Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.467
Filtrar
1.
FASEB J ; 38(7): e23609, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593345

RESUMO

PTPRD, a well-established tumor suppressor gene, encodes the protein tyrosine phosphatase-type D. This protein consists of three immunoglobulin-like (Ig) domains, four to eight fibronectin type 3 (FN) domains, a single transmembrane segment, and two cytoplasmic tandem tyrosine phosphatase domains. PTPRD is known to harbor various cancer-associated point mutations. While it is assumed that PTPRD regulates cellular functions as a tumor suppressor through the tyrosine phosphatase activity in the intracellular region, the function of its extracellular domain (ECD) in cancer is not well understood. In this study, we systematically examined the impact of 92 cancer-associated point mutations within the ECD. We found that 69.6% (64 out of 92) of these mutations suppressed total protein expression and/or plasma membrane localization. Notably, almost all mutations (20 out of 21) within the region between the last FN domain and transmembrane segment affected protein expression and/or localization, highlighting the importance of this region for protein stability. We further found that some mutations within the Ig domains adjacent to the glycosaminoglycan-binding pocket enhanced PTPRD's binding ability to heparan sulfate proteoglycans (HSPGs). This interaction is proposed to suppress phosphatase activity. Our findings therefore suggest that HSPG-mediated attenuation of phosphatase activity may be involved in tumorigenic processes through PTPRD dysregulation.


Assuntos
Proteoglicanas de Heparan Sulfato , Neoplasias , Humanos , Proteoglicanas de Heparan Sulfato/metabolismo , Mutação Puntual , Proteínas da Matriz Extracelular/genética , Imunoglobulinas , Estabilidade Proteica , Tirosina/genética , Monoéster Fosfórico Hidrolases/genética , Heparitina Sulfato , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo
2.
Matrix Biol ; 128: 39-64, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387749

RESUMO

Collagen type XVIII (COL18) is an abundant heparan sulfate proteoglycan in vascular basement membranes. Here, we asked (i) if the loss of COL18 would result in blood-brain barrier (BBB) breakdown, pathological alterations of small arteries and capillaries and neuroinflammation as found in cerebral small vessel disease (CSVD) and (ii) if such changes may be associated with remodeling of synapses and neural extracellular matrix (ECM). We found that 5-month-old Col18a1-/- mice had elevated BBB permeability for mouse IgG in the deep gray matter, and intravascular erythrocyte accumulations were observed brain-wide in capillaries and arterioles. BBB permeability increased with age and affected cortical regions and the hippocampus in 12-month-old Col18a1-/- mice. None of the Col18a1-/- mice displayed hallmarks of advanced CSVD, such as hemorrhages, and did not show perivascular space enlargement. Col18a1 deficiency-induced BBB leakage was accompanied by activation of microglia and astrocytes, a loss of aggrecan in the ECM of perineuronal nets associated with fast-spiking inhibitory interneurons and accumulation of the perisynaptic ECM proteoglycan brevican and the microglial complement protein C1q at excitatory synapses. As the pathway underlying these regulations, we found increased signaling through the TGF-ß1/Smad3/TIMP-3 cascade. We verified the pivotal role of COL18 for small vessel wall structure in CSVD by demonstrating the protein's involvement in vascular remodeling in autopsy brains from patients with cerebral hypertensive arteriopathy. Our study highlights an association between the alterations of perivascular ECM, extracellular proteolysis, and perineuronal/perisynaptic ECM, as a possible substrate of synaptic and cognitive alterations in CSVD.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Colágeno Tipo XVIII , Doenças Neuroinflamatórias , Animais , Humanos , Lactente , Camundongos , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/metabolismo , Colágeno Tipo XVIII/genética , Colágeno Tipo XVIII/metabolismo , Endostatinas , Matriz Extracelular/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Camundongos Knockout
3.
Cell Rep ; 43(1): 113668, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38198277

