Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microbiologyopen ; 11(1): e1259, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35212483

RESUMO

Ocean pollution is a worldwide environmental challenge that could be partially tackled through microbial applications. To shed light on the diversity and applications of the bacterial communities that inhabit the sediments trapped in artificial containers, we analyzed residues (polyethylene terephthalate [PET] bottles and aluminum cans) collected from the Mediterranean Sea by scanning electron microscopy and next generation sequencing. Moreover, we set a collection of culturable bacteria from the plastisphere that were screened for their ability to use PET as a carbon source. Our results reveal that Proteobacteria are the predominant phylum in all the samples and that Rhodobacteraceae, Woeseia, Actinomarinales, or Vibrio are also abundant in these residues. Moreover, we identified marine isolates with enhanced growth in the presence of PET: Aquimarina intermedia, Citricoccus spp., and Micrococcus spp. Our results suggest that the marine environment is a source of biotechnologically promising bacterial isolates that may use PET or PET additives as carbon sources.


Assuntos
Actinobacteria/crescimento & desenvolvimento , Bacteroidetes/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , Polietilenotereftalatos , Proteobactérias/crescimento & desenvolvimento , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/ultraestrutura , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/ultraestrutura , Biodegradação Ambiental , Biologia Computacional , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Microscopia Eletrônica de Varredura , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Proteobactérias/ultraestrutura , RNA Ribossômico 16S/síntese química , Resíduos
2.
Environ Microbiol ; 19(3): 1103-1119, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27902881

RESUMO

Magnetotactic bacteria (MTB) are a group of phylogenetically and physiologically diverse Gram-negative bacteria that synthesize intracellular magnetic crystals named magnetosomes. MTB are affiliated with three classes of Proteobacteria phylum, Nitrospirae phylum, Omnitrophica phylum and probably with the candidate phylum Latescibacteria. The evolutionary origin and physiological diversity of MTB compared with other bacterial taxonomic groups remain to be illustrated. Here, we analysed the genome of the marine magneto-ovoid strain MO-1 and found that it is closely related to Magnetococcus marinus MC-1. Detailed analyses of the ribosomal proteins and whole proteomes of 390 genomes reveal that, among the Proteobacteria analysed, only MO-1 and MC-1 have coding sequences (CDSs) with a similarly high proportion of origins from Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria and Gammaproteobacteria. Interestingly, a comparative metabolic network analysis with anoxic network enzymes from sequenced MTB and non-MTB successfully allows the eventual prediction of an organism with a metabolic profile compatible for magnetosome production. Altogether, our genomic analysis reveals multiple origins of MO-1 and M. marinus MC-1 genomes and suggests a metabolism-restriction model for explaining whether a bacterium could become an MTB upon acquisition of magnetosome encoding genes.


Assuntos
Genoma Bacteriano , Magnetossomos , Proteobactérias/classificação , Proteobactérias/genética , Sequência de Bases , Deltaproteobacteria/genética , Evolução Molecular , Magnetossomos/genética , Filogenia , Proteobactérias/ultraestrutura
3.
Appl Environ Microbiol ; 82(22): 6799-6807, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27637877

RESUMO

Microbially influenced corrosion (MIC) is a major cause of damage to steel infrastructure in the marine environment. Despite their ability to grow directly on Fe(II) released from steel, comparatively little is known about the role played by neutrophilic iron-oxidizing bacteria (FeOB). Recent work has shown that FeOB grow readily on mild steel (1018 MS) incubated in situ or as a substrate for pure cultures in vitro; however, details of how they colonize steel surfaces are unknown yet are important for understanding their effects. In this study, we combine a novel continuously upwelling microcosm with confocal laser scanning microscopy (CLSM) to determine the degree of colonization of 1018 MS by the marine FeOB strain DIS-1. 1018 MS coupons were incubated with sterile seawater (pH 8) inoculated with strain DIS-1. Incubations were performed both under oxic conditions and in an anoxic-to-oxic gradient. Following incubations of 1 to 10 days, the slides were removed from the microcosms and stained to visualize both cells and stalk structures. Stained coupons were visualized by CLSM after being mounted in a custom frame to preserve the three-dimensional structure of the biofilm. The incubation of 1018 MS coupons with strain DIS-1 under oxic conditions resulted in initial attachment of cells within 2 days and nearly total coverage of the coupon with an ochre film within 5 days. CLSM imaging revealed a nonadherent biofilm composed primarily of the Fe-oxide stalks characteristic of strain DIS-1. When incubated with elevated concentrations of Fe(II), DIS-1 colonization of 1018 MS was inhibited. IMPORTANCE: These experiments describe the growth of a marine FeOB in a continuous culture system and represent direct visualizations of steel colonization by FeOB. We anticipate that these experiments will lay the groundwork for studying the mechanisms by which FeOB colonize steel and help to elucidate the role played by marine FeOB in MIC. These observations of the interaction between an FeOB, strain DIS-1, and steel suggest that this experimental system will provide a useful model for studying the interactions between microbes and solid substrates.


