Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
Rev Environ Health ; 38(2): 295-311, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35438851

RESUMO

The gastrointestinal (GI) system has rapidly proliferating and differentiating cells, which make it one of the most radiosensitive organs in the body. Exposure to high dose of ionising radiation (IR) during radiotherapy may generate a variety of reactive oxygen species (ROS) and reactive nitrogen species (RNS) including radicals, cause some side effects such as nausea, vomiting, diarrhoea, pain, ulceration, mal-absorption etc. Irradiation disrupts GI system by damaging proliferating stem cells of the crypts that alters the histology and physiology of intestine. Radiation damage reflects the qualitative and quantitative changes in intestinal epithelial stem cells like enterocytes, enteroendocrine cells, goblet cells and Paneth cells. The damaging effects of radiation to bio-molecules and cellular structures can alter gene signalling cascades and grounds genomic instability, protein modifications, cell senescence and cell death. The signalling pathways of GI tract includes Wnt, BMP, Hedgehog, PTEN/PI3K and Notch plays an important role in self-renewal of intestinal stem cells (ISCs) and maintaining the balance between self-renewal and differentiation of ISCs. Various radiation countermeasures including radioprotectors and mitigators are under development phase globally but still not approved for clinical applications during any radiation emergencies. In view of above, present review highlights cellular and molecular interruptions of GI system due to acute and chronic GI radiation injury, role of radioprotectors in signalling cascade modulations in GI epithelium and involvement of ISC markers in radioprotection.


Assuntos
Lesões por Radiação , Protetores contra Radiação , Humanos , Protetores contra Radiação/farmacologia , Protetores contra Radiação/metabolismo , Intestinos/patologia , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Células-Tronco/metabolismo , Transdução de Sinais
2.
J Nanobiotechnology ; 19(1): 377, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34798888

RESUMO

BACKGROUND: As we know, radiotherapy plays an irreplaceable role in the clinical management on solid tumors. However, due to the non-specific killing effects of ionizing radiation, normal tissues damages would be almost simultaneous inevitably. Therefore, ideal radioprotective agents with high efficiency and low toxicity are always desirable. In this work, atomically precise Ag14 clusterzymes were developed, and their applications in radioprotection were studied in vitro and in vivo for the first time. METHODS: The ultra-small glutathione supported Ag14 clusterzymes were synthesized by convenient sodium borohydride (NaBH4) reduction of thiolate-Ag (I) complexes and then they were purified by desalting columns. The enzyme-like activity and antioxidant capacity of Ag14 clusterzymes have been tested by various commercial kits, salicylic acid method and electron spin resonance (ESR). Next, they were incubated with L929 cells to evaluate whether they could increase cell viability after γ-ray irradiation. And then Ag14 clusterzymes were intravenously injected into C57 mice before 7 Gy whole-body γ-ray irradiation to evaluate the radioprotection effects in vivo. At last, the in vivo toxicities of Ag14 clusterzymes were evaluated through biodistribution test, hematological details, serum biochemical indexes and histological test in female Balb/c mice with intravenous injection of Ag14 clusterzymes. RESULTS: Our studies suggested atomically precise Ag14 clusterzymes were potential radioprotectants. Ag14 clusterzymes exhibited unique superoxide dismutase (SOD)-like activity, strong anti-oxidative abilities, especially on •OH scavenging. The Ag14 clusterzymes could effectively improve cell viability through eliminating ROS and prevent DNA damages in cells dealt with γ-ray irradiation. In vivo experiments showed that Ag14 clusterzymes could improve the irradiated mice survival rate by protecting hematological systems and repairing tissue oxidative stress damage generated by γ-ray irradiation. In addition, bio-distribution and toxicological experiments demonstrated that the ultrasmall Ag14 clusterzymes could be excreted quickly from the body by renal clearance and negligible toxicological responses were observed in mice up to 30 days. CONCLUSION: In summary, atomically precise, ultrasmall and water soluble Ag14 clusterzymes with SOD-like activity were successfully developed and proved to be effective both in vitro and in vivo for radioprotection. Furthermore, with atomically precise molecular structure, Ag14 clusterzymes, on aspect of the catalytic and optical properties, may be improved by structure optimization on atom-scale level for other applications in disease diagnosis and treatment.