RESUMO

Perlecan (HSPG2), a heparan sulfate proteoglycan similar to agrin, is key for extracellular matrix (ECM) maturation and stabilization. Although crucial for cardiac development, its role remains elusive. We show that perlecan expression increases as cardiomyocytes mature in vivo and during human pluripotent stem cell differentiation to cardiomyocytes (hPSC-CMs). Perlecan-haploinsuffient hPSCs (HSPG2+/-) differentiate efficiently, but late-stage CMs have structural, contractile, metabolic, and ECM gene dysregulation. In keeping with this, late-stage HSPG2+/- hPSC-CMs have immature features, including reduced ⍺-actinin expression and increased glycolytic metabolism and proliferation. Moreover, perlecan-haploinsuffient engineered heart tissues have reduced tissue thickness and force generation. Conversely, hPSC-CMs grown on a perlecan-peptide substrate are enlarged and display increased nucleation, typical of hypertrophic growth. Together, perlecan appears to play the opposite role of agrin, promoting cellular maturation rather than hyperplasia and proliferation. Perlecan signaling is likely mediated via its binding to the dystroglycan complex. Targeting perlecan-dependent signaling may help reverse the phenotypic switch common to heart failure.


Assuntos
Agrina , Proteoglicanas de Heparan Sulfato , Humanos , Proteoglicanas de Heparan Sulfato/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Agrina/metabolismo , Miócitos Cardíacos/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo
4.
J Biol Chem ; 300(2): 105660, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242322

RESUMO

Persistent high-risk HPV infection is closely associated with cervical cancer development, and there is no drug targeting HPV on the market at present, so it is particularly important to understand the interaction mechanism between HPV and the host which may provide the novel strategies for treating HPV diseases. HPV can hijack cell surface heparan sulfate proteoglycans (HSPGs) as primary receptors. However, the secondary entry receptors for HPV remain elusive. We identify myosin-9 (NMHC-IIA) as a host factor that interacts with HPV L1 protein and mediates HPV internalization. Efficient HPV entry required myosin-9 redistribution to the cell surface regulated by HPV-hijacked MEK-MLCK signaling. Myosin-9 maldistribution by ML-7 or ML-9 significantly inhibited HPV pseudoviruses infection in vitro and in vivo. Meanwhile, N-glycans, especially the galactose chains, may act as the decoy receptors for HPV, which can block the interaction of HPV to myosin-9 and influence the way of HPV infection. Taken together, we identify myosin-9 as a novel functional entry receptor for high-risk HPV both in vitro and in vivo, and unravel the new roles of myosin-9 and N-glycans in HPV entry, which provides the possibilities for host targets of antiviral drugs.


Assuntos
Papillomavirus Humano , Infecções por Papillomavirus , Internalização do Vírus , Humanos , Proteínas do Citoesqueleto , Proteoglicanas de Heparan Sulfato/metabolismo , Miosinas , Linhagem Celular , Animais , Cricetinae , Cricetulus , Polissacarídeos/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(3): e2316733121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38215181

RESUMO

The epithelial-mesenchymal transition (EMT) program is crucial for transforming carcinoma cells into a partially mesenchymal state, enhancing their chemoresistance, migration, and metastasis. This shift in cell state is tightly regulated by cellular mechanisms that are not yet fully characterized. One intriguing EMT aspect is the rewiring of the proteoglycan landscape, particularly the induction of heparan sulfate proteoglycan (HSPG) biosynthesis. This proteoglycan functions as a co-receptor that accelerates cancer-associated signaling pathways through its negatively-charged residues. However, the precise mechanisms through which EMT governs HSPG biosynthesis and its role in cancer cell plasticity remain elusive. Here, we identified exostosin glycosyltransferase 1 (EXT1), a central enzyme in HSPG biosynthesis, to be selectively upregulated in aggressive tumor subtypes and cancer cell lines, and to function as a key player in breast cancer aggressiveness. Notably, ectopic expression of EXT1 in epithelial cells is sufficient to induce HSPG levels and the expression of known mesenchymal markers, subsequently enhancing EMT features, including cell migration, invasion, and tumor formation. Additionally, EXT1 loss in MDA-MB-231 cells inhibits their aggressiveness-associated traits such as migration, chemoresistance, tumor formation, and metastasis. Our findings reveal that EXT1, through its role in HSPG biosynthesis, governs signal transducer and activator of transcription 3 (STAT3) signaling, a known regulator of cancer cell aggressiveness. Collectively, we present the EXT1/HSPG/STAT3 axis as a central regulator of cancer cell plasticity that directly links proteoglycan synthesis to oncogenic signaling pathways.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Fator de Transcrição STAT3/metabolismo , Linhagem Celular , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Movimento Celular
6.
J Biol Chem ; 300(1): 105544, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072044