Assuntos
Ferro/metabolismo , Oxigênio/metabolismo , Proteobactérias/crescimento & desenvolvimento , Aço , Biofilmes/crescimento & desenvolvimento , Corrosão , Microscopia Confocal , Oxirredução , Proteobactérias/fisiologia , Proteobactérias/ultraestrutura , Água do Mar/microbiologia
4.
Adv Exp Med Biol ; 883: 41-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26621461

RESUMO

All free-living bacterial cells are delimited and protected by an envelope of high complexity. This physiological barrier is essential for bacterial survival and assures multiple functions. The molecular assembly of the different envelope components into a functional structure represents a tremendous biological challenge and is of high interest for fundamental sciences. The study of bacterial envelope assembly has also been fostered by the need for novel classes of antibacterial agents to fight the problematic of bacterial resistance to antibiotics. This chapter focuses on the two most intensively studied classes of bacterial envelopes that belong to the phyla Firmicutes and Proteobacteria. The envelope of Firmicutes typically has one membrane and is defined as being monoderm whereas the envelope of Proteobacteria contains two distinct membranes and is referred to as being diderm. In this chapter, we will first discuss the multiple roles of the bacterial envelope and clarify the nomenclature used to describe the different types of envelopes. We will then define the architecture and composition of the envelopes of Firmicutes and Proteobacteria while outlining their similarities and differences. We will further cover the extensive progress made in the field of bacterial envelope assembly over the last decades, using Bacillus subtilis and Escherichia coli as model systems for the study of the monoderm and diderm bacterial envelopes, respectively. We will detail our current understanding of how molecular machines assure the secretion, insertion and folding of the envelope proteins as well as the assembly of the glycosidic components of the envelope. Finally, we will highlight the topics that are still under investigation, and that will surely lead to important discoveries in the near future.


Assuntos
Membrana Celular/química , Membrana Celular/fisiologia , Firmicutes/ultraestrutura , Proteobactérias/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Firmicutes/química , Lipopolissacarídeos/química , Dobramento de Proteína , Transporte Proteico , Proteobactérias/química , Ácidos Teicoicos/química
5.
J R Soc Interface ; 12(103)2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25566884

RESUMO

Magnetotactic bacteria (MTB) are known to produce single-domain magnetite or greigite crystals within intracellular membrane organelles and to navigate along the Earth's magnetic field lines. MTB have been suggested as being one of the most ancient biomineralizing metabolisms on the Earth and they represent a fundamental model of intracellular biomineralization. Moreover, the determination of their specific crystallographic signature (e.g. structure and morphology) is essential for palaeoenvironmental and ancient-life studies. Yet, the mechanisms of MTB biomineralization remain poorly understood, although this process has been extensively studied in several cultured MTB strains in the Proteobacteria phylum. Here, we show a comprehensive transmission electron microscopy (TEM) study of magnetic and structural properties down to atomic scales on bullet-shaped magnetites produced by the uncultured strain MYR-1 belonging to the Nitrospirae phylum, a deeply branching phylogenetic MTB group. We observed a multiple-step crystal growth of MYR-1 magnetite: initial isotropic growth forming cubo-octahedral particles (less than approx. 40 nm), subsequent anisotropic growth and a systematic final elongation along [001] direction. During the crystal growth, one major {111} face is well developed and preserved at the larger basal end of the crystal. The basal {111} face appears to be terminated by a tetrahedral-octahedral-mixed iron surface, suggesting dimensional advantages for binding protein(s), which may template the crystallization of magnetite. This study offers new insights for understanding magnetite biomineralization within the Nitrospirae phylum.