Assuntos
Antioxidantes , Glutationa , Nanoestruturas/química , Protetores contra Radiação , Prata , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Feminino , Glutationa/química , Glutationa/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Protetores contra Radiação/química , Protetores contra Radiação/metabolismo , Protetores contra Radiação/farmacologia , Prata/química , Prata/farmacologia , Superóxido Dismutase
3.
Physiol Rep ; 9(10): e14799, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34042295

RESUMO

The development of safe and practical strategies to prevent weakening of bone tissue is vital, yet attempts to achieve this have been hindered by a lack of understanding of the short-term (days-weeks) physiology of bone collagen turnover. To address this, we have developed a method to quantify bone collagen synthesis in vivo, using deuterium oxide (D2 O) tracer incorporation techniques combined with gas chromatography pyrolysis isotope-ratio mass spectrometry (GC-pyrolysis-IRMS). Forty-six male and female rats from a selectively bred model ingested D2 O for 3 weeks. Femur diaphyses (FEM), tibia proximal (T-PRO), and distal (T-DIS) epiphyses-metaphyses and tibia mid-shaft diaphyses (T-MID) were obtained from all rats after necropsy. After demineralisation, collagen proteins were isolated and hydrolysed and collagen fractional synthetic rates (FSRs) determined by incorporation of deuterium into protein-bound alanine via GC-pyrolysis-IRMS. The collagen FSR for the FEM (0.131 ± 0.078%/day; 95% CI [0.106-0.156]) was greater than the FSR at T-MID (0.055 ± 0.049%/day; 95% CI [0.040-0.070]; p < 0.001). The T-PRO site had the highest FSR (0.203 ± 0.123%/day; 95% CI [0.166-0.241]) and T-DIS the lowest (0.027 ± 0.015%/day; 95% CI [0.022-0.031]). The three tibial sites exhibited different FSRs (p < 0.001). Herein, we have developed a sensitive method to quantify in vivo bone collagen synthesis and identified site-specific rates of synthesis, which could be applicable to studies of human bone collagen turnover.


Assuntos
Colágeno/biossíntese , Óxido de Deutério/metabolismo , Fêmur/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Protetores contra Radiação/metabolismo , Tíbia/metabolismo , Animais , Remodelação Óssea/fisiologia , Colágeno/análise , Óxido de Deutério/análise , Feminino , Fêmur/química , Masculino , Pirólise , Protetores contra Radiação/análise , Ratos , Tíbia/química
4.
Arch Biochem Biophys ; 702: 108830, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33727039

RESUMO

Peroxiredoxin 6 (Prdx6) is a bifunctional enzyme with multi-substrate peroxidase and phospholipase activities that is involved in cell redox homeostasis and regulates intracellular processes. Previously, recombinant Prdx6 was shown to exert a radioprotective effect during whole-body exposure to a lethal dose of X-ray radiation. Moreover, a mutant form Prdx6-C47S, which lacks peroxidase activity, also had a radioprotective effect, and this indicates that the mechanism of radioprotection is unknown. The present study was aimed to test the hypothesis that the radioprotective effect of Prdx6 and Prdx6-C47S may be mediated through the TLR4/NF-κB signaling pathway. It was demonstrated that exogenously applied Prdx6 protected 3T3 fibroblast cells against LD50 X-ray radiation in vitro. Pretreatment with Prdx6 increased cell survival, stimulated proliferation, normalized the level of reactive oxygen species in culture, and suppressed apoptosis and necrosis. Wild-type Prdx6 and, to a lesser degree, the Prdx6-C47S mutant proteins promoted a significant increase in NF-κB activation in irradiated cells, which likely contributes to the antiapoptotic effect. Pretreatment with TLR4 inhibitors, especially those directed to the extracellular part of the receptor, significantly reduced the radioprotective effect, and this supports the role of TLR4 signaling in the protective effects of Prdx6. Therefore, the radioprotective effect of Prdx6 was related not only to its antioxidant properties, but also to its ability to trigger cellular defense mechanisms through interaction with the TLR4 receptor and subsequent activation of the NF-κB pathway. Recombinant Prdx6 may be useful for the development of a new class of safe radioprotective compounds that have a combination of antioxidant and immunomodulatory properties.