RESUMO

Heparan sulfate proteoglycans (HSPGs) are composed of a core protein and glycosaminoglycan (GAG) chains and serve as coreceptors for many growth factors and morphogens. To understand the molecular mechanisms by which HSPGs regulate morphogen gradient formation and signaling, it is important to determine the relative contributions of the carbohydrate and protein moieties to the proteoglycan function. To address this question, we generated ΔGAG alleles for dally and dally-like protein (dlp), two Drosophila HSPGs of the glypican family, in which all GAG-attachment serine residues are substituted to alanine residues using CRISPR/Cas9 mutagenesis. In these alleles, the glypican core proteins are expressed from the endogenous loci with no GAG modification. Analyses of the dallyΔGAG allele defined Dally functions that do not require heparan sulfate (HS) chains and that need both core protein and HS chains. We found a new, dallyΔGAG-specific phenotype, the formation of a posterior ectopic vein, which we have never seen in the null mutants. Unlike dallyΔGAG, dlpΔGAG mutants do not show most of the dlp null mutant phenotypes, suggesting that HS chains are dispensable for these dlp functions. As an exception, HS is essentially required for Dlp's activity at the neuromuscular junction. Thus, Drosophila glypicans show strikingly different levels of HS dependency. The ΔGAG mutant alleles of the glypicans serve as new molecular genetic toolsets highly useful to address important biological questions, such as molecular mechanisms of morphogen gradient formation.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Glipicanas , Heparitina Sulfato , Animais , Proteínas de Drosophila/metabolismo , Glipicanas/genética , Glipicanas/química , Glipicanas/metabolismo , Proteoglicanas de Heparan Sulfato/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Heparitina Sulfato/genética , Heparitina Sulfato/metabolismo , Glicoproteínas de Membrana/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
7.
Alzheimers Dement ; 20(2): 819-836, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37791598

RESUMO

INTRODUCTION: We discovered that the APOE3 Christchurch (APOE3Ch) variant may provide resistance to Alzheimer's disease (AD). This resistance may be due to reduced pathological interactions between ApoE3Ch and heparan sulfate proteoglycans (HSPGs). METHODS: We developed and characterized the binding, structure, and preclinical efficacy of novel antibodies targeting human ApoE-HSPG interactions. RESULTS: We found that one of these antibodies, called 7C11, preferentially bound ApoE4, a major risk factor for sporadic AD, and disrupts heparin-ApoE4 interactions. We also determined the crystal structure of a Fab fragment of 7C11 and used computer modeling to predict how it would bind to ApoE. When we tested 7C11 in mouse models, we found that it reduced recombinant ApoE-induced tau pathology in the retina of MAPT*P301S mice and curbed pTau S396 phosphorylation in brains of systemically treated APOE4 knock-in mice. Targeting ApoE-HSPG interactions using 7C11 antibody may be a promising approach to developing new therapies for AD.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Camundongos , Humanos , Animais , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Fosforilação , Apolipoproteínas E/metabolismo , Doença de Alzheimer/patologia , Fatores Imunológicos , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo
8.
Protein Sci ; 33(1): e4843, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37996967

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a global health crisis with significant clinical morbidity and mortality. While angiotensin-converting enzyme 2 (ACE2) is the primary receptor for viral entry, other cell surface and extracellular matrix proteins may also bind to the viral receptor binding domain (RBD) within the SARS-CoV-2 spike protein. Recent studies have implicated heparan sulfate proteoglycans, specifically perlecan LG3, in facilitating SARS-CoV-2 binding to ACE2. However, the role of perlecan LG3 in SARS-CoV-2 pathophysiology is not well understood. In this study, we investigated the binding interactions between the SARS-CoV-2 spike protein RBD and perlecan LG3 through molecular modeling simulations and surface plasmon resonance (SPR) experiments. Our results indicate stable binding between LG3 and SARS-CoV-2 spike protein RBD, which may potentially enhance RBD-ACE2 interactions. These findings shed light on the role of perlecan LG3 in SARS-CoV-2 infection and provide insight into SARS-CoV-2 pathophysiology and potential therapeutic strategy for COVID-19.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/química , SARS-CoV-2/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Ligação Proteica
9.
J Control Release ; 365: 43-59, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37935257