Assuntos
Óxido Ferroso-Férrico/metabolismo , Proteobactérias/metabolismo , Proteobactérias/ultraestrutura , Cristalização , Tomografia com Microscopia Eletrônica
6.
Genome Biol Evol ; 6(12): 3238-51, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-25432941

RESUMO

Mitochondria are the energy-producing organelles of our cells and derive from bacterial ancestors that became endosymbionts of microorganisms from a different lineage, together with which they formed eukaryotic cells. For a long time it has remained unclear from which bacteria mitochondria actually evolved, even if these organisms in all likelihood originated from the α lineage of proteobacteria. A recent article (Degli Esposti M, et al. 2014. Evolution of mitochondria reconstructed from the energy metabolism of living bacteria. PLoS One 9:e96566) has presented novel evidence indicating that methylotrophic bacteria could be among the closest living relatives of mitochondrial ancestors. Methylotrophs are ubiquitous bacteria that live on single carbon sources such as methanol and methane; in the latter case they are called methanotrophs. In this review, I examine their possible ancestry to mitochondria within a survey of the common features that can be found in the central and terminal bioenergetic systems of proteobacteria and mitochondria. I also discuss previously overlooked information on methanotrophic bacteria, in particular their intracytoplasmic membranes resembling mitochondrial cristae and their capacity of establishing endosymbiotic relationships with invertebrate animals and archaic plants. This information appears to sustain the new idea that mitochondrial ancestors could be related to extant methanotrophic proteobacteria, a possibility that the genomes of methanotrophic endosymbionts will hopefully clarify.


Assuntos
Metabolismo Energético , Evolução Molecular , Mitocôndrias/genética , Proteobactérias/genética , Metanol/metabolismo , Mitocôndrias/metabolismo , Proteobactérias/metabolismo , Proteobactérias/ultraestrutura , Simbiose
7.
Biofouling ; 29(10): 1243-52, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24093730

RESUMO

Surfaces of carbon steel (CS) exposed to mixed cultures of iron-oxidizing bacteria (FeOB) and dissimilatory iron-reducing bacteria (FeRB) in seawater media under aerobic conditions were rougher than surfaces of CS exposed to pure cultures of either type of microorganism. The roughened surface, demonstrated by profilometry, is an indication of loss of metal from the surface. In the presence of CS, aerobically grown FeOB produced tight, twisted helical stalks encrusted with iron oxides. When CS was exposed anaerobically in the presence of FeRB, some surface oxides were removed. However, when the same FeOB and FeRB were grown together in an aerobic medium, FeOB stalks were less encrusted with iron oxides and appeared less tightly coiled. These observations suggest that iron oxides on the stalks were reduced and solubilized by the FeRB. Roughened surfaces of CS and denuded stalks were replicated with culture combinations of different species of FeOB and FeRB under three experimental conditions. Measurements of electrochemical polarization resistance established different rates of corrosion of CS in aerobic and anaerobic media, but could not differentiate rate differences between sterile controls and inoculated exposures for a given bulk concentration of dissolved oxygen. Similarly, total iron in the electrolyte could not be used to differentiate treatments. The experiments demonstrate the potential for iron cycling (oxidation and reduction) on corroding CS in aerobic seawater media.


Assuntos
Incrustação Biológica , Carbono/química , Ferro/química , Aço/química , Corrosão , Oxirredução , Proteobactérias/metabolismo , Proteobactérias/ultraestrutura , Propriedades de Superfície
8.
J Mol Microbiol Biotechnol ; 23(1-2): 35-47, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23615194

RESUMO

The growth of purple bacteria is supported either by a photosynthetic, light-dependent electron transfer system or by a respiratory electron transfer system. Both systems are localized in both a cytoplasmic and an intracytoplasmic membrane system. Formation of the functional complexes is regulated by the oxygen partial pressure and light intensity. The organization and the multistep process of assembly of their components will be described in this review. Most details about the assembly of the respiratory complexes are known.


Assuntos
Membranas Intracelulares/metabolismo , Fotossíntese , Proteobactérias/metabolismo , Proteobactérias/ultraestrutura , Citocromos/metabolismo , Transporte de Elétrons , Membranas Intracelulares/ultraestrutura , Complexos de Proteínas Captadores de Luz/metabolismo , Consumo de Oxigênio
9.
Anaerobe ; 21: 34-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23583539