Assuntos
NF-kappa B/metabolismo , Peroxirredoxina VI/farmacologia , Protetores contra Radiação/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Células 3T3 , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Camundongos , Modelos Moleculares , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Peroxirredoxina VI/química , Peroxirredoxina VI/metabolismo , Conformação Proteica , Protetores contra Radiação/química , Protetores contra Radiação/metabolismo , Transdução de Sinais/efeitos da radiação , Receptor 4 Toll-Like/química
5.
Cell Death Dis ; 12(2): 195, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602915

RESUMO

Amifostine has been the only small molecule radio-protector approved by FDA for decades; however, the serious adverse effects limit its clinical use. To address the toxicity issues and maintain the good potency, a series of modified small polycysteine peptides had been prepared. Among them, compound 5 exhibited the highest radio-protective efficacy, the same as amifostine, but much better safety profile. To confirm the correlation between the radiation-protective efficacy and the DNA binding capability, each of the enantiomers of the polycysteine peptides had been prepared. As a result, the L-configuration compounds had obviously higher efficacy than the corresponding D-configuration enantiomers; among them, compound 5 showed the highest DNA binding capability and radiation-protective efficacy. To our knowledge, this is the first study that has proved their correlations using direct comparison. Further exploration of the mechanism revealed that the ionizing radiation (IR) triggered ferroptosis inhibition by compound 5 could be one of the pathways for the protection effect, which was different from amifostine. In summary, the preliminary result showed that compound 5, a polycysteine as a new type of radio-protector, had been developed with good efficacy and safety profile. Further study of the compound for potential use is ongoing.


Assuntos
Ferroptose/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Peptídeos/farmacologia , Lesões por Radiação/prevenção & controle , Protetores contra Radiação/farmacologia , Amifostina/farmacologia , Animais , Linhagem Celular , DNA/metabolismo , Modelos Animais de Doenças , Ferroptose/efeitos da radiação , Glutationa/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Células-Tronco Hematopoéticas/efeitos da radiação , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos da radiação , Jejuno/metabolismo , Jejuno/patologia , Jejuno/efeitos da radiação , Peroxidação de Lipídeos/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos da radiação , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/síntese química , Peptídeos/metabolismo , Doses de Radiação , Lesões por Radiação/genética , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Protetores contra Radiação/síntese química , Protetores contra Radiação/metabolismo , Ratos , Irradiação Corporal Total
6.
Molecules ; 25(16)2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32784397

RESUMO

This review compares and contrasts the role of carotenoids across the taxa of life-with a focus on the xanthophyll zeaxanthin (and its structural isomer lutein) in plants and humans. Xanthophylls' multiple protective roles are summarized, with attention to the similarities and differences in the roles of zeaxanthin and lutein in plants versus animals, as well as the role of meso-zeaxanthin in humans. Detail is provided on the unique control of zeaxanthin function in photosynthesis, that results in its limited availability in leafy vegetables and the human diet. The question of an optimal dietary antioxidant supply is evaluated in the context of the dual roles of both oxidants and antioxidants, in all vital functions of living organisms, and the profound impact of individual and environmental context.


Assuntos
Anti-Inflamatórios/metabolismo , Encéfalo/metabolismo , Luteína/metabolismo , Protetores contra Radiação/metabolismo , Zeaxantinas/metabolismo , Animais , Humanos
7.
Photochem Photobiol ; 96(6): 1243-1250, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32474931

RESUMO

The influence of low-intensity laser radiation (LILR) on the changes in the content of anthocyanins, kaempferol, quercetin and their glycosides in the leaves of 5-week-old plants of Arabidopsis thaliana L. was studied by means of methods of high-performance liquid chromatography and gas chromatography mass spectrometry (GC-MS). It was found that in the leaves subjected to a stimulating He-Ne laser radiation dose (3.6 J cm-2 , continuous wave radiation, wavelength-632.8 nm, exposure time-5 min), the radiation induced an increase in the content of such compounds, the most significant one being in the case of anthocyanins (9 times). The present study also revealed an increase in the antioxidant potential of kaempferol, quercetin and their glycosides as a result of laser exposure. This increase was due to the preferential synthesis of compounds with a larger number of OH-groups on the phenyl ring. Thus, the content of quercetin, which has five OH-groups in its structure, increased almost by three times as compared to the control.


Assuntos
Arabidopsis/efeitos da radiação , Fenóis/metabolismo , Folhas de Planta/metabolismo , Protetores contra Radiação/metabolismo , Arabidopsis/metabolismo , Lasers
8.
Bioorg Med Chem ; 28(11): 115498, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32291146

RESUMO

δ-tocotrienol (DT3), a member of vitamin E family, has been shown to have a potent radio-protective effect. However, its application as a radioprotectant is limited, at least in part, by its short plasma elimination half-life and low bioavailability. In an effort to increase the metabolic stability of DT3, a deuterium substituted DT3 derivative, d6-DT3, was designed and synthesized. d6-DT3 showed improved in vitro and in vivo metabolic stability compared to DT3. The unexpected lower potency of d6-DT3 in inducing granulocyte-colony stimulating factor (G-CSF) production in mouse revealed that the metabolite(s) of DT3 might play a major role in inducing G-CSF induction.