RESUMO

Imprecise targeting of chemotherapeutic drugs often leads to severe toxicity during breast cancer therapy. To address this issue, we have devised a strategy to load dacarbazine (DC) into fucose-based carbon quantum dots (CQDs), which are subsequently coated with exosomes (Ex-DC@CQDs) derived from breast cancer cells. Nanoparticle tracking analysis and western blotting revealed that Ex-DC@CQDs retained the structural and functional characteristics of exosomes. We found that exosomes facilitated the transport of DC@CQDs to cancer cells via heparan sulfate proteoglycan (HSPG) receptors, followed by an augmented depolarization of the mitochondrial membrane potential, ROS generation, and induction of apoptosis leading to cell death. In vivo imaging and pharmacokinetic studies demonstrated enhanced antitumor targeting and efficacy compared to free DC which we attribute to an improved pharmacokinetic profile, a greater tumor accumulation via exosome-mediated- HSPG receptor-driven cell uptake, and sustained release of the Ex-DC@CQDs. Our findings may pave the way for the further development of biologically sourced nanocarriers for breast cancer targeting.


Assuntos
Neoplasias da Mama , Exossomos , Pontos Quânticos , Humanos , Feminino , Pontos Quânticos/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Exossomos/metabolismo , Dacarbazina , Proteoglicanas de Heparan Sulfato/metabolismo , Carbono/química
10.
Molecules ; 28(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067582

RESUMO

Syndecan-4 (SDC4) consists of transmembrane heparan sulfate proteoglycan (HSPG) belonging to the syndecan family. It is present in most cell types of Mammalia. Its structure contains a heparan-sulfate-modified extracellular domain, a single transmembrane domain, and a short C-terminal cytoplasmic domain. Regarding the overall cellular function of SDC4, other cells or ligands can bind to its ecto-domain. In addition, 4,5-bisphosphate phosphatidylinositol (PIP2) or protein kinase Cα can bind to its cyto-domain to activate downstream signaling pathways. To understand the signal transduction mechanism of syndecan, it is important to know the interactions between their actual structure and function in vivo. Therefore, it is important to identify the structure of SDC4 to understand the ligand binding behavior of SDC4. In this study, expression and purification were performed to reveal structures of the short ecto-domain, the transmembrane domain, and the cytoplasmic domain of Syd4-eTC (SDC4). Solution-state NMR spectroscopy and solid-state NMR spectroscopy were used to study the structure of Syd4-eTC in membrane environments and to demonstrate the interaction between Syd4-eTC and PIP2.


Assuntos
Transdução de Sinais , Sindecana-4 , Sindecana-4/metabolismo , Citoplasma/metabolismo , Transdução de Sinais/fisiologia , Proteoglicanas de Heparan Sulfato/metabolismo , Espectroscopia de Ressonância Magnética
11.
Immun Inflamm Dis ; 11(10): e1034, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37904703