RESUMO

Laminaria japonica is a brown alga, which is consumed widely in Korea, Japan, and China. This study investigated the antimicrobial activity of ethanol extracts of L. japonica against oral microbial species to assess the possible application of L. japonica extracts in dental care products. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined in culture medium using a microdilution method. The MICs of ethanol extracts of L. japonica with oral streptococci were 62.5-500 µg/ml and the MBCs were 125-1000 µg/ml. The MICs of Actinomyces naeslundii and Actinomyces odontolyticus were 250 and 62.5 µg/ml, respectively. The MBCs of A. naeslundii and A. odontolyticus were 500 and 250 µg/ml, respectively. The MICs were 250 and 62.5 µg/ml for Fusobacterium nucleatum and Porphyromonas gingivalis, respectively. The killing of Streptococcus mutans and P. gingivalis was dependent on the incubation time. The killing of S. mutans, A. odontolyticus, and P. gingivalis was significantly dependent on the extract concentration. Bacterial treatment with L. japonica extracts changed the cell surface texture of S. mutans, A. odontolyticus, and P. gingivalis. The results of this study suggest that L. japonica extracts may be useful for the development of antimicrobial agents to combat oral pathogens.


Assuntos
Anti-Infecciosos/farmacologia , Cárie Dentária/prevenção & controle , Placa Dentária/tratamento farmacológico , Laminaria/química , Boca/microbiologia , Actinomyces/efeitos dos fármacos , Actinomyces/ultraestrutura , Cariostáticos/química , Cariostáticos/farmacologia , Cárie Dentária/microbiologia , Placa Dentária/microbiologia , Etanol , Fusobacterium nucleatum/efeitos dos fármacos , Fusobacterium nucleatum/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Porphyromonas gingivalis/efeitos dos fármacos , Porphyromonas gingivalis/ultraestrutura , Proteobactérias/efeitos dos fármacos , Proteobactérias/ultraestrutura , Streptococcus/efeitos dos fármacos , Streptococcus/ultraestrutura , Fatores de Tempo
10.
Geobiology ; 11(2): 191-200, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23279435

RESUMO

Microbial survival in mineralizing environments depends on the ability to evade surface encrustation by minerals, which could obstruct nutrient uptake and waste output. Some organisms localize mineral precipitation away from the cell; however, cell surface properties - charge and hydrophobicity - must also play a role in preventing surface mineralization. This is especially relevant for iron-oxidizing bacteria (FeOB), which face an encrustation threat from both biotic and abiotic mineralization. We used electron microscopy and surface characterization techniques to study the surfaces of two stalk-forming neutrophilic FeOB: the marine Zetaproteobacterium Mariprofundus ferrooxydans PV-1 and the recently isolated freshwater Betaproteobacterium Gallionellales strain R-1. Both organisms lack detectable iron on cell surfaces. Live and azide-inhibited M. ferrooxydans PV-1 cells had small negative zeta potentials (-0.34 to -2.73 mV), over the pH range 4.2-9.4; Gallionellales strain R-1 cells exhibited an even smaller zeta potential (-0.10 to -0.19 mV) over pH 4.2-8.8. Cells have hydrophilic surfaces, according to water contact angle measurements and microbial adhesion to hydrocarbons tests. Thermodynamic and extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) calculations showed that as low charge causes low electrostatic attraction, hydrophilic repulsion dominates cell-mineral interactions. Therefore, we conclude that surface properties help enable these FeOB to survive in highly mineralizing environments. Given both mineral-repelling surface properties and the ability to sequester Fe(III) biominerals in an organomineral stalk, these two FeOB have a well-coordinated system to localize both biotic and abiotic mineral distribution.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Ferro/metabolismo , Minerais/metabolismo , Proteobactérias/química , Proteobactérias/metabolismo , Propriedades de Superfície , Microscopia Eletrônica , Oxirredução , Proteobactérias/ultraestrutura
11.
Astrobiology ; 12(4): 327-46, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22519973

