the tiny size of insects, low secretion amounts, and the propensity for degradation after secretion. In this study, we developed a transcriptome-based approach to comprehensively analyze the salivary proteins of the short-headed planthopper, Epeurysa nawaii, a species with unique feeding habits on bamboo. A total of 165 salivary proteins were identified, with 114 secretory genes highly and specifically expressed in SGs. Consistent with most phloem-feeding insects, digestive enzymes, calcium-binding proteins, oxidoreductases, and a few previously reported salivary effectors were ubiquitously distributed in E. nawaii saliva. However, we also identified a substantial portion of salivary proteins exhibiting taxonomy specificity, including 60 E. nawaii-specific and 62 Delphacidae-specific proteins. These taxonomy-restricted proteins potentially play a role in insect adaptation to specific host plants. Our study provides an efficient pipeline for salivary protein identification and serves as a valuable resource for the functional characterization of effectors.


Assuntos
Hemípteros , Glândulas Salivares , Animais , Glândulas Salivares/metabolismo , Saliva/metabolismo , Hemípteros/metabolismo , Transcriptoma , Proteínas e Peptídeos Salivares/metabolismo , Proteínas de Insetos/metabolismo
14.
BMC Genomics ; 25(1): 313, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532318

RESUMO

BACKGROUND: Effective vector control is key to malaria prevention. However, this is now compromised by increased insecticide resistance due to continued reliance on insecticide-based control interventions. In Kenya, we have observed heterogenous resistance to pyrethroids and organophosphates in Anopheles arabiensis which is one of the most widespread malaria vectors in the country. We investigated the gene expression profiles of insecticide resistant An. arabiensis populations from Migori and Siaya counties in Western Kenya using RNA-Sequencing. Centers for Disease Control and Prevention (CDC) bottle assays were conducted using deltamethrin (DELTA), alphacypermethrin (ACYP) and pirimiphos-methyl (PMM) to determine the resistance status in both sites. RESULTS: Mosquitoes from Migori had average mortalities of 91%, 92% and 58% while those from Siaya had 85%, 86%, and 30% when exposed to DELTA, ACYP and PMM, respectively. RNA-Seq analysis was done on pools of mosquitoes which survived exposure ('resistant'), mosquitoes that were not exposed, and the insecticide-susceptible An. arabiensis Dongola strain. Gene expression profiles of resistant mosquitoes from both Migori and Siaya showed an overexpression mainly of salivary gland proteins belonging to both the short and long form D7 genes, and cuticular proteins (including CPR9, CPR10, CPR15, CPR16). Additionally, the overexpression of detoxification genes including cytochrome P450s (CYP9M1, CYP325H1, CYP4C27, CYP9L1 and CYP307A1), 2 carboxylesterases and a glutathione-S-transferase (GSTE4) were also shared between DELTA, ACYP, and PMM survivors, pointing to potential contribution to cross resistance to both pyrethroid and organophosphate insecticides. CONCLUSION: This study provides novel insights into the molecular basis of insecticide resistance in An. arabiensis in Western Kenya and suggests that salivary gland proteins and cuticular proteins are associated with resistance to multiple classes of insecticides.


Assuntos
Anopheles , Inseticidas , Malária , Compostos Organotiofosforados , Piretrinas , Animais , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Anopheles/genética , Quênia , Mosquitos Vetores , Glutationa Transferase , Perfilação da Expressão Gênica , Proteínas e Peptídeos Salivares/genética , Glândulas Salivares
15.
Commun Biol ; 7(1): 257, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431762

RESUMO

Herbivorous insects employ an array of salivary proteins to aid feeding. However, the mechanisms behind the recruitment and evolution of these genes to mediate plant-insect interactions remain poorly understood. Here, we report a potential horizontal gene transfer (HGT) event from bacteria to an ancestral bug of Eutrichophora. The acquired genes subsequently underwent duplications and evolved through co-option. We annotated them as horizontal-transferred, Eutrichophora-specific salivary protein (HESPs) according to their origin and function. In Riptortus pedestris (Coreoidea), all nine HESPs are secreted into plants during feeding. The RpHESP4 to RpHESP8 are recently duplicated and found to be indispensable for salivary sheath formation. Silencing of RpHESP4-8 increases the difficulty of R. pedestris in probing the soybean, and the treated insects display a decreased survivability. Although silencing the other RpHESPs does not affect the salivary sheath formation, negative effects are also observed. In Pyrrhocoris apterus (Pyrrhocoroidea), five out of six PaHESPs are secretory salivary proteins, with PaHESP3 being critical for insect survival. The PaHESP5, while important for insects, no longer functions as a salivary protein. Our results provide insight into the potential origin of insect saliva and shed light on the evolution of salivary proteins.