RESUMO

Heat stroke is a life-threatening disease with high mortality and complications. Endothelial glycocalyx (EGCX) is essential for maintaining endothelial cell structure and function as well as preventing the adhesion of inflammatory cells. Potential relationship that underlies the imbalance in inflammation and coagulation remains elusive. Moreover, the role of EGCX in heat stroke-induced organ injury remained unclear. Therefore, the current study aimed to illustrate if EGCX aggravates apoptosis, inflammation, and oxidative damage in human pulmonary microvascular endothelial cells (HPMEC). Heat stress and lipopolysaccharide (LPS) were employed to construct in vitro models to study the changes of glycocalyx structure and function, as well as levels of heparansulfate proteoglycan (HSPG), syndecan-1 (SDC-1), heparansulfate (HS), tumor necrosis factor-α (TNF-α), interleukin (IL)-6, Von Willebrand factor (vWF), endothelin-1 (ET-1), occludin, E-selectin, vascular cell adhesion molecule-1 (VCAM-1), and reactive oxygen species (ROS). Here, we showed that heat stress and LPS devastated EGCX structure, activated EGCX degradation, and triggered oxidative damage and apoptosis in HPMEC. Stimulation of heat stress and LPS decreased expression of HSPG, increased levels of SDC-1 and HS in culture supernatant, promoted the production and release of proinflammation cytokines (TNF-α and IL-6,) and coagulative factors (vWF and ET-1) in HPMEC. Furthermore, Expressions of E-selection, VCAM-1, and ROS were upregulated, while that of occludin was downregulated. These changes could be deteriorated by heparanase, whereas they meliorated by unfractionated heparin. This study indicated that EGCX may contribute to apoptosis and heat stroke-induced coagulopathy, and these effects may have been due to the decrease in the shedding of EGCX.


Assuntos
Células Endoteliais , Golpe de Calor , Humanos , Células Endoteliais/metabolismo , Glicocálix/metabolismo , Lipopolissacarídeos/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Heparina/metabolismo , Heparina/farmacologia , Fator de von Willebrand/metabolismo , Fator de von Willebrand/farmacologia , Proteoglicanas de Heparan Sulfato/metabolismo , Proteoglicanas de Heparan Sulfato/farmacologia , Ocludina/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão de Célula Vascular/farmacologia , Inflamação/metabolismo , Interleucina-6/farmacologia , Golpe de Calor/metabolismo , Resposta ao Choque Térmico
12.
J Control Release ; 362: 184-196, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37648081

RESUMO

Growth factors are key molecules involved in angiogenesis, a process critical for tissue repair and regeneration. Despite the potential of growth factor delivery to stimulate angiogenesis, limited clinical success has been achieved with this approach. Growth factors interact with the extracellular matrix (ECM), and particularly heparan sulphate (HS), to bind and potentiate their signalling. Here we show that engineered short forms of perlecan, the major HS proteoglycan of the vascular ECM, bind and signal angiogenic growth factors, including fibroblast growth factor 2 and vascular endothelial growth factor-A. We also show that engineered short forms of perlecan delivered in porous chitosan biomaterial scaffolds promote angiogenesis in a rat full thickness dermal wound model, with the fusion of perlecan domains I and V leading to superior vascularisation compared to native endothelial perlecan or chitosan scaffolds alone. Together, this study demonstrates the potential of engineered short forms of perlecan delivered in chitosan scaffolds as next generation angiogenic therapies which exert biological activity via the potentiation of growth factors.


Assuntos
Quitosana , Fator A de Crescimento do Endotélio Vascular , Ratos , Animais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Proteínas da Matriz Extracelular
13.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511353

RESUMO

Retention of circulating lipoproteins by their interaction with extracellular matrix molecules has been suggested as an underlying mechanism for atherosclerosis. We investigated the role of glypican-4 (GPC4), a heparan sulfate (HS) proteoglycan, in the development of endothelial dysfunction and plaque progression; Expression of GPC4 and HS was investigated in human umbilical vein/artery endothelial cells (HUVECs/HUAECs) using flow cytometry, qPCR, and immunofluorescent staining. Leukocyte adhesion was determined in HUVECs in bifurcation chamber slides under dynamic flow. The association between the degree of inflammation and GPC4, HS, and syndecan-4 expressions was analyzed in human carotid plaques; GPC4 was expressed in HUVECs/HUAECs. In HUVECs, GPC4 protein expression was higher in laminar than in non-uniform shear stress regions after a 1-day or 10-day flow (p < 0.01 each). The HS expression was higher under laminar flow after a 1 day (p < 0.001). Monocytic THP-1 cell adhesion to HUVECs was facilitated by GPC4 knock-down (p < 0.001) without affecting adhesion molecule expression. GPC4 and HS expression was lower in more-inflamed than in less-inflamed plaque shoulders (p < 0.05, each), especially in vulnerable plaque sections; Reduced expression of GPC4 was associated with atherogenic conditions, suggesting the involvement of GPC4 in both early and advanced stages of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Aterosclerose/genética , Aterosclerose/metabolismo , Células Cultivadas , Relevância Clínica , Glipicanas/genética , Glipicanas/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo
14.
Nature ; 618(7966): 862-870, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37286607