RESUMO

The present investigation uncovers various pieces of evidence for the possible biologically induced mineralization in iron mats associated with a pH-neutral spring in the Borra caves, Vishakhapatnam, India. Electron microscopy [scanning electron microscopy (SEM) and transmission electron microscopy (TEM)] demonstrated large numbers of (i) hollow tubes (diameter ∼1 µm) resembling sheaths of the iron-oxidizing bacteria Leptothrix, (ii) thin (diameter <<1 µm) solid fibers of uncertain origin, (iii) nanoscale subspherical to irregularly shaped particles encrusting tubes and fibers, and (iv) aggregates of broken and partially disintegrated sheaths, fibers, and particles embedded in extracellular polymeric substances (EPS) occasionally including microbial cells. X-ray microanalyses by energy dispersive spectroscopy (EDS) revealed that the mat accumulated largely Fe but also smaller amounts of Si and traces of P and Ca. Particles rich in Si and Al (possibly kaolinite) and Ca (carbonate) were also observed. High-resolution TEM/EDS of unstained ultrathin sections suggests that microbial sheaths were highly mineralized by amorphous to cryptocrystalline Fe-rich phases and less frequently by other fine-grained and fibrous authigenic claylike minerals. Total number of microorganisms in the iron mats was 5.8×10(5) cells, g sed(-1) (wet weight). Analysis of the 16S rRNA gene diversity revealed microorganisms assigned to eight different phyla [Proteobacteria (62%), Chloroflexi (8%), Bacteroidetes (7%), Planctomycetes (1%), Actinobacteria (5%), Acidobacteria (6%), Nitrospira (1%), Firmicutes (5%)]. Within the Proteobacteria, Betaproteobacteria was the predominant class, which accounted for 28% of the sequences. Within this class some obvious similarities between the obtained sequences and sequences from other cave systems could be seen, especially sequences affiliated with Leptothrix, Siderooxidans, Crenothrix, Comamonadaceae, Dechloromonas, and many uncultured Betaproteobacteria. Four (4%) of the sequences could not be assigned to phylum level but were affiliating with the candidate division TM7 (2%), candidate division OP11 (1%), and candidate division WWE3 (1%). The results allow us to infer a possible relationship of microbial sheaths, EPS, and the iron precipitates to microbial community diversity in the Borra cave springs. Understanding biogenic iron oxides in caves has important astrobiological applications as it provides a potential tool for the detection of extraterrestrial life.


Assuntos
Cavernas/microbiologia , Ferro/química , Genes de RNAr , Índia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/ultraestrutura , RNA Ribossômico 16S/química
12.
J Bacteriol ; 194(2): 284-91, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22020652

RESUMO

"Candidatus Methylomirabilis oxyfera" is a newly discovered denitrifying methanotroph that is unrelated to previously known methanotrophs. This bacterium is a member of the NC10 phylum and couples methane oxidation to denitrification through a newly discovered intra-aerobic pathway. In the present study, we report the first ultrastructural study of "Ca. Methylomirabilis oxyfera" using scanning electron microscopy, transmission electron microscopy, and electron tomography in combination with different sample preparation methods. We observed that "Ca. Methylomirabilis oxyfera" cells possess an atypical polygonal shape that is distinct from other bacterial shapes described so far. Also, an additional layer was observed as the outermost sheath, which might represent a (glyco)protein surface layer. Further, intracytoplasmic membranes, which are a common feature among proteobacterial methanotrophs, were never observed under the current growth conditions. Our results indicate that "Ca. Methylomirabilis oxyfera" is ultrastructurally distinct from other bacteria by its atypical cell shape and from the classical proteobacterial methanotrophs by its apparent lack of intracytoplasmic membranes.


Assuntos
Proteobactérias/ultraestrutura , Membrana Celular , Forma Celular , Criopreservação , Tomografia com Microscopia Eletrônica , Resinas Epóxi , Técnica de Congelamento e Réplica , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano , Imageamento Tridimensional , Microscopia Eletrônica de Varredura , Microtomia , Inclusão em Plástico , Proteobactérias/classificação , Proteobactérias/metabolismo , Transcriptoma
13.
Environ Microbiol ; 13(11): 2915-29, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21895918

RESUMO

Aerobic neutrophilic Fe-oxidizing bacteria (FeOB) thrive where oxic and iron-rich anoxic waters meet. Here, iron microbial mats are commonly developed by stalk-forming Fe-oxidizers adapted to these iron-rich gradient environments, somehow avoiding iron encrustation. Few details are known about FeOB physiology; thus, the bases of these adaptations, notably the mechanisms of interactions with iron, are poorly understood. We examined two stalked FeOB: the marine Zetaproteobacterium Mariprofundus ferrooxydans and a terrestrial Betaproteobacterium Gallionella-like organism. We used cryo-transmission electron microscopy and cryo-electron tomography to provide unprecedented ultrastructural data on intact cell-mineral systems. Both FeOB localize iron mineral formation at stalk extrusion sites, while avoiding surface and periplasmic mineralization. The M. ferrooxydans cell surface is densely covered in fibrils while the terrestrial FeOB surface is smooth, suggesting a difference in surface chemistry. Only the terrestrial FeOB exhibited a putative chemotaxis apparatus, which may be due to differences in chemotaxis mechanisms. Both FeOB have a single flagellum, which alone is insufficient to account for cell motion during iron oxidation, suggesting that stalk extrusion is a mechanism for motility. Our results delineate the physical framework of iron transformations and characterize possible structural adaptations to the iron-oxidizing lifestyle. This study shows ultrastructural similarities and differences between two distinct FeOB, setting the stage for further (e.g. genomic) comparisons that will help us understand functional differences and evolutionary history.