Assuntos
Fator Estimulador de Colônias de Granulócitos/biossíntese , Protetores contra Radiação/farmacologia , Vitamina E/análogos & derivados , Animais , Relação Dose-Resposta a Droga , Masculino , Camundongos , Estrutura Molecular , Protetores contra Radiação/química , Protetores contra Radiação/metabolismo , Relação Estrutura-Atividade , Vitamina E/química , Vitamina E/metabolismo , Vitamina E/farmacologia
9.
Glycobiology ; 30(7): 446-453, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-31897489

RESUMO

High-dose irradiation poses extreme risk of mortality from acute damage to the hematopoietic compartment and gastrointestinal tract. While bone marrow transplantation can reestablish the hematopoietic compartment, a more imminent risk of death is posed by gastrointestinal acute radiation syndrome (GI-ARS), for which there are no FDA-approved medical countermeasures. Although the mechanisms dictating the severity of GI-ARS remain incompletely understood, sialylation by ST6GAL1 has been shown to protect against radiation-induced apoptosis in vitro. Here, we used a C57BL/6 St6gal1-KO mouse model to investigate the contribution of ST6GAL1 to susceptibility to total body irradiation in vivo. Twelve gray total body ionizing γ-irradiation (TBI) followed by bone marrow transplant is not lethal to wild-type mice, but St6gal1-KO counterparts succumbed within 7 d. Both St6gal1-KO and wild-type animals exhibited damage to the GI epithelium, diarrhea and weight loss, but these symptoms became progressively more severe in the St6gal1-KO animals while wild-type counterparts showed signs of recovery by 120 h after TBI. Increased apoptosis in the GI tracts of St6gal1-KO mice and the absence of regenerative crypts were also observed. Together, these observations highlight an important role for ST6GAL1 in protection and recovery from GI-ARS in vivo.


Assuntos
Trato Gastrointestinal/metabolismo , Protetores contra Radiação/metabolismo , Sialiltransferases/metabolismo , Animais , Radioisótopos de Césio , Trato Gastrointestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
10.
Radiat Res ; 193(1): 88-94, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31738662

RESUMO

Radiation-induced cancer is an ongoing and significant problem, with sources that include clinics worldwide in which 3.1 billion radiology exams are performed each year, as well as a variety of other scenarios such as space travel and nuclear cleanup. These radiation exposures are typically anticipated, and the exposure is typically well below 1 Gy. When radiation-induced (actually ROS-induced) DNA mutation is prevented, then so too are downstream radiation-induced cancers. Currently, there is no protection available against the effects of such <1 Gy radiation exposures. In this study, we address whether the new PrC-210 ROS-scavenger is effective in protecting p53-deficient (p53-/-) mice against X-ray-induced accelerated tumor mortality; this is the most sensitive radiation tumorigenesis model currently known. Six-day-old p53-/- pups received a single intraperitoneal PrC-210 dose [0.5 maximum tolerated dose (MTD)] or vehicle, and 25 min later, pups received 4.0 Gy X-ray irradiation. At 5 min postirradiation, blood was collected to quantify white blood cell c-H2AX foci. Over the next 250 days, tumor-associated deaths were recorded. Findings revealed that when administered 25 min before 4 Gy X-ray irradiation, PrC-210 reduced DNA damage (c-H2AX foci) by 40%, and in a notable coincidence, caused a 40% shift in tumor latency/incidence, and the 0.5 MTD PrC210 dose had no discernible toxicities in these p53-/- mice. Essentially, the moles of PrC-210 thiol within a single 0.5 MTD PrC-210 dose suppressed the moles of ROS generated by 40% of the 4 Gy X-ray dose administered to p53-/- pups, and in doing so, eliminated the lifetime leukemia/lymphoma risk normally residing "downstream" of that 40% of the 4 Gy dose. In conclusion: 1. PrC-210 is readily tolerated by the 6-day-old p53-/- mice, with no discernible lifetime toxicities; 2. PrC-210 does not cause the nausea, emesis or hypotension that preclude clinical use of earlier aminothiols; and 3. PrC-210 significantly increased survival after 4 Gy irradiation in the p53-/- mouse model.