RESUMO

α/ßKlotho coreceptors simultaneously engage fibroblast growth factor (FGF) hormones (FGF19, FGF21 and FGF23)1,2 and their cognate cell-surface FGF receptors (FGFR1-4) thereby stabilizing the endocrine FGF-FGFR complex3-6. However, these hormones still require heparan sulfate (HS) proteoglycan as an additional coreceptor to induce FGFR dimerization/activation and hence elicit their essential metabolic activities6. To reveal the molecular mechanism underpinning the coreceptor role of HS, we solved cryo-electron microscopy structures of three distinct 1:2:1:1 FGF23-FGFR-αKlotho-HS quaternary complexes featuring the 'c' splice isoforms of FGFR1 (FGFR1c), FGFR3 (FGFR3c) or FGFR4 as the receptor component. These structures, supported by cell-based receptor complementation and heterodimerization experiments, reveal that a single HS chain enables FGF23 and its primary FGFR within a 1:1:1 FGF23-FGFR-αKlotho ternary complex to jointly recruit a lone secondary FGFR molecule leading to asymmetric receptor dimerization and activation. However, αKlotho does not directly participate in recruiting the secondary receptor/dimerization. We also show that the asymmetric mode of receptor dimerization is applicable to paracrine FGFs that signal solely in an HS-dependent fashion. Our structural and biochemical data overturn the current symmetric FGFR dimerization paradigm and provide blueprints for rational discovery of modulators of FGF signalling2 as therapeutics for human metabolic diseases and cancer.


Assuntos
Fator de Crescimento de Fibroblastos 23 , Proteoglicanas de Heparan Sulfato , Hormônios , Receptores de Fatores de Crescimento de Fibroblastos , Transdução de Sinais , Humanos , Microscopia Crioeletrônica , Fator de Crescimento de Fibroblastos 23/química , Fator de Crescimento de Fibroblastos 23/metabolismo , Fator de Crescimento de Fibroblastos 23/ultraestrutura , Proteoglicanas de Heparan Sulfato/química , Proteoglicanas de Heparan Sulfato/metabolismo , Hormônios/química , Hormônios/metabolismo , Proteínas Klotho/química , Proteínas Klotho/metabolismo , Proteínas Klotho/ultraestrutura , Multimerização Proteica , Receptores de Fatores de Crescimento de Fibroblastos/química , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura
15.
Biochem Soc Trans ; 51(3): 1083-1096, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37334846

RESUMO

Syndecans are transmembrane heparan sulfate proteoglycans present on most mammalian cell surfaces. They have a long evolutionary history, a single syndecan gene being expressed in bilaterian invertebrates. Syndecans have attracted interest because of their potential roles in development and disease, including vascular diseases, inflammation and various cancers. Recent structural data is providing important insights into their functions, which are complex, involving both intrinsic signaling through cytoplasmic binding partners and co-operative mechanisms where syndecans form a signaling nexus with other receptors such as integrins and tyrosine kinase growth factor receptors. While the cytoplasmic domain of syndecan-4 has a well-defined dimeric structure, the syndecan ectodomains are intrinsically disordered, which is linked to a capacity to interact with multiple partners. However, it remains to fully establish the impact of glycanation and partner proteins on syndecan core protein conformations. Genetic models indicate that a conserved property of syndecans links the cytoskeleton to calcium channels of the transient receptor potential class, compatible with roles as mechanosensors. In turn, syndecans influence actin cytoskeleton organization to impact motility, adhesion and the extracellular matrix environment. Syndecan clustering with other cell surface receptors into signaling microdomains has relevance to tissue differentiation in development, for example in stem cells, but also in disease where syndecan expression can be markedly up-regulated. Since syndecans have potential as diagnostic and prognostic markers as well as possible targets in some forms of cancer, it remains important to unravel structure/function relationships in the four mammalian syndecans.