Assuntos
Adaptação Fisiológica , Ferro/metabolismo , Minerais/metabolismo , Proteobactérias/metabolismo , Quimiotaxia , Microscopia Crioeletrônica , Microscopia Eletrônica de Transmissão , Oxirredução , Proteobactérias/ultraestrutura
14.
Appl Environ Microbiol ; 77(16): 5643-54, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21724892

RESUMO

Sphagnum peatlands are important ecosystems in the methane cycle. Methane-oxidizing bacteria in these ecosystems serve as a methane filter and limit methane emissions. Yet little is known about the diversity and identity of the methanotrophs present in and on Sphagnum mosses of peatlands, and only a few isolates are known. The methanotrophic community in Sphagnum mosses, originating from a Dutch peat bog, was investigated using a pmoA microarray. A high biodiversity of both gamma- and alphaproteobacterial methanotrophs was found. With Sphagnum mosses as the inoculum, alpha- and gammaproteobacterial acidophilic methanotrophs were isolated using established and newly designed media. The 16S rRNA, pmoA, pxmA, and mmoX gene sequences showed that the alphaproteobacterial isolates belonged to the Methylocystis and Methylosinus genera. The Methylosinus species isolated are the first acid-tolerant members of this genus. Of the acidophilic gammaproteobacterial strains isolated, strain M5 was affiliated with the Methylomonas genus, and the other strain, M200, may represent a novel genus, most closely related to the genera Methylosoma and Methylovulum. So far, no acidophilic or acid-tolerant methanotrophs in the Gammaproteobacteria class are known. All strains showed the typical features of either type I or II methanotrophs and are, to the best of our knowledge, the first isolated (acidophilic or acid-tolerant) methanotrophs from Sphagnum mosses.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos , Proteobactérias/isolamento & purificação , Microbiologia do Solo , Sphagnopsida/microbiologia , Ácidos/metabolismo , Técnicas de Tipagem Bacteriana , Sequência de Bases , Meios de Cultura/química , DNA Bacteriano/genética , Ecossistema , Genes Bacterianos , Metano/metabolismo , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Oxirredução , Fosfolipídeos/metabolismo , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/ultraestrutura , RNA Ribossômico 16S/genética
15.
Environ Microbiol ; 11(10): 2758-70, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19678832

RESUMO

Most animals harbour symbiotic microorganisms inside their body, where intimate interactions occur between the partners. The medicinal leech, Hirudo verbana, possesses 17 pairs of excretory bladders that harbour a large number of intracellular and extracellular symbiotic bacteria. In this study, we characterized the bladder symbionts using molecular phylogenetic analyses, transmission electron microscopy (TEM) and fluorescence in situ hybridization (FISH). Restriction fragment length polymorphism (RFLP) and sequence analyses of 16S rRNA gene clone libraries suggested that six bacterial species co-colonize the leech bladders. Phylogenetic analyses revealed that these species belong to the alpha-Proteobacteria (Ochrobactrum symbiont), beta-Proteobacteria (Beta-1 and Beta-2 symbionts), delta-Proteobacteria (Bdellovibrio symbiont) and Bacteroidetes (Niabella and Sphingobacterium symbionts). Species-specific PCR detection and FISH confirmed the localization of the symbiotic bacteria in the bladders. The Ochrobactrum, Beta-1, Bdellovibrio and Sphingobacterium symbionts were consistently detected in 13 leeches from two populations, while infection rate of the other symbionts ranged between 20% and 100% in the two leech populations. Transmission electron microscopy observations of the bladders revealed epithelial cells harbouring a number of intracellular bacilli and an additional type of extracellular, rod-shaped bacteria in the luminal region. Fluorescence in situ hybridization with group-specific oligonucleotide probes revealed the spatial organization of the bacterial species in the bladder: the Ochrobactrum symbiont was located intracellularly inside epithelial cells; the Bacteroidetes were localized close to the epithelium in the lumen of the bladder; and the Bacteroidetes layer was covered with dense beta-proteobacterial cells. These results clearly demonstrate that a simple but organized microbial community exists in the bladder of the medicinal leech.