Assuntos
Diaminas/farmacologia , Neoplasias Induzidas por Radiação/mortalidade , Protetores contra Radiação/farmacologia , Compostos de Sulfidrila/farmacologia , Proteína Supressora de Tumor p53/deficiência , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/efeitos da radiação , Dano ao DNA , Diaminas/sangue , Feminino , Humanos , Recém-Nascido , Masculino , Camundongos , Neoplasias Induzidas por Radiação/genética , Neoplasias Induzidas por Radiação/patologia , Neoplasias Induzidas por Radiação/prevenção & controle , Protetores contra Radiação/metabolismo , Compostos de Sulfidrila/sangue
11.
Biofactors ; 46(2): 239-245, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31617634

RESUMO

The trace element selenium (Se) is an essential component of selenoproteins and plays a critical role in redox signaling via regulating the activity of selenoenzymes such as thioredoxin reductase-1 and glutathione peroxidases. Se compounds and its metabolites possess a wide range of biological functions including anticancer and cytoprotection effects, modulation of hormetic genes and antioxidant enzyme activities. Radiation-induced injury of normal tissues is a significant side effect for cancer patients who receive radiotherapy in the clinic and the development of new and effective radioprotectors is an important goal of research. Others and we have shown that seleno-compounds have the potential to protect ionizing radiation-induced toxicities in various tissues and cells both in in vitro and in vivo studies. In this review, we discuss the potential utilization of Se compounds with redox-dependent hormetic activity as novel radio-protective agents to alleviate radiation toxicity. The cellular and molecular mechanisms underlying the radioprotection effects of these seleno-hormetic agents are also discussed. These include Nrf2 transcription factor modulation and the consequent upregulation of the adaptive stress response to IR in bone marrow stem cells and hematopoietic precursors.


Assuntos
Hormese , Fator de Transcrição NF-E2/metabolismo , Protetores contra Radiação/metabolismo , Selenoproteínas/metabolismo , Humanos
12.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(11): 158588, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31838152

RESUMO

The skin is shielding our organism from exogenous threats including solar radiation. Carotenoids which are ingested with the diet accumulate in the skin with the highest levels occurring in skin of the forehead and in the palms of the hands. Blood and skin levels of carotenoids increase during supplementation and due to their antioxidant properties and UV-absorbing effects carotenoids are used as photoprotective agents. Systemic photoprotection with carotenoids after supplementation or ingestion of a carotenoid rich diet has been demonstrated in several human intervention studies. Although protection is only moderate it may contribute to UV protection in combination with other measures. Beyond photoprotection, ingestion of carotenoids has been postulated to be of additional benefit for cutaneous tissue and influences moisture and texture or elasticity of the skin. However, only a limited number of studies is available yet to substantiate such a claim.


Assuntos
Antioxidantes/uso terapêutico , Carotenoides/metabolismo , Protetores contra Radiação/metabolismo , Pele/metabolismo , Dieta , Humanos , Protetores contra Radiação/uso terapêutico , Pele/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos
13.
BMC Plant Biol ; 19(1): 561, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852472

RESUMO

BACKGROUND: Jacalin-related lectins in plants are important in defense signaling and regulate growth, development, and response to abiotic stress. We characterized the function of a rice mannose-binding jacalin-related lectin (OsJAC1) in the response to DNA damage from gamma radiation. RESULTS: Time- and dose-dependent changes of OsJAC1 expression in rice were detected in response to gamma radiation. To identify OsJAC1 function, OsJAC1-overexpressing transgenic Arabidopsis plants were generated. Interestingly, OsJAC1 overexpression conferred hyper-resistance to gamma radiation in these plants. Using comparative transcriptome analysis, genes related to pathogen defense were identified among 22 differentially expressed genes in OsJAC1-overexpressing Arabidopsis lines following gamma irradiation. Furthermore, expression profiles of genes associated with the plant response to DNA damage were determined in these transgenic lines, revealing expression changes of important DNA damage checkpoint and perception regulatory components, namely MCMs, RPA, ATM, and MRE11. CONCLUSIONS: OsJAC1 overexpression may confer hyper-resistance to gamma radiation via activation of DNA damage perception and DNA damage checkpoints in Arabidopsis, implicating OsJAC1 as a key player in DNA damage response in plants. This study is the first report of a role for mannose-binding jacalin-related lectin in DNA damage.