Assuntos
Transferência Genética Horizontal , Heterópteros , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Heterópteros/genética , Heterópteros/metabolismo , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo
16.
Ned Tijdschr Tandheelkd ; 131(3): 117-120, 2024 Mar.
Artigo em Holandês | MEDLINE | ID: mdl-38440818

RESUMO

Dental caries is a major public health problem and untreated caries has serious consequences for children. Psychosocial factors have multiple consequences, among others on the composition of saliva. Therefore, this study investigated whether stress and various salivary protein levels are associated with dental caries experience in children. The activity of the Matrix Metalloproteinases MMP-8 and MMP-9 and the total proteolytic activity in saliva turned out to be indicators for the caries experience. Salivary Alpha-Amylase seems to be a protector and was a strong indicator for caries experience. In cases where children were exposed to two different dental treatments, the level of salivary cortisol- and alpha-amylase increased, in which a distinction could be made between non-invasive and invasive treatment. The results of the study emphasise the need for further research into the way stress and salivary protein concentrations can affect the caries experience and how different dental treatments can influence the behaviour and stress levels in children.


Assuntos
Cárie Dentária , Criança , Humanos , Cárie Dentária/epidemiologia , Suscetibilidade à Cárie Dentária , Proteínas e Peptídeos Salivares , Saliva
17.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338734

RESUMO

(1) The aim of the study was to analyze the salivary concentrations of lysozyme, lactoferrin, and sIgA antibodies in adult patients in the late period after allogeneic stem cell transplantation (alloHSCT). The relationship between these concentrations and the salivary secretion rate and the time elapsed after alloHSCT was investigated. The relationship between the concentrations of lysozyme, lactoferrin, and sIgA and the titer of the cariogenic bacteria S. mutans and L. acidophilus was assessed. (2) The study included 54 individuals, aged 19 to 67 (SD = 40.06 ± 11.82; Me = 39.5), who were 3 to 96 months after alloHSCT. The concentrations of lysozyme, lactoferrin, and sIgA were assessed in mixed whole resting saliva (WRS) and mixed whole stimulated saliva (WSS). (3) The majority of patients had very low or low concentrations of the studied salivary components (WRS-lysozyme: 52, lactoferrin: 36, sIgA: 49 patients; WSS-lysozyme: 51, lactoferrin: 25, sIgA: 51 patients). The levels of lactoferrin in both WRS and WSS were statistically significantly higher in the alloHSCT group than in the control group (CG) (alloHSCT patients-WRS: M = 40.18 µg/mL; WSS: M = 27.33 µg/mL; CG-WRS: M = 17.58 µg/mL; WSS: 10.69 µg/mL). No statistically significant correlations were observed between lysozyme, lactoferrin, and sIgA concentrations and the time after alloHSCT. In the group of patients after alloHSCT a negative correlation was found between the resting salivary flow rate and the concentration of lactoferrin and sIgA. The stimulated salivary flow rate correlated negatively with lactoferrin and sIgA concentrations. Additionally, the number of S. mutans colonies correlated positively with the concentration of lysozyme and sIgA. (4) The concentrations of non-specific and specific immunological factors in the saliva of patients after alloHSCT may differ when compared to healthy adults; however, the abovementioned differences did not change with the time after transplantation.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Muramidase , Adulto , Humanos , Muramidase/metabolismo , Lactoferrina/metabolismo , Saliva/metabolismo , Imunoglobulina A Secretora/metabolismo , Proteínas e Peptídeos Salivares
18.
EMBO J ; 43(9): 1690-1721, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38378891

RESUMO

Mosquitoes transmit many disease-relevant flaviviruses. Efficient viral transmission to mammalian hosts requires mosquito salivary factors. However, the specific salivary components facilitating viral transmission and their mechanisms of action remain largely unknown. Here, we show that a female mosquito salivary gland-specific protein, here named A. aegypti Neutrophil Recruitment Protein (AaNRP), facilitates the transmission of Zika and dengue viruses. AaNRP promotes a rapid influx of neutrophils, followed by virus-susceptible myeloid cells toward mosquito bite sites, which facilitates establishment of local infection and systemic dissemination. Mechanistically, AaNRP engages TLR1 and TLR4 of skin-resident macrophages and activates MyD88-dependent NF-κB signaling to induce the expression of neutrophil chemoattractants. Inhibition of MyD88-NF-κB signaling with the dietary phytochemical resveratrol reduces AaNRP-mediated enhancement of flavivirus transmission by mosquitoes. These findings exemplify how salivary components can aid viral transmission, and suggest a potential prophylactic target.