Assuntos
Bacteroidetes/isolamento & purificação , Sanguessugas/microbiologia , Proteobactérias/isolamento & purificação , Animais , Bacteroidetes/genética , Bacteroidetes/ultraestrutura , Biodiversidade , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Hibridização in Situ Fluorescente , Sanguessugas/ultraestrutura , Microscopia Eletrônica de Transmissão , Filogenia , Polimorfismo de Fragmento de Restrição , Proteobactérias/genética , Proteobactérias/ultraestrutura , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Simbiose
17.
Biochemistry ; 48(17): 3679-98, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19265434

RESUMO

In addition to providing the earliest surface images of a native photosynthetic membrane at submolecular resolution, examination of the intracytoplasmic membrane (ICM) of purple bacteria by atomic force microscopy (AFM) has revealed a wide diversity of species-dependent arrangements of closely packed light-harvesting (LH) antennae, capable of fulfilling the basic requirements for efficient collection, transmission, and trapping of radiant energy. A highly organized architecture was observed with fused preparations of the pseudocrystalline ICM of Blastochloris viridis, consiting of hexagonally packed monomeric reaction center light-harvesting 1 (RC-LH1) core complexes. Among strains which also form a peripheral LH2 antenna, images of ICM patches from Rhodobacter sphaeroides exhibited well-ordered, interconnected networks of dimeric RC-LH1 core complexes intercalated by rows of LH2, coexisting with LH2-only domains. Other peripheral antenna-containing species, notably Rhodospirillum photometricum and Rhodopseudomonas palustris, showed a less regular organization, with mixed regions of LH2 and RC-LH1 cores, intermingled with large, paracrystalline domains. The ATP synthase and cytochrome bc(1) complex were not observed in any of these topographs and are thought to be localized in the adjacent cytoplasmic membrane or in inaccessible ICM regions separated from the flat regions imaged by AFM. The AFM images have served as a basis for atomic-resolution modeling of the ICM vesicle surface, as well as forces driving segregation of photosynthetic complexes into distinct domains. Docking of atomic-resolution molecular structures into AFM topographs of Rsp. photometricum membranes generated precise in situ structural models of the core complex surrounded by LH2 rings and a region of tightly packed LH2 complexes. A similar approach has generated a model of the highly curved LH2-only membranes of Rba. sphaeroides which predicts that sufficient space exists between LH2 complexes for quinones to diffuse freely. Measurement of the intercomplex distances between adjacent LH2 rings of Phaeospirillum molischianum has permitted the first calculation of the separation of bacteriochlorophyll a molecules in the native ICM. A recent AFM analysis of the organization of green plant photosystem II (PSII) in grana thylakoids revealed the protruding oxygen-evolving complex, crowded together in parallel alignment at three distinct levels of stacked membranes over the lumenal surface. The results also confirmed that PSII-LHCII supercomplexes are displaced relative to one another in opposing grana membranes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/ultraestrutura , Tilacoides/química , Tilacoides/ultraestrutura , Microscopia de Força Atômica/métodos , Microscopia de Força Atômica/tendências , Fotoquímica/métodos , Fotoquímica/tendências , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/ultraestrutura , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/ultraestrutura , Proteobactérias/química , Proteobactérias/enzimologia , Proteobactérias/ultraestrutura , Tilacoides/enzimologia
18.
PLoS One ; 4(3): e4866, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19287491