Assuntos
Arabidopsis/efeitos da radiação , Regulação da Expressão Gênica de Plantas/genética , Lectina de Ligação a Manose/genética , Oryza/genética , Proteínas de Plantas/genética , Radiação Ionizante , Protetores contra Radiação/metabolismo , Lectina de Ligação a Manose/metabolismo , Oryza/metabolismo , Lectinas de Plantas/metabolismo , Proteínas de Plantas/metabolismo
14.
J Radiat Res ; 60(6): 780-785, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31599956

RESUMO

Bacterial flagellin is a pathogen-associated molecular pattern recognized by surface-localized Toll-like receptor 5 (TLR5) and cytosolic NOD-like receptor protein 4 (NLRC4). CBLB502, derived from Salmonella flagellin, exhibits high radioprotective efficacy in mice and primates by regulating TLR5 and the nuclear factor kappa B (NF-κB) signaling pathway. In this study, we examined the effects of CBLB502 and mutations in its NLRC4- and TLR5-binding domains on radioprotective efficacy and the immune inflammatory response. The results showed that CBLB502 mutation with I213A in the TLR5-binding domain significantly reduced NF-κB activity and radioprotective activity, whereas CBLB502 mutation with L292A in NLRC4-binding domain did not. Additionally, CBLB502 with both mutations greatly reduced NF-κB activity and eliminated radioprotection in mice. In contrast, NLRC4-binding domain mutation reduced the secretion of inflammatory interleukin-1ß and interleukin-18. CBLB502 exerts its radioprotective effects through both the TLR5 and NLRC4 pathways. Additionally, deletion in the NLRC4-binding domain did not reduce radioprotective activity but reduced the inflammatory response.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Flagelina/química , Mutação/genética , Peptídeos/química , Peptídeos/genética , Protetores contra Radiação/metabolismo , Animais , Citocinas/sangue , Raios gama , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos Endogâmicos C57BL , Proteínas Mutantes/metabolismo , NF-kappa B/metabolismo , Peptídeos/metabolismo , Ligação Proteica/efeitos da radiação , Domínios Proteicos , Transporte Proteico/efeitos da radiação
15.
Artif Cells Nanomed Biotechnol ; 47(1): 3548-3558, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31456420

RESUMO

The extensive relevance of nanoparticles arouses the requirement for manufacturing although the predictable technique are frequently perilous and energy saving. In the current study, zinc oxide nanoparticles manufactured from Allium cepa avert UVB radiation interceded irritation in human epidermal keratinocytes (HaCaT cells). In the current study, the zinc oxide nanoparticles (ZnO-NPs) was synthesized from the extract of A. cepa. The optimized ZnO-NPs hence attained and was enumerated and exemplified by UV visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), scanning electron microscope (SEM) and EDAX impending analysis. In addition, amalgamated ZnO-NPs were experienced for cell viability (MTT), formation of reactive oxygen species (ROS), apoptosis, and antioxidant and lipid peroxidation (TBARS) levels. Also, we explored the effect of A. cepa ZnO-NPs in molecular level by evaluating the inflammatory and apoptotic markers, in which ZnO-NPs reinstated the interleukins 6, 10 and related signaling molecules like iNOS, COX-2 levels. Ultimately, ZnO-NPs induce apoptotic markers (Bax, Bcl-2) and also recommended that ZnO-NPs might aggravate cancer cell apoptosis in HaCaT cells.


Assuntos
Epiderme/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Cebolas/metabolismo , Raios Ultravioleta/efeitos adversos , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Animais , Linhagem Celular , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Espaço Intracelular/efeitos da radiação , Queratinócitos/citologia , Queratinócitos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Protetores contra Radiação/química , Protetores contra Radiação/metabolismo , Protetores contra Radiação/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Óxido de Zinco/metabolismo
16.
J Pharm Biomed Anal ; 174: 63-69, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31158607