Assuntos
Proteoglicanas de Heparan Sulfato , Transdução de Sinais , Animais , Sindecanas/química , Sindecanas/metabolismo , Membrana Celular/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Receptores de Superfície Celular/metabolismo , Matriz Extracelular/metabolismo , Mamíferos/metabolismo
16.
Elife ; 122023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37368474

RESUMO

Heparan sulfate proteoglycans (HSPGs) form essential components of the extracellular matrix (ECM) and basement membrane (BM) and have both structural and signaling roles. Perlecan is a secreted ECM-localized HSPG that contributes to tissue integrity and cell-cell communication. Although a core component of the ECM, the role of Perlecan in neuronal structure and function is less understood. Here, we identify a role for Drosophila Perlecan in the maintenance of larval motoneuron axonal and synaptic stability. Loss of Perlecan causes alterations in the axonal cytoskeleton, followed by axonal breakage and synaptic retraction of neuromuscular junctions. These phenotypes are not prevented by blocking Wallerian degeneration and are independent of Perlecan's role in Wingless signaling. Expression of Perlecan solely in motoneurons cannot rescue synaptic retraction phenotypes. Similarly, removing Perlecan specifically from neurons, glia, or muscle does not cause synaptic retraction, indicating the protein is secreted from multiple cell types and functions non-cell autonomously. Within the peripheral nervous system, Perlecan predominantly localizes to the neural lamella, a specialized ECM surrounding nerve bundles. Indeed, the neural lamella is disrupted in the absence of Perlecan, with axons occasionally exiting their usual boundary in the nerve bundle. In addition, entire nerve bundles degenerate in a temporally coordinated manner across individual hemi-segments throughout larval development. These observations indicate disruption of neural lamella ECM function triggers axonal destabilization and synaptic retraction of motoneurons, revealing a role for Perlecan in axonal and synaptic integrity during nervous system development.


Assuntos
Proteínas da Matriz Extracelular , Proteoglicanas de Heparan Sulfato , Animais , Axônios/metabolismo , Drosophila/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo
17.
Bioorg Med Chem ; 90: 117335, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37257254

RESUMO

Heparanase-1 (HPSE) is a promising yet challenging therapeutic target. It is the only known enzyme that is responsible for cleavage of heparan sulfate (HS) side chains from heparan sulfate proteoglycans (HSPGs), and is the key enzyme involved in the remodeling and degradation of the extracellular matrix (ECM). Overexpression of HPSE is found in various types of diseases, including cancers, inflammations, diabetes, and viral infections. Inhibiting HPSE can restore ECM functions and integrity, making the development of HPSE inhibitors a highly sought-after topic. So far, all HPSE inhibitors that have entered clinical trials belong to the category of HS mimetics, and no small-molecule or drug-like HPSE inhibitors have made similar progress. None of the HS mimetics have been approved as drugs, with some clinical trials discontinued due to poor bioavailability, side effects, and unfavorable pharmacokinetics characteristics. Small-molecule HPSE inhibitors are, therefore, particularly appealing due to their drug-like characteristics. Advances in the chemical spaces and drug design technologies, including the increasing use of in vitro and in silico screening methods, have provided new opportunities in drug discovery. This article aims to review the discovery and development of small-molecule HPSE inhibitors via screening strategies to shed light on the future endeavors in the development of novel HPSE inhibitors.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Proteoglicanas de Heparan Sulfato/metabolismo , Proteoglicanas de Heparan Sulfato/uso terapêutico , Heparitina Sulfato/metabolismo , Heparitina Sulfato/uso terapêutico , Glucuronidase/metabolismo , Glucuronidase/uso terapêutico
18.
Am J Physiol Cell Physiol ; 324(4): C893-C909, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878848