Assuntos
Aedes , Zika virus , Animais , Aedes/virologia , Aedes/metabolismo , Feminino , Zika virus/fisiologia , Camundongos , Vírus da Dengue/fisiologia , Proteínas e Peptídeos Salivares/metabolismo , Mosquitos Vetores/virologia , Proteínas de Insetos/metabolismo , Células Mieloides/virologia , Células Mieloides/metabolismo , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Infecção por Zika virus/metabolismo , Dengue/transmissão , Dengue/virologia , Dengue/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética
19.
Food Res Int ; 178: 113964, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309881

RESUMO

Astringency corresponds to the sensation of dryness and roughness that is experienced in the oral cavity in association with the interaction between salivary proteins and food polyphenols. In this study, the phenolic composition of seven varietal wines, the intensity of astringency they evoke and the physicochemical reactivity of these wines with whole human saliva were evaluated. Phenolic composition of wines was characterized by spectrophotometry and HPLC chromatography. Intensity of astringency was evaluated by trained sensory panels. Saliva from a single volunteer subject was used to assess wine-saliva interactions. To this end, binary mixtures were produced at different v/v wine/saliva ratios and each of them assayed for the ability of the salivary protein to diffuse on a cellulose membrane (diffusion test) and to remain in solution (precipitation test). Physicochemical reactivities between wine components and the protein fraction of saliva were contrasted against the astringency and the phenolic profile of each varietal wine. The study supports the view that astringency depends on physicochemical interactions between two complex matrices -wine and saliva- and not between some of their particular components.


Assuntos
Vinho , Humanos , Vinho/análise , Saliva/química , Paladar , Adstringentes/análise , Polifenóis/análise , Fenóis/análise , Proteínas e Peptídeos Salivares/análise
20.
Parasit Vectors ; 17(1): 36, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281054

RESUMO

BACKGROUND: When feeding on a vertebrate host, ticks secrete saliva, which is a complex mixture of proteins, lipids, and other molecules. Tick saliva assists the vector in modulating host hemostasis, immunity, and tissue repair mechanisms. While helping the vector to feed, its saliva modifies the site where pathogens are inoculated and often facilitates the infection process. The objective of this study is to uncover the variation in protein composition of Rhipicephalus microplus saliva during blood feeding. METHODS: Ticks were fed on calves, and adult females were collected, weighed, and divided in nine weight groups, representing the slow and rapid feeding phases of blood feeding. Tick saliva was collected, and mass spectrometry analyses were used to identify differentially secreted proteins. Bioinformatic tools were employed to predict the structural and functional features of the salivary proteins. Reciprocal best hit analyses were used to identify conserved families of salivary proteins secreted by other tick species. RESULTS: Changes in the protein secretion profiles of R. microplus adult female saliva during the blood feeding were observed, characterizing the phenomenon known as "sialome switching." This observation validates the idea that the switch in protein expression may serve as a mechanism for evading host responses against tick feeding. Cattle tick saliva is predominantly rich in heme-binding proteins, secreted conserved proteins, lipocalins, and protease inhibitors, many of which are conserved and present in the saliva of other tick species. Additionally, another remarkable observation was the identification of host-derived proteins as a component of tick saliva. CONCLUSIONS: Overall, this study brings new insights to understanding the dynamics of the proteomic profile of tick saliva, which is an important component of tick feeding biology. The results presented here, along with the disclosed sequences, contribute to our understanding of tick feeding biology and might aid in the identification of new targets for the development of novel anti-tick methods.


Assuntos
Rhipicephalus , Animais , Feminino , Bovinos , Rhipicephalus/fisiologia , Saliva/química , Proteômica , Proteínas de Artrópodes/metabolismo , Proteínas e Peptídeos Salivares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...