RESUMO

A rapid, sensitive and reliable bioanalytical method was firstly developed and validated based on ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), for simultaneous quantitation of the novel radioprotective compound E0703 and its oxidative metabolite M1 in human plasma. Plasma samples were deproteinated with acetonitrile containing the internal standard IS1229 as precipitant and separated on a short CAPCELL PAK C18 IF2 column (2.0 mm × 20 mm, 2 µm) by gradient elution using acetonitrile (containing 0.1% formic acid) and water (containing 0.1% formic acid) with a run time of 2.5 min per sample. MS detection was carried out on a triple quadrupole mass spectrometer (Xevo TQ-S) coupled with electrospray ionization in positive multiple reaction monitoring (MRM) mode. The method was linear over the concentration ranges of 0.100-50.0 ng/mL for E0703 and 0.200-100 ng/mL for M1, with correlation coefficient (r2) values ≥0.993. A full validation of this method was performed, and all results were within acceptable limits. The novel assay was sensitive enough to monitor E0703 and M1 levels in human plasma, and was successfully applied to a clinical pharmacokinetic study of healthy Chinese subjects after a single oral administration of 30 mg E0703 tablets. In conclusion, the validated method is accurate, sensitive and high-throughput, and can be successfully implemented for subsequent clinical pharmacokinetic studies of E0703 and M1.


Assuntos
Compostos Policíclicos/farmacocinética , Protetores contra Radiação/farmacocinética , Adulto , Calibragem , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Feminino , Voluntários Saudáveis , Humanos , Limite de Detecção , Masculino , Protetores contra Radiação/metabolismo , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Comprimidos , Espectrometria de Massas em Tandem
17.
Radiat Res ; 192(1): 28-39, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31058578

RESUMO

Exposures to ionizing radiation can cause depletion in stem cell reservoirs and lead to chronic injury processes that exacerbate carcinogenic and inflammatory responses. Therefore, radioprotective measures, against both acute and chronic biological effects of radiation, require frequent intake of nontoxic natural products, which have practical oral administration. The goal of this study was to characterize the radioprotective, radiomitigative and radiation-induced bystander effect-inhibiting properties of endogenous metabolites: phenylacetate, ursodeoxycholate and tauroursodeoxycholate. Compounds were administered pre- and postirradiation as well as in donor and recipient bystander flasks to analyze whether these might adequately protect against radiation injury as well as facilitate recovery from the exposures. The clonogenic HCT116 p53 wild-type cancer cell line in this study shares characteristics of stem cells, such as high reproductive viability, which is an effective marker to demonstrate compound effectiveness. Clonogenic assays were therefore used to characterize radioprotective, radiomitigative and bystander inhibiting properties of treatment compounds whereby cellular responses to radiation were quantified with macroscopic colony counts to measure cell survival in flasks. The results were statistically significant for phenylacetate and tauroursodeoxycholate when administered preirradiation, conferring radioprotection up to 2 Gy, whereas administration postirradiation and in bystander experiments did not confer radioprotection in vitro. These findings suggest that phenylacetate and tauroursodeoxycholate might be effective radioprotectors, although they possess no radiomitigative properties.


Assuntos
Acetatos/farmacologia , Efeito Espectador/efeitos dos fármacos , Efeito Espectador/efeitos da radiação , Fenóis/farmacologia , Protetores contra Radiação/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ácido Tauroquenodesoxicólico/farmacologia , Ácido Ursodesoxicólico/farmacologia , Acetatos/metabolismo , Sobrevivência Celular/efeitos da radiação , Neoplasias do Colo/patologia , Relação Dose-Resposta à Radiação , Células HCT116 , Humanos , Fenóis/metabolismo , Protetores contra Radiação/metabolismo , Transdução de Sinais/efeitos da radiação , Ácido Tauroquenodesoxicólico/metabolismo , Ácido Ursodesoxicólico/metabolismo
18.
J Agric Food Chem ; 67(7): 1847-1859, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30681331

RESUMO

Ocimum basilicum L. (Purple basil) is a source of biologically active antioxidant compounds, particularly phenolic acids and anthocyanins. In this study, we have developed a valuable protocol for the establishment of in vitro callus cultures of O. basilicum and culture conditions for the enhanced production of distinct classes of phenylpropanoid metabolites such as hydroxycinnamic acid derivatives (caffeic acid, chicoric acid, rosmarinic acid) and anthocyanins (cyanidin and peonidin). Callus cultures were established by culturing leaf explants on Murashige and Skoog medium augmented with different concentrations of plant growth regulators (PGRs) [thidiazuron (TDZ), α-naphthalene acetic acid (NAA), and 6-benzyl amino purine (BAP)] either alone or in combination with 1.0 mg/L NAA. Among all the above-mentioned PGRs, NAA at 2.5 mg/L led to the highest biomass accumulation (23.2 g/L DW), along with total phenolic (TPP; 210.7 mg/L) and flavonoid (TFP; 196.4 mg/L) production, respectively. HPLC analysis confirmed the differential accumulation of phenolic acid [caffeic acid (44.67 mg/g DW), rosmarinic acid (52.22 mg/g DW), and chicoric acid (43.89 mg/g DW)] and anthocyanins [cyanidin (16.39 mg/g DW) and peonidin (10.77 mg/g DW)] as a function of the PGRs treatment. The highest in vitro antioxidant activity was determined with the ORAC assay as compared to the FRAP assay, suggesting the prominence of the HAT over the ET-based mechanism for the antioxidant action of callus extracts. Furthermore, in vivo results illustrated the protective action of the callus extract to limit the deleterious effects of UV-induced oxidative stress, ROS/RNS production, and membrane integrity in yeast cell culture. Altogether, these results clearly demonstrated the great potential of in vitro callus of O. basilicum as a source of human health-promoting antioxidant phytochemicals.