RESUMO

Alzheimer's disease (AD) is the most common form of dementia. Currently, there is no effective treatment for AD, as its etiology remains poorly understood. Mounting evidence suggests that the accumulation and aggregation of amyloid-ß peptides (Aß), which constitute amyloid plaques in the brain, is critical for initiating and accelerating AD pathogenesis. Considerable efforts have been dedicated to shedding light on the molecular basis and fundamental origins of the impaired Aß metabolism in AD. Heparan sulfate (HS), a linear polysaccharide of the glycosaminoglycan family, co-deposits with Aß in plaques in the AD brain, directly binds and accelerates Aß aggregation, and mediates Aß internalization and cytotoxicity. Mouse model studies demonstrate that HS regulates Aß clearance and neuroinflammation in vivo. Previous reviews have extensively explored these discoveries. Here, this review focuses on the recent advancements in understanding abnormal HS expression in the AD brain, the structural aspects of HS-Aß interaction, and the molecules involved in modulating Aß metabolism through HS interaction. Furthermore, this review presents a perspective on the potential effects of abnormal HS expression on Aß metabolism and AD pathogenesis. In addition, the review highlights the importance of conducting further research to differentiate the spatiotemporal components of HS structure and function in the brain and AD pathogenesis.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Heparitina Sulfato/metabolismo , Encéfalo/metabolismo
19.
Matrix Biol ; 118: 92-109, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907428

RESUMO

The tumor stroma of most solid malignancies is characterized by a pathological accumulation of pro-angiogenic and pro-tumorigenic hyaluronan driving tumorigenesis and metastatic potential. Of all three hyaluronan synthase isoforms, HAS2 is the primary enzyme that promotes the build-up of tumorigenic HA in breast cancer. Previously, we discovered that endorepellin, the angiostatic C-terminal fragment of perlecan, evokes a catabolic mechanism targeting endothelial HAS2 and hyaluronan via autophagic induction. To explore the translational implications of endorepellin in breast cancer, we created a double transgenic, inducible Tie2CreERT2;endorepellin(ER)Ki mouse line that expresses recombinant endorepellin specifically from the endothelium. We investigated the therapeutic effects of recombinant endorepellin overexpression in an orthotopic, syngeneic breast cancer allograft mouse model. First, adenoviral delivery of Cre evoking intratumor expression of endorepellin in ERKi mice suppressed breast cancer growth, peritumor hyaluronan and angiogenesis. Moreover, tamoxifen-induced expression of recombinant endorepellin specifically from the endothelium in Tie2CreERT2;ERKi mice markedly suppressed breast cancer allograft growth, hyaluronan deposition in the tumor proper and perivascular tissues, and tumor angiogenesis. These results provide insight into the tumor suppressing activity of endorepellin at the molecular level and implicate endorepellin as a promising cancer protein therapy that targets hyaluronan in the tumor microenvironment.


Assuntos
Ácido Hialurônico , Neoplasias , Camundongos , Animais , Neovascularização Patológica/genética , Autofagia , Hialuronan Sintases/genética , Microambiente Tumoral , Fragmentos de Peptídeos/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo
20.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982528

RESUMO

Heparan sulfate proteoglycans (HSPGs) possess various functions driving malignancy of tumors. However, their impact on tumor cell sensitivity to cytotoxic treatment is far less understood. Aiming to investigate this, we depleted HSPGs by downregulating Exostosin 1 (EXT1), a key enzyme in HS formation, or upregulating heparanase in human MV3 human melanoma cells, and investigated their response to cytotoxic drugs. Cytotoxicity of trametinib, doxorubicin, and mitoxantrone was detected by MTT assay. Insights into intracellular signaling was provided by kinome protein profiler array, and selected kinases were inhibited to investigate their impact on cell sensitization and migratory dynamics. EXT1 knockdown (EXT1kd) in MV3 cells affected the activity of doxorubicin and mitoxantrone, significantly increasing EC50 values two- or fourfold, respectively. Resistance formation was scarcely related to HSPG deficiency, suggested by enzymatic cleavage of HSPG in control cells. Notably, EXT1kd induced an upregulation of EGFR signaling via JNK and MEK/ERK, and hence blocking these kinases returned resistance to a sensitive level. JNK appeared as a key signal component, also inducing higher migratory activity of EXT1kd cells. Furthermore, EXT1kd upregulated thrombotic properties of MV3 cells, indicated by tissue factor and PAR-1 expression, functionally reflected by a stronger activation of platelet aggregation. EXT1 was confirmed to act as a tumor suppressor, shown here for the first time to affect chemosensitivity of melanoma cells.


Assuntos
Antineoplásicos , Melanoma , Humanos , Doxorrubicina , Resistencia a Medicamentos Antineoplásicos/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno , Mitoxantrona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...