RESUMO

BACKGROUND: There is accumulating evidence that in some marine environments aerobic bacteriochlorophyll a-producing bacteria represent a significant part of the microbial population. The interaction of photosynthesis and carbon metabolism in these interesting bacteria is still largely unknown and requires further investigation in order to estimate their contribution to the marine carbon cycle. METHODOLOGY/PRINCIPAL FINDINGS: Here, we analyzed the structure, composition and regulation of the photosynthetic apparatus in the obligately aerobic marine gammaproteobacterium KT71(T). Photoheterotrophically grown cells were characterized by a poorly developed lamellar intracytoplasmic membrane system, a type 1 light-harvesting antenna complex and a photosynthetic reaction center associated with a tetraheme cytochrome c. The only photosynthetic pigments produced were bacteriochlorophyll a and spirilloxanthin. Under semiaerobic conditions KT71(T) cells expressing a photosynthetic apparatus showed a light-dependent increase of growth yield in the range of 1.3-2.5 fold. The expression level of the photosynthetic apparatus depended largely on the utilized substrate, the intermediary carbon metabolism and oxygen tension. In addition, pigment synthesis was strongly influenced by light, with blue light exerting the most significant effect, implicating that proteins containing a BLUF domain may be involved in regulation of the photosynthetic apparatus. Several phenotypic traits in KT71(T) could be identified that correlated with the assumed redox state of growing cells and thus could be used to monitor the cellular redox state under various incubation conditions. CONCLUSIONS/SIGNIFICANCE: In a hypothetical model that explains the regulation of the photosynthetic apparatus in strain KT71(T) we propose that the expression of photosynthesis genes depends on the cellular redox state and is maximal under conditions that allow a balanced membrane redox state. So far, bacteria capable of an obligately aerobic, photosynthetic metabolism constitute a unique phenotype within the class Gammaproteobacteria, so that it is justified to propose a new genus and species, Congregibacter litoralis gen. nov, sp. nov., represented by the type strain KT71(T) ( = DSM 17192(T) = NBRC 104960(T)).


Assuntos
Fotossíntese , Proteobactérias/fisiologia , Filogenia , Proteobactérias/classificação , Proteobactérias/crescimento & desenvolvimento , Proteobactérias/ultraestrutura
19.
Int. microbiol ; 11(2): 91-100, jun. 2008. ilus, tab
Artigo em En | IBECS | ID: ibc-67270

RESUMO

The composition of 681 aerobic and heterotrophic strains that were isolated on two different media was assessed at four sampling points along a approximately 300 m stretch of a karst water rivulet. Based on partial sequence analysis of 16S rRNA genes, members of 35 genera were identified; however, only a few species dominated as their representatives were repeatedly isolated at different sampling sites. Determination of the phylum affiliation showed that the isolates included members of Bacteriodetes (especially the genus Flavobacterium) and Proteobacteria (mainly Pseudomonas and Stenotrophomonas). MALDI-TOF analysis and/or similarities of partial sequences of flavobacterial strains resulted in the generation of almost complete 16S rRNA gene sequences for 100 isolates, about 60 of which may represent novel phylospecies. The number as well as the intra-phylum distribution of the isolates changed with distance from the discharge site. While phylogenetically restricted at the spring, diversity increased at downstream sampling sites (AU)


No disponible


Assuntos
Poluição da Água/análise , Bactérias/isolamento & purificação , Proteobactérias/ultraestrutura , Flavobacterium/isolamento & purificação , RNA Ribossômico 16S/análise
20.
J Hazard Mater ; 152(3): 1293-300, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17850962

RESUMO

Two bacteria strains Sphingomonas sp. strain ZP1 and Tistrella sp. strain ZP5 were identified as phenanthrene-degrading ones, based on Gram staining, oxydase reaction, biochemical tests, FAME analysis, G+C content and 16S rDNA gene sequence analysis. We isolated these two bacteria strains Sphingomonas sp. ZP1 and Tistrella sp. ZP5 from soil samples contaminated with polycyclic aromatic hydrocarbon (PAH)-containing waste from oil refinery field in Shanghai, China. Strain Sphingomonas sp. ZP1 was able to degrade naphthalene, phenanthrene, toluene, methanol and ethanol, salicylic acid and Tween 80. Moreover, it can remove nearly all the phenanthrene at 0.025% concentration in 8 days. Strain Tistrella sp. ZP5 cannot degrade phenanthrene individually but it can increase the speed of phenanthrene degradation together with ZP1. The growth conditions of strain Sphingomonas sp. ZP1 were optimized. The result also indicated that the degradation rate of phenanthrene ranged from 250 to 1000 ppm with strain ZP1 remained nearly the same, i.e., a high concentration of phenanthrene did not inhibit both the growth of microbial strains and the phenanthrene-degradation ability. Besides, the effect of non-ionic surfactants such as Brij 30, Triton X-100 and Tween 80 on the phenanthrene degradation was determined. Such two strains may be useful for bioremediation applications.


Assuntos
Fenantrenos/metabolismo , Proteobactérias/isolamento & purificação , Poluentes do Solo/metabolismo , Sphingomonas/isolamento & purificação , Sequência de Bases , Primers do DNA , Microscopia Eletrônica de Transmissão , Proteobactérias/metabolismo , Proteobactérias/ultraestrutura , Sphingomonas/metabolismo , Sphingomonas/ultraestrutura , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...