Assuntos
Antocianinas/biossíntese , Antioxidantes/farmacologia , Ácidos Cumáricos/metabolismo , Ocimum basilicum/metabolismo , Protetores contra Radiação/metabolismo , Raios Ultravioleta , Antioxidantes/metabolismo , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Flavonoides/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Fenóis/análise , Fenóis/metabolismo , Fitoterapia , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta
19.
Biosci Biotechnol Biochem ; 83(3): 551-560, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30526376

RESUMO

This study was undertaken to determine the effects of enzyme-treated Zizania latifolia (ETZL) and of its major compound tricin on skin photo-aging and to investigate the mechanisms involved. It was found ETZL and tricin suppressed matrix metalloproteinase (MMP) production and increased type I-procollagen production in UVB-irradiated human dermal fibroblasts (HDFs). Furthermore, ETZL and tricin significantly up-regulated the expressions of the antioxidant enzymes HO-1 and SOD1, reduced UVB-induced reactive oxygen species (ROS) generation and mitogen-activated protein kinase (MAPK) induction by ROS and thereby attenuated activator protein-1 (AP-1) expression. In addition, ETZL and tricin both reduced the phosphorylations of IκBα and IKKα/ß and κB blocked the nuclear translocation of nuclear factor-κB (NF-κB) p65. These results show that ETZL have skin protective effects against UVB and suggest tricin as major efficacious material in ETZL protecting skin photoaging.


Assuntos
Enzimas/metabolismo , Fibroblastos/efeitos dos fármacos , Flavonoides/farmacologia , Poaceae/química , Protetores contra Radiação/farmacologia , Pele/citologia , Raios Ultravioleta/efeitos adversos , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Flavonoides/isolamento & purificação , Flavonoides/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Protetores contra Radiação/isolamento & purificação , Protetores contra Radiação/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Fator de Transcrição AP-1/metabolismo
20.
Curr Mol Pharmacol ; 12(1): 2-11, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30073934

RESUMO

BACKGROUND: Melatonin is a natural body product that has shown potent antioxidant property against various toxic agents. For more than two decades, the abilities of melatonin as a potent radioprotector against toxic effects of ionizing radiation (IR) have been proved. However, in the recent years, several studies have been conducted to illustrate how melatonin protects normal cells against IR. Studies proposed that melatonin is able to directly neutralize free radicals produced by IR, leading to the production of some low toxic products. DISCUSSION: Moreover, melatonin affects several signaling pathways, such as inflammatory responses, antioxidant defense, DNA repair response enzymes, pro-oxidant enzymes etc. Animal studies have confirmed that melatonin is able to alleviate radiation-induced cell death via inhibiting pro-apoptosis and upregulation of anti-apoptosis genes. These properties are very interesting for clinical radiotherapy applications, as well as mitigation of radiation injury in a possible radiation disaster. An interesting property of melatonin is mitochondrial ROS targeting that has been proposed as a strategy for mitigating effects in radiosensitive organs, such as bone marrow, gastrointestinal system and lungs. However, there is a need to prove the mitigatory effects of melatonin in experimental studies. CONCLUSION: In this review, we aim to clarify the molecular mechanisms of radioprotective effects of melatonin, as well as possible applications as a radiation countermeasure in accidental exposure or nuclear/radiological disasters.


Assuntos
Melatonina/uso terapêutico , Lesões por Radiação/tratamento farmacológico , Animais , Antioxidantes/química , Enzimas Reparadoras do DNA/metabolismo , Humanos , Melatonina/metabolismo , Melatonina/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Lesões por Radiação/metabolismo , Protetores contra Radiação/metabolismo , Protetores contra Radiação/farmacologia , Protetores contra Radiação